How to Write (And Read) Audio Specifications an Audio Precision White Paper by David Mathew Ap.Com

Total Page:16

File Type:pdf, Size:1020Kb

How to Write (And Read) Audio Specifications an Audio Precision White Paper by David Mathew Ap.Com How to write (and read) audio specifications an Audio Precision White Paper by David Mathew ap.com Introduction About this document At Audio Precision, the analyzers we make are This document discusses how to write audio recognized around the world as the standard in audio specifications, and how to read them. test and measurement. Specifications, then, are very • First, a look at our recommendations for writing important to us. Engineers use our equipment to specifications. compose their own specifications for the audio devices What should good specifications look like? they design. They use our equipment to verify that their • manufacturing processes are correct, and that their • What are typical values? products meet the goals they have set. They use our • Appendix: audio standards. equipment to characterize their products’ competitive • Appendix: THD and THD+N. advantages, and they publish the specifications they • Glossary: explanations of some of the derive as advertising bullet points. So we are very careful measurements, standards and units found in in how we spec our own analyzers, and we have audio specifications. developed some strong opinions about how speccing ought to be done. Specifications are necessary for every manufacturer, for Recommendations for writing every product. Internal engineering specs define the specifications product and provide benchmarks for manufacturing We consider these guidelines as we write our own quality assurance. Published specifications, usually less specifications, and think about them when we read complete and rigorous than the engineering specs, specifications from other manufacturers. Each of these inform the user of the device’s capabilities and recommendations is discussed in more detail following. limitations with the goal of safe and proper operation. 1. Decide which characteristics are important. Of course, a published spec is also a powerful sales tool 2. Use the “best practice” method of for an audio device. What we read in an advertisement measurement. If a standard applies, use the or even a data sheet might be, well, shaded a bit, in an standard’s recommendation. attempt to place a device in an attractive position 3. Spec conservatively. without actually lying. This tension between truth and 4. State ranges and conditions; annotate when marketing is especially evident in audio products more detail is required. targeted toward home entertainment use, as ordinary 5. Express in standard units. Display secondary consumers are typically less informed than audio units if applicable. engineers, and less adept at interpreting arcane lists of 6. Express graphically (x-y, polar, waterfall, etc.) numbers. when appropriate. In the professional and commercial audio fields, the 7. Use uniform units, formatting, and numerical tendency to use dubious power output ratings is expressions throughout the product line. certainly much lower than in the consumer goods sector; but a cursory sampling of pro audio, industrial audio and communications audio product specifications reveals incompleteness, inconsistency and just plain sloppiness, both in which specs are chosen and how they are expressed. 1 Decide which characteristics are devices you’ll also see separation, crosstalk, and important. interchannel phase. Balanced devices may spec common mode rejection, and devices with mechanical drives will Many comments can be made about any audio device. show “wow and flutter” figures. But which characteristics are really telling in describing a device’s key features, its performance, its compliance Please refer to the glossary for explanations of with industry standards or safety regulations? measurements, standards and units of measurement. Key features: interesting, but not performance Measure according to standard or best benchmarks The number of inputs and outputs, their nominal levels practice. If a standard or regulation exists for a measurement, use and connector types, the signal processing and codecs its recommendation and indicate which standard you available, the controls and displays are often included in used. If not, most measurements have a “best practice” a list of specifications. So are application-specific details method. For unusual testing methods or characteristics like constant voltage outputs or IR remote compatibility, new to the industry, consult the current literature and market-specific features such as the type of mains clearly state your method, testing conditions and so on. connector and mains voltage range. Physical characteristics such as size and weight, environmental The role of standards limits and safety regulation compliance often make the Some measurements are complicated and difficult to list as well. These are important in choosing a feature set, perform correctly. Other measurement techniques, or