GROUP ACTIONS on S3 Recall That a Group Action of A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[Math.GT] 31 Aug 1996
ON THE HOMOLOGY COBORDISM GROUP OF HOMOLOGY 3-SPHERES NIKOLAI SAVELIEV Abstract. In this paper we present our results on the homology cobordism group 3 ΘZ of the oriented integral homology 3-spheres. We specially emphasize the role played in the subject by the gauge theory including Floer homology and invariants by Donaldson and Seiberg – Witten. A closed oriented 3-manifold Σ is said to be an integral homology sphere if it has 3 the same integral homology as the 3-sphere S . Two homology spheres Σ0 and Σ1 are homology cobordant, if there is a smooth compact oriented 4-manifold W with ∂W = Σ0 ∪−Σ1 such that H∗(W, Σ0; Z)= H∗(W, Σ1; Z) = 0. The set of all homology 3 cobordism classes forms an abelian group ΘZ with the group operation defined by a connected sum. Here, the zero element is homology cobordism class of 3-sphere S3, and the additive inverse is obtained by a reverse of orientation. 3 Z The Rochlin invariant µ is an epimorphism µ :ΘZ → 2, defined by the formula 1 µ(Σ) = sign(W ) mod 2, 8 where W is any smooth simply connected parallelizable compact manifold with ∂W = Σ. This invariant is well-defined due to well-known Rochlin theorem [R] which states that the signature sign(V ) of any smooth simply connected closed par- allelizable manifold V is divisible by 16. 3 We will focus our attention on the following problem concerning the group ΘZ and 3 the homomorphism µ : does there exist an element of order two in ΘZ with non-trivial Rochlin invariant ? This is one of R. -
On Finite Simple Groups Acting on Integer and Mod 2 Homology 3
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Algebra 298 (2006) 460–467 www.elsevier.com/locate/jalgebra On finite simple groups acting on integer and mod 2 homology 3-spheres Mattia Mecchia, Bruno Zimmermann ∗ Università degli Studi di Trieste, Dipartimento di Matematica e Informatica, 34100 Trieste, Italy Received 21 September 2004 Available online 20 March 2006 Communicated by Michel Broué Abstract We prove that the only finite non-abelian simple groups G which possibly admit an action on a Z2-homology 3-sphere are the linear fractional groups PSL(2,q), for an odd prime power q (and the dodec- ∼ ahedral group A5 = PSL(2, 5) in the case of an integer homology 3-sphere), by showing that G has dihedral Sylow 2-subgroups and applying the Gorenstein–Walter classification of such groups. We also discuss the minimal dimension of a homology sphere on which a linear fractional group PSL(2,q)acts. 2006 Elsevier Inc. All rights reserved. 1. Introduction We consider actions of finite groups, and in particular of finite simple groups, on integer and Z2-homology 3-spheres (i.e., 3-manifolds with the homology of the 3-sphere, with coefficients in the integers or the integers mod 2). All actions considered will be smooth and orientation- preserving, by a simple group we will always understand a non-abelian simple group. Our main result is the following Theorem. Let G be a finite simple group of diffeomorphisms of a 3-manifold M: (i) If M is a Z2-homology 3-sphere then G is isomorphic to a linear fractional group PSL(2,q), for an odd prime power q. -
Maximal Subgroups of the Coxeter Group W(H4) and Quaternions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 412 (2006) 441–452 www.elsevier.com/locate/laa Maximal subgroups of the Coxeter group W(H4) and quaternions Mehmet Koca a, Ramazan Koç b,∗, Muataz Al-Barwani a, Shadia Al-Farsi a aDepartment of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Muscat, Oman bDepartment of Physics, Faculty of Engineering, Gaziantep University, 27310 Gaziantep, Turkey Received 9 October 2004; accepted 17 July 2005 Available online 12 September 2005 Submitted by H. Schneider Abstract The largest finite subgroup of O(4) is the non-crystallographic Coxeter group W(H4) of order 14,400. Its derived subgroup is the largest finite subgroup W(H4)/Z2 of SO(4) of order 7200. Moreover, up to conjugacy, it has five non-normal maximal subgroups of orders 144, two 240, 400 and 576. Two groups [W(H2) × W(H2)]Z4 and W(H3) × Z2 possess non- crystallographic structures with orders 400 and 240 respectively. The groups of orders 144, 240 and 576 are the extensions of the Weyl groups of the root systems of SU(3) × SU(3), SU(5) and SO(8) respectively. We represent the maximal subgroups of W(H4) with sets of quaternion pairs acting on the quaternionic root systems. © 2005 Elsevier Inc. All rights reserved. AMS classification: 20G20; 20F05; 20E34 Keywords: Structure of groups; Quaternions; Coxeter groups; Subgroup structure ∗ Corresponding author. Tel.: +90 342 360 1200; fax: +90 342 360 1013. -
Platonic Solids Generate Their Four-Dimensional Analogues
This is a repository copy of Platonic solids generate their four-dimensional analogues. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/85590/ Version: Accepted Version Article: Dechant, Pierre-Philippe orcid.org/0000-0002-4694-4010 (2013) Platonic solids generate their four-dimensional analogues. Acta Crystallographica Section A : Foundations of Crystallography. pp. 592-602. ISSN 1600-5724 https://doi.org/10.1107/S0108767313021442 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Platonic solids generate their four-dimensional analogues PIERRE-PHILIPPE DECHANT a,b,c* aInstitute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom, bPhysics Department, Arizona State University, Tempe, AZ 85287-1604, United States, and cMathematics Department, University of York, Heslington, York, YO10 5GG, United Kingdom. E-mail: [email protected] Polytopes; Platonic Solids; 4-dimensional geometry; Clifford algebras; Spinors; Coxeter groups; Root systems; Quaternions; Representations; Symmetries; Trinities; McKay correspondence Abstract In this paper, we show how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone. -
Remarks on the Cohomology of Finite Fundamental Groups of 3–Manifolds
Geometry & Topology Monographs 14 (2008) 519–556 519 arXiv version: fonts, pagination and layout may vary from GTM published version Remarks on the cohomology of finite fundamental groups of 3–manifolds SATOSHI TOMODA PETER ZVENGROWSKI Computations based on explicit 4–periodic resolutions are given for the cohomology of the finite groups G known to act freely on S3 , as well as the cohomology rings of the associated 3–manifolds (spherical space forms) M = S3=G. Chain approximations to the diagonal are constructed, and explicit contracting homotopies also constructed for the cases G is a generalized quaternion group, the binary tetrahedral group, or the binary octahedral group. Some applications are briefly discussed. 57M05, 57M60; 20J06 1 Introduction The structure of the cohomology rings of 3–manifolds is an area to which Heiner Zieschang devoted much work and energy, especially from 1993 onwards. This could be considered as part of a larger area of his interest, the degrees of maps between oriented 3– manifolds, especially the existence of degree one maps, which in turn have applications in unexpected areas such as relativity theory (cf Shastri, Williams and Zvengrowski [41] and Shastri and Zvengrowski [42]). References [1,6,7, 18, 19, 20, 21, 22, 23] in this paper, all involving work of Zieschang, his students Aaslepp, Drawe, Sczesny, and various colleagues, attest to his enthusiasm for these topics and the remarkable energy he expended studying them. Much of this work involved Seifert manifolds, in particular, references [1, 6, 7, 18, 20, 23]. Of these, [6, 7, 23] (together with [8, 9]) successfully completed the programme of computing the ring structure H∗(M) for any orientable Seifert manifold M with 1 2 3 3 G := π1(M) infinite. -
Half-Bps M2-Brane Orbifolds 3
HALF-BPS M2-BRANE ORBIFOLDS PAUL DE MEDEIROS AND JOSÉ FIGUEROA-O’FARRILL Abstract. Smooth Freund–Rubin backgrounds of eleven-dimensional supergravity of the form AdS X7 and preserving at least half of the supersymmetry have been recently clas- 4 × sified. Requiring that amount of supersymmetry forces X to be a spherical space form, whence isometric to the quotient of the round 7-sphere by a freely-acting finite subgroup of SO(8). The classification is given in terms of ADE subgroups of the quaternions embed- dedin SO(8) as the graph of an automorphism. In this paper we extend this classification by dropping the requirement that the background be smooth, so that X is now allowed to be an orbifold of the round 7-sphere. We find that if the background preserves more than half of the supersymmetry, then it is automatically smooth in accordance with the homo- geneity conjecture, but that there are many half-BPS orbifolds, most of them new. The classification is now given in terms of pairs of ADE subgroups of quaternions fibred over the same finite group. We classify such subgroups and then describe the resulting orbi- folds in terms of iterated quotients. In most cases the resulting orbifold can be described as a sequence of cyclic quotients. Contents List of Tables 2 1. Introduction 3 How to use this paper 5 2. Spherical orbifolds 7 2.1. Spin orbifolds 8 2.2. Statement of the problem 9 3. Finite subgroups of the quaternions 10 4. Goursat’s Lemma 12 arXiv:1007.4761v3 [hep-th] 25 Aug 2010 4.1. -
From the Icosahedron to E8