but they don’t indicate actual performance levels of the their reporting, may be disputed in the industry or can be device. manipulated in the service of marketing. Cleary, standardization of measurement methods and reporting Performance specifications benefit both the manufacturer and the customer by The details of an audio device’s tested performance are provide a standard reference. the heart of a set of specifications. These are the numbers that are weighed for bragging rights, for market Standards are revised and even withdrawn and replaced position, and ultimately, for a sale. from time to time. Spec using the latest standard that is appropriate. In general, the results of four categories of measurements form the core of audio performance Refer to the Audio Standards appendix for more specifications for any audio device: information. 1. Level, as volts (V), watts (W), or sound pressure level (SPL). Spec conservatively. Establish that the measurement used for a spec is not a 2. Frequency Response, as a statement or a graph; or at least, Frequency Range. “best result” of a “golden unit” but is typical of the device, achievable by any properly adjusted unit. 3. Distortion, as total harmonic distortion (THD),total harmonic distortion plus noise It’s always possible to tweak a device (by carefully (THD+N), and intermodulation distortion (IMD) selecting components, for example) so that it will surpass of various flavors. the typical performance of the devices. Do not use such 4. Noise, as an absolute voltage, as signal-to-noise results for specifications. ratio (SNR), or as dynamic range. It is also possible to find a “sweet spot” in a These will be expressed differently for different classes of characteristic, and report that as a performance device or applications, but they should always be in the specification. That is misleading, even if the specification specifications in one form or another. For multichannel specifically mentions the sweet spot. 2 For example, the graph above shows the residual THD+N External conditions and device configuration conditions, versus amplitude for one of our analyzer systems. For too, will affect device performance. What is the mains audio analyzers, this is a key specification, one we would voltage? The ambient temperature? Is the device volume like to tout. control set to low, medium or high? Are all channels being driven, or only the channel being measured? We claim ≤ –112 dB residual THD+N in a 22 kHz bandwidth. You can see that for most amplitudes above If there isn’t room for the conditions in the brochure, 400 mV the THD+N is well below this. If you are working there certainly is in the data sheet. Annotate at a 2 V amplitude, it is about –116 dB. We find, at least specifications when more detail is required. Use in our end of the business, that it is important not to footnotes or endnotes. mislead our customers. Here is an egregious but not uncommon example: An (The sharp inflections in the trace are artifacts of expensive audiophile amplifier states its THD+N this way: switching between ranging circuits; the rise at the left is “THD+Noise <1%” the inevitable approach of the noise floor.) What does that mean? There is no level or bandpass State ranges and conditions. filtering mentioned. It’s like saying “I’m taller.” THAN Stating ranges and conditions is absolutely essential. WHAT? Many specifications mean nothing if these parameters The table below shows the THD+N results for one are not provided. Yet, most manufactures do not include channel of a home theater receiver, made under varying this information in their specifications, or what they do conditions. Rated power (100 %) is 94 W into 4 Ω. include is incomplete. Are they saving ink? Note: the lower power unfiltered readings are high Every level measurement is made at some frequency or primarily due to the hum and noise component range of frequencies. Every frequency measurement is (N). made at some level or range of levels. Be very clear as to the level and frequency of the stimulus signal, and to the It’s clear that THD+N stated with no conditions is level range, bandwidth and filtering in the analyzer. meaningless. THD+N Bandwidth A-weighting Power Stimulus Filter Frequency 0.65 % no no 100 % 1 kHz 1.85 % no no 10 % 1 kHz 1.92 % no no 10 % 10 kHz 1.06 % no no 10 % 100 Hz 5.66 % no no 1 % 1 kHz 0.25 % yes no 100 % 1 kHz 0.01 % yes no 10 % 1 kHz 0.02 % yes no 1 % 1 kHz 0.26 % no yes 100 % 1 kHz 0.01 % no yes 10 % 1 kHz 0.01 % no yes 1 % 1 kHz 3 Express results using standard units. What should good specifications Do not mix units. look like? Here is one of the biggest problems in interpreting specifications: simply decoding the units chosen for the The characteristics that are deemed important differ specification, and comparing them to a similar across classes of devices. Power is important for specification stated in different units. One unit claims amplifiers; low noise is essential for microphone THD+N at –81 dB. Another touts a mere 0.0089 % preamplifiers, and intelligibility is key for THD+N.
Recommended publications
  • NQ-A4060, NQ-A4120, NQ-A4300 4 Channel Audio Power Amplifiers
    4-Channel Audio Power Amplifiers Configuration Manual NQ-A4060, NQ-A4120, NQ-A4300 2019 Bogen Communications, Inc. All rights reserved. 740-00099D 191101 Contents List of Figures ............................................................................... v List of Tables .............................................................................. vii Configuring the Four-Channel Audio Power Amplifiers 1-1 1 Using the Dashboard ..............................................................................3 2 Updating Firmware ..................................................................................4 3 Setting Network Tab Parameters .......................................................6 4 Setting Configuration Tab Parameters ............................................8 5 Accessing Log Files ............................................................................... 10 6 Setting DSP Parameters ...................................................................... 13 6.1 Setting the Channel Level .................................................. 15 6.2 Signal LED, Clip LED, and VU Meter .............................. 15 6.3 Muting a Channel ................................................................. 16 6.4 Adjusting Volume Levels ................................................... 16 6.5 Adjusting Compression Settings .................................... 16 6.6 Adjusting the Graphic Equalizer ..................................... 18 6.7 Setting High/Low Pass Parameters ................................ 20 6.8 Adjusting
    [Show full text]
  • PRODUCT CATALOG Home Control - Loudspeakers - General Products NAVIGATION CATALOG
    PRODUCT CATALOG Home Control - Loudspeakers - General Products CATALOG NAVIGATION Products are grouped by category of interest. Sections are differentiated by color coding on the bottom right of each page. HOME CONTROL Multi-room audio control, now with lighting and climate, plus remote access. Page 4 LOUDSPEAKERS Architectural audio solutions where you live, work, and play. Page 27 GENERAL PRODUCTS Complete the connected experience here. Page 85 2 CALL 1-800-BUY-HIFI – www.nilesaudio.com 3 HOME CONTROL A Heritage of Recognition The Niles name is synonymous with premier whole home audio solutions. For nearly four decades, Niles has delivered innovative products that enable simple and easy access to home entertainment, and we are now creating audio solutions that seamlessly integrate with lighting and climate control. Niles products enable custom integrators to design and install systems that deliver truly exceptional entertainment solutions for customers. 4 Home Control HOME CONTROL SOLUTIONS Auriel - One Touch to Control . 6 MRC-6430 Multi-Room Controller . 12 nTP7 Touch Panel .....................14 nTP4 Touch Panel .....................15 nKP7 Keypad .........................16 nHR200 Remote Control. 17 SYSTEMS INTEGRATION AMPLIFIERS® 16-Channel Amplifier . 20 12-Channel Amplifier . 21 2-Channel Amplifiers . 22 CALL 1-800-BUY-HIFI – www.nilesaudio.com Home Control 5 One Touch to Control. Niles Auriel now adds built-in streaming audio, plus climate and lighting control to the award-winning multi- room audio platform. The result is an exceptional home control experience. The wizard whisks you through simple decisions that quickly configure the system for lighting scenes and thermostat programming, audio sources, zone preferences, user interface customization and home theater control.
    [Show full text]
  • 15W Stereo Class-D Audio Power Amplifier
    TPA3121D2 www.ti.com SLOS537B –MAY 2008–REVISED JANUARY 2014 15-W STEREO CLASS-D AUDIO POWER AMPLIFIER Check for Samples: TPA3121D2 1FEATURES APPLICATIONS 23• 10-W/Ch Stereo Into an 8-Ω Load From a 24-V • Flat Panel Display TVs Supply • DLP® TVs • 15-W/Ch Stereo Into a 4-Ω Load from a 22-V • CRT TVs Supply • Powered Speakers • 30-W/Ch Mono Into an 8-Ω Load from a 22-V Supply DESCRIPTION • Operates From 10 V to 26 V The TPA3121D2 is a 15-W (per channel), efficient, • Can Run From +24 V LCD Backlight Supply class-D audio power amplifier for driving stereo speakers in a single-ended configuration or a mono • Efficient Class-D Operation Eliminates Need speaker in a bridge-tied-load configuration. The for Heat Sinks TPA3121D2 can drive stereo speakers as low as 4 Ω. • Four Selectable, Fixed-Gain Settings The efficiency of the TPA3121D2 eliminates the need • Internal Oscillator to Set Class D Frequency for an external heat sink when playing music. (No External Components Required) The gain of the amplifier is controlled by two gain • Single-Ended Analog Inputs select pins. The gain selections are 20, 26, 32, and • Thermal and Short-Circuit Protection With 36 dB. Auto Recovery The patented start-up and shutdown sequences • Space-Saving Surface Mount 24-Pin TSSOP minimize pop noise in the speakers without additional Package circuitry. • Advanced Power-Off Pop Reduction SIMPLIFIED APPLICATIONCIRCUIT TPA3121D2 1m F 0.22m F LeftChannel LIN BSR 33m H 470m F RightChannel RIN ROUT 1m F 0.22m F PGNDR PGNDL 1m F 0.22m F LOUT BYPASS 33m H 470m F AGND BSL 0.22m F PVCCL 10Vto26V 10Vto26V AVCC PVCCR VCLAMP ShutdownControl SD 1m F MuteControl MUTE GAIN0 4-StepGainControl GAIN1 S0267-01 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