From the Icosahedron to E8 John C. Baez Department of Mathematics University of California Riverside, California 92521, USA and Centre for Quantum Technologies National University of Singapore Singapore 117543 [email protected] December 22, 2017 Abstract The regular icosahedron is connected to many exceptional objects in mathematics. Here we describe two constructions of the E8 lattice from the icosahedron. One uses a subring of the quaternions called the \icosians", while the other uses du Val's work on the resolution of Kleinian singularities. Together they link the golden ratio, the quaternions, the quintic equation, the 600- cell, and the Poincar´ehomology 3-sphere. We leave it as a challenge to the reader to find the connection between these two constructions. In mathematics, every sufficiently beautiful object is connected to all others. Many exciting adven- tures, of various levels of difficulty, can be had by following these connections. Take, for example, the icosahedron|that is, the regular icosahedron, one of the five Platonic solids. Starting from this it is just a hop, skip and a jump to the E8 lattice, a wonderful pattern of points in 8 dimensions! As we explore this connection we shall see that it also ties together many other remarkable entities: the golden ratio, the quaternions, the quintic equation, a highly symmetrical 4-dimensional shape called the 600-cell, and a manifold called the Poincar´ehomology 3-sphere. Indeed, the main problem with these adventures is knowing where to stop. The story we shall tell is just a snippet of a longer one involving the McKay correspondence and quiver representations. -
Arxiv:Math/0302026V3 [Math.GT] 21 Oct 2003 Fgnrtr Ntepeetto and Presentation of the in Generators of H Ecec Famnfl,Def( Manifold, a of Deficiency the Hoe 1.1
FOUR-MANIFOLDS OF LARGE NEGATIVE DEFICIENCY CHARLES LIVINGSTON Abstract. For every N > 0 there exists a group of deficiency less than −N that arises as the fundamental group of a smooth homology 4–sphere and also as the fundamental group of the complement of a compact contractible sub- manifold of the 4–sphere. A group is the fundamental group of the complement of a contractible submanifold of the n–sphere, n > 4, if and only if it is the fundamental group of a homology n–sphere. There exist fundamental groups of homology n–spheres, n> 4, that cannot arise as the fundamental group of the complement of a contractible submanifold of the 4–sphere. 1. Introduction The deficiency of a finite presentation of a group G is g−r, where g is the number of generators in the presentation and r is the number of relations. The deficiency of G, def(G), is the maximum value of this difference, taken over all presentations. The deficiency of a manifold, def(X), is defined to be def(π1(X)). Our goal is the proof of the following two theorems. Theorem 1.1. For all N > 0 there exists a smooth 4–dimensional homology sphere 4 4 XN such that def(XN ) < −N. Theorem 1.2. There exists a smooth, compact, contractible 4–manifold Z and for 4 4 all N > 0 an embedding fN : Z → S such that def(S − fN (Z)) < −N. Further- more, Z × I =∼ B5 so, in particular, Z embeds in S4 with contractible complement. Kervaire [4] proved that a group G is the fundamental group of a homology sphere of dimension greater than four if and only if G is finitely presented and H1(G)=0= H2(G). -
Homogeneous Spaces with the Cohomology of Sphere Products and Compact Quadrangles
Homogeneous spaces with the cohomology of sphere products and compact quadrangles Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universit¨at Wurzburg¨ vorgelegt von Oliver Bletz-Siebert aus Heilbronn Wurzburg¨ 2002 Contents Preface v Notation xi 1 Fibrations and double fibrations 1 1.1 Fibrations . 1 1.2 Double fibrations . 2 2 Lie group actions 11 2.1 Lie theory . 12 2.2 Group actions . 18 2.3 Transitive actions . 21 2.4 Homogeneous spheres . 22 2.5 Almost transitive actions . 26 3 Isoparametric hypersurfaces 33 3.1 Homogeneous hypersurfaces . 33 3.2 Transitive actions on focal manifolds . 35 4 Generalized quadrangles 39 4.1 Geometries and generalized quadrangles . 39 4.2 Homogeneous quadrangles . 42 4.3 Point-homogeneous (1; 2)-quadrangles . 47 4.4 Orthogonal actions . 49 iii iv CONTENTS 4.5 Unitary actions . 51 4.6 Summary . 53 5 Three series of homogeneous spaces 55 5.1 The (5; 4n − 6)-series . 55 5.2 The (7; 4n − 8)-series . 58 5.3 The (3; 2n − 2)-series . 59 6 Rational cohomology 61 6.1 Orientable fibrations . 62 6.2 Spectral sequences . 68 6.3 Rational homotopy and rational cohomology . 74 6.4 Cohomology of some homogeneous spaces . 79 Bibliography 89 Index 94 Preface The homogeneous spaces that have the same (singular) cohomology as spheres were classified by Borel, Bredon, Montgomery and Samelson and by Poncet. This was extended to homogeneous spaces which are simply connected and which have the same rational cohomology as spheres by Onishchik and also by Kramer. Furthermore, Kramer classified the simply connected homoge- neous spaces with the rational cohomology of a sphere product k × m, where 3 ≤ k ≤ m and m is odd; and Wolfrom classified this kind of spaces in the case 2 = k ≤ m with odd m. -