    [Show full text]
  • Sound Waves Displacement
    Producing sound waves Displacement 1.4 Sound Density Pressure Producing sound waves Speed of sound •Sound waves are longitudinal •Produced by compression and rarefaction of media (air) Energy and Intensity resulting in displacement in the direction of propagation. • The displacements result in oscillations in density and pressure. Spherical and Plane waves. Frequencies of sound wave Speed of sound Speed of sound in a fluid B infra-sonic Audible Sound v = ultra- sonic ρ ∆P B =− Bulk modulus 10 20,000 ∆V/V m Frequency (Hz) ρ= Density V Similarity to speed of a transverse wave on a string 30 0.015 Wavelength (m) in air elastic _property v = int ertial_property Speed of sound in air γP B v = v = ρ ρ γ is a constant that depends on the nature of the gas γ =7/5 for air Density is higher in water than in P - Pressure air. ρ -Density Why is the speed of sound higher in water than in air? Since P is proportional to the absolute temperature T by the ideal gas law. PV=nRT T v331= (m/s) 273 1 Energy and Intensity of sound waves o Find the speed of sound in air at 20 C. energy power P = time T area A v331= 273 273+ 20 v== 331 343m/ s 273 For calculations use v=340 m/s power P intensity I = = (units W/m2) area A Sound intensity level The ear is capable of distinguishing a wide range of sound intensities. The decibel is a measure of the sound intensity level ⎛⎞I What is the intensity β=10log⎜⎟ decibels of sound at a rock I ⎝⎠o concert? (W/m2) -12 2 Io = 10 W/m the threshold of hearing note- decibel is a logarithmic unit.
    [Show full text]
  • Power Demystified Garth Powell
    Power Demystified Garth Powell 2621 White Road Irvine CA 92614 USA Tel 949 585 0111 Fax 949 585 0333 www.audioquest.com Contents Introduction AC Surge Suppression AC Power Conditioners/LCR Filters AC Regeneration AC Isolation Transformers DC Battery Isolation Devices with AC Inverters or AC Regeneration Amplifiers AC UPS Battery Backup Devices AC Voltage Regulators DC Blocking Devices for AC Power Harmonic Oscillators for AC Power AC Resonance/Vibration Dampening Power Correction for AC Power Ground Noise Dissipation for AC Power Appendix: Some Practical Matters to Bear in Mind I. Source Component and Power Amplifier Current Draw II. AC Polarity III. Over-voltage and Under-voltage Conditions Index Introduction The source that supplies nearly all of our electronic components is alternating current (AC) power. For most, it is enough that they can rely on a service tap from their power utility to supply the voltage and current our audio-video (A/V) components require. In fact, in many parts of the world, the supplied voltage is quite stable, and if the area is free of catastrophic lightning strikes, there are seemingly no AC power problems at all. Obviously, there are areas where AC voltage can both sag and surge to levels well out of the optimum range, and others where electrical storms can potentially damage sensitive electrical equipment. There are many protection devices and AC power technologies that can ad- dress those dire circumstances, but too many fail to realize that there is no place on Earth that is supplied adequate AC power for today’s sensitive, high-resolution electronic components.
    [Show full text]
  • Exploding the Efficiency Myth of Class D Amplifiers Much Has Been Written About the Efficiency of Class D Amplifiers, with Figures of 90% Or Greater Routinely Quoted
    Exploding the efficiency myth of AS-100204-WP Issue 1 Class D amplifiers Exploding the efficiency myth of Class D amplifiers Much has been written about the efficiency of Class D amplifiers, with figures of 90% or greater routinely quoted. Such numbers might seem to suggest that the efficiency problem of audio amplifiers has been well-solved by conventional Class D. However, a closer look shows that this is far from the truth, with these amplifiers frequently seeing only single-digit percentage efficiencies, or less, in real product usage conditions. To address this problem, a new generation of audio amplifier solutions has just emerged, heralding a massive reduction in average power consumption. The problem Figure 1 shows a plot of efficiency versus power output for a typical Class D amplifier, but plotted with a logarithmic power axis, rather than the linear scale invariably seen in data-sheets. Sure enough, the top right of the graph, corresponding to maximum power output, shows the efficiency reaching almost 90%. However, in typical consumer usage, an audio amplifier hits its rated maximum power comparatively rarely – only when the volume is turned right up to the onset of clipping. Even then, maximum power is reached only on the loudest audio peaks, which make up a relatively small proportion of typical content. Across the operating life of an amplifier, it is seen that average power output typically sits at around 20 to 50dB below full scale, a massive 100 to 100,000 times in linear power terms, as we now explore. At this comparatively tiny output level, corresponding to the lower left region of Figure 1, the efficiency of the conventional Class D solution is seen to be disappointingly low.
    [Show full text]
  • Daat Power Amplifier White Paper
    ISP Technologies patented Dynamic Adaptive Amplifier Technology™ Audio power is the electrical power off the AC line transferred from an audio amplifier to a loudspeaker, measured in watts. The power delivered to the loudspeaker, based on its efficiency, determines the actual audio power. Some portion of the electrical power in ends up being converted to heat. Recent years have seen a proliferation in what is called specmanship at a minimum and outright fabrication of misleading specifications at worst. The bottom line is power amplifier ratings are virtually meaningless today since there is no standard measurement system in use. This leads to confusion and serious misunderstanding in the audio community. ISP Technologies has for years rated the D-CAT power amplifiers in true RMS output power and as a result have shown modest performance specifications when compared with competitive amplifiers or self powered speakers. Some manufactures have gone so far as to claim they are offering 20,000 watt RMS power amplifiers with power consumption off the line on the order of 30 amps. I would like to see the patent on this amazing technology since there would be countless power companies beating a path to their door to license this technology. This white paper has been written to help shed some light on different types of power amplifier technologies and realistic and actual power amplifier power performance ratings and to also explain the advantages of the new ISP Technologies DAA™ Dynamic Adaptive Amplifier™ Technology now in use by ISP Technologies. An audio power amplifier is theoretically designed to deliver an exact replica of an audio input signal with more voltage and current at the output.
    [Show full text]
  • Investigating Electromagnetic and Acoustic Properties of Loudspeakers Using Phase Sensitive Equipment
    Investigating Electromagnetic and Acoustic Properties of Loudspeakers Using Phase Sensitive Equipment Katherine Butler Department of Physics, DePaul University ABSTRACT The goal of this project was to extract detailed information on the electromagnetic and acoustic properties of loudspeakers. Often when speakers are analyzed only the electrical components are considered without taking into account how this effects the mechanical operation of the loudspeaker, which in turn directly relates to the acoustic output. Examining the effect of mounting the speaker on a baffle or in an enclosure is also crucial to determining the speaker’s sound. All electrical and acoustic measurements are done using phase sensitive lock in amplifiers. By analyzing the speaker in such a detailed manner, we can ultimately determine which properties really affect the overall tonal qualities of that speaker. I. Background and Introduction attracted to or repelled by the permanent magnetic field. The moving parts of the The loudspeaker is the most important speaker, the driver, can then turn link in any audio chain. It is the last electrical energy into acoustic energy. piece of equipment the audio signal The electrical components of the speaker passes through before we hear anything. have a certain resonance when the You may have the best amplifier money electrical impedance is greatest. The air can buy, but that means nothing without surrounding the speaker and propagating quality speakers. In the audio chain the sound also has its own resistance to speakers are composed of some of the motion, radiation impedance. simplest electric circuits; it is the quality of manufacturing and physical design that is most important in speaker quality.
    [Show full text]
  • Changes and Challenges in Environmental Noise Measurement * Philip J Dickinson Massey University Wellington, New Zealand
    CHANGES AND CHALLENGES IN ENVIRONMENTAL NOISE MEASUREMENT * Philip J Dickinson Massey University Wellington, New Zealand Many changes have occurred in the last seventy years, not least of which are the changes in our environment and interdependently our intellectual and technological development. Sound measurement had its origins in the 1920s at a time when people were still traveling by horse and cart or on steam trains and few people used electricity. The technology of electronics was in its infancy and our predecessors had limited tools at their disposal. Nevertheless, they provided the basis on which we rely for our present day sound measurements. Since then we have come far, but we still await a solution for the lack of accuracy we have come to accept. THE BEGINNINGS independent of frequency and temperature, it was convenient to use a power (or logarithmic) series for its description based on the power developed by a one volt sinusoid across a mile of standard cable. This measure was called the Transmission Unit TU (Martin 1924) Harvey Fletcher (whom this author is very privileged to be able to have called a friend) studied the reactions of (it is believed) 23 of his colleagues to sound in a telephone earpiece generated by an a.c. voltage. He came up with the idea of a “sensation unit” SU, based on a power series compared to the voltage that produced the minimum sound audible. Harvey initially called this the “Loudness Unit” (Fletcher 1923) but later changed his mind following his work on loudness with Steinberg (Fletcher and Steinberg 1924).