An Aspherical 5-Manifold with Perfect Fundamental Group
AN ASPHERICAL 5-MANIFOLD WITH PERFECT FUNDAMENTAL GROUP J.A. HILLMAN Abstract. We construct aspherical closed orientable 5-manifolds with perfect fundamental group. This completes part of our study of PDn-groups with pro-p completion a pro-p Poincar´eduality group of dimension ≤ n − 2. We also consider the question of whether there are any examples with \dimension drop" 1. The paper [6] considers the phenomenon of dimension drop on pro-p completion for orientable Poincar´eduality groups. Products of aspher- ical homology spheres, copies of S1 and copies of the 3-manifold M(K) obtained by 0-framed surgery on a nontrivial prime knot give exam- ples of aspherical closed orientable n-manifolds N such that the pro-p completion of π1(N) is a pro-p Poincar´eduality group of dimension r, for all n ≥ r + 2 and r ≥ 0, except when n = 5 and r = 0. (This gap reflects the fact that 5 is not in the additive semigroup generated by 3 and 4, dimensions in which aspherical homology spheres are known.) We fill this gap in Theorem 1 below. Modifying the construction of [9] gives an aspherical closed 4-manifold with perfect fundamental group and non-trivial second homology. The total space of a suitable S1-bundle over this 4-manifold has the required properties. We then apply Theorem 1 to refine the final result of [6]. No such examples with dimension drop n − r = 1 are known as yet. The lowest dimension in which there might be such examples is n = 4, and we consider this case in the final section. -
The Classification and the Conjugacy Classes of the Finite Subgroups of the Sphere Braid Groups Daciberg Gonçalves, John Guaschi
The classification and the conjugacy classes of the finite subgroups of the sphere braid groups Daciberg Gonçalves, John Guaschi To cite this version: Daciberg Gonçalves, John Guaschi. The classification and the conjugacy classes of the finite subgroups of the sphere braid groups. Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2008, 8 (2), pp.757-785. 10.2140/agt.2008.8.757. hal-00191422 HAL Id: hal-00191422 https://hal.archives-ouvertes.fr/hal-00191422 Submitted on 26 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The classification and the conjugacy classes of the finite subgroups of the sphere braid groups DACIBERG LIMA GONC¸ALVES Departamento de Matem´atica - IME-USP, Caixa Postal 66281 - Ag. Cidade de S˜ao Paulo, CEP: 05311-970 - S˜ao Paulo - SP - Brazil. e-mail: [email protected] JOHN GUASCHI Laboratoire de Math´ematiques Nicolas Oresme UMR CNRS 6139, Universit´ede Caen BP 5186, 14032 Caen Cedex, France. e-mail: [email protected] 21st November 2007 Abstract Let n ¥ 3. We classify the finite groups which are realised as subgroups of the sphere braid 2 Õ group Bn ÔS . -
The Double Cover of the Icosahedral Symmetry Group and Quark Mass
MADPHYS-10-1566 The Double Cover of the Icosahedral Symmetry Group and Quark Mass Textures Lisa L. Everett and Alexander J. Stuart Department of Physics, University of Wisconsin, Madison, WI, 53706, USA (Dated: October 25, 2018) We investigate the idea that the double cover of the rotational icosahedral symmetry group is the family symmetry group in the quark sector. The icosahedral ( 5) group was previously proposed as a viable family symmetry group for the leptons. To incorporateA the quarks, it is highly advantageous to extend the group to its double cover, as in the case of tetrahedral (A4) symmetry. We provide the basic group theoretical tools for flavor model-building based on the binary icosahedral group ′ and construct a model of the quark masses and mixings that yields many of the successful predictionsI of the well-known U(2) quark texture models. PACS numbers: 12.15Ff,12.60.Jv I. INTRODUCTION With the measurement of neutrino oscillations [1–6], an intriguing pattern of lepton mixing has emerged. The neu- trino oscillation data have revealed that two of the mixing angles of the Maki-Nakagawa-Sakata-Pontecorvo (MNSP) [8] mixing matrix are large and the third angle is bounded from above by the Cabibbo angle (for global fits, see [7]). This pattern, with its striking differences from the quark mixing angles of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, has shifted the paradigm for addressing the Standard Model (SM) flavor puzzle. More precisely, while the quark sector previously indicated a flavor model-building framework based on the Froggatt- Nielsen mechanism [10] with continuous family symmetries (see also [9]), the large lepton mixing angles suggest discrete non-Abelian family symmetries.