    [Show full text]
  • TPA2015D1 2-W Constant Output Power Class-D Audio Amplifier With
    Product Sample & Technical Tools & Support & Folder Buy Documents Software Community TPA2015D1 SLOS638B –NOVEMBER 2011–REVISED OCTOBER 2015 TPA2015D1 2-W Constant Output Power Class-D Audio Amplifier With Adaptive Boost Converter and Battery Tracking Speakerguard™ AGC 1 Features 3 Description TM The TPA2015D1 is a high efficiency Class-D audio 1• Built-In SpeakerGuard Automatic Gain Control (AGC) with Enhanced Battery Tracking power amplifier with battery-tracking SpeakerGuard™ AGC technology and an integrated adaptive boost – Limits Battery Current Consumption converter that enhances efficiency at low output – Prevents Audio Clipping power. It drives up to 2 W into an 8 Ω speaker (6% • 2 W into 8 Ω Load From 3.6 V Supply (6% THD) THD). With 85% typical efficiency, the TPA2015D1 helps extend battery life when playing audio. • Integrated Adaptive Boost Converter – Increases Efficiency at Low Output Power The built-in boost converter generates a 5.5 V supply voltage for the Class-D amplifier. This provides a • Low Quiescent Current of 1.7 mA from 3.6 V louder audio output than a stand-alone amplifier • Operates From 2.5 V to 5.2 V directly connected to the battery. The TM • Thermal and Short-Circuit Protection with Auto SpeakerGuard AGC adjusts the Class-D gain to Recovery limit battery current and prevent heavy clipping. • Three Gain Settings: 6 dB, 15.5 dB, and 20 dB The TPA2015D1 has an integrated low-pass filter to • Independent Control for Boost and Class-D improve the RF rejection and reduce DAC out-of- band noise, increasing the signal to noise ratio • Pin-to-Pin Compatible with TPA2013D1 (SNR).
    [Show full text]
  • Basic Audio Terminology
    Audio Terminology Basics © 2012 Bosch Security Systems Table of Contents Introduction 3 A-I 5 J-R 10 S-Z 13 Wrap-up 15 © 2012 Bosch Security Systems 2 Introduction Audio Terminology Are you getting ready to buy a new amp? Is your band booking some bigger venues and in need of new loudspeakers? Are you just starting out and have no idea what equipment you need? As you look up equipment details, a lot of the terminology can be pretty confusing. What do all those specs mean? What’s a compression driver? Is it different from a loudspeaker? Why is a 4 watt amp cheaper than an 8 watt amp? What’s a balanced interface, and why does it matter? We’re Here to Help When you’re searching for the right audio equipment, you don’t need to know everything about audio engineering. You just need to understand the terms that matter to you. This quick-reference guide explains some basic audio terms and why they matter. © 2012 Bosch Security Systems 3 What makes EV the expert? Experience. Dedication. Passion. Electro-Voice has been in the audio equipment business since 1930. Recognized the world over as a leader in audio technology, EV is ubiquitous in performing arts centers, sports facilities, houses of worship, cinemas, dance clubs, transportation centers, theaters, and, of course, live music. EV’s reputation for providing superior audio products and dedication to innovation continues today. Whether EV microphones, loudspeaker systems, amplifiers, signal processors, the EV solution is always a step up in performance and reliability.
    [Show full text]
  • Audio Metering
    Audio Metering Measurements, Standards and Practice This page intentionally left blank Audio Metering Measurements, Standards and Practice Eddy B. Brixen AMSTERDAM l BOSTON l HEIDELBERG l LONDON l NEW YORK l OXFORD PARIS l SAN DIEGO l SAN FRANCISCO l SINGAPORE l SYDNEY l TOKYO Focal Press is an Imprint of Elsevier Focal Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First published 2011 Copyright Ó 2011 Eddy B. Brixen. Published by Elsevier Inc. All Rights Reserved. The right of Eddy B. Brixen to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]