NAMD: Biomolecular Simulation on Thousands of Processors∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Secondary Structure Propensities in Peptide Folding Simulations: a Systematic Comparison of Molecular Mechanics Interaction Schemes
Biophysical Journal Volume 97 July 2009 599–608 599 Secondary Structure Propensities in Peptide Folding Simulations: A Systematic Comparison of Molecular Mechanics Interaction Schemes Dirk Matthes and Bert L. de Groot* Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Go¨ttingen, Germany ABSTRACT We present a systematic study directed toward the secondary structure propensity and sampling behavior in peptide folding simulations with eight different molecular dynamics force-field variants in explicit solvent. We report on the combi- national result of force field, water model, and electrostatic interaction schemes and compare to available experimental charac- terization of five studied model peptides in terms of reproduced structure and dynamics. The total simulation time exceeded 18 ms and included simulations that started from both folded and extended conformations. Despite remaining sampling issues, a number of distinct trends in the folding behavior of the peptides emerged. Pronounced differences in the propensity of finding prominent secondary structure motifs in the different applied force fields suggest that problems point in particular to the balance of the relative stabilities of helical and extended conformations. INTRODUCTION Molecular dynamics (MD) simulations are routinely utilized to that study, simulations of relatively short lengths were per- study the folding dynamics of peptides and small proteins as formed and the natively folded state was used as starting well as biomolecular aggregation. The critical constituents of point, possibly biasing the results (13). such molecular mechanics studies are the validity of the under- For folding simulations, such a systematic test has not lyingphysical models together with theassumptionsofclassical been carried out so far, although with growing computer dynamics and a sufficient sampling of the conformational power several approaches toward the in silico folding space. -
Real-Time Pymol Visualization for Rosetta and Pyrosetta
Real-Time PyMOL Visualization for Rosetta and PyRosetta Evan H. Baugh1, Sergey Lyskov1, Brian D. Weitzner1, Jeffrey J. Gray1,2* 1 Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America, 2 Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland, United States of America Abstract Computational structure prediction and design of proteins and protein-protein complexes have long been inaccessible to those not directly involved in the field. A key missing component has been the ability to visualize the progress of calculations to better understand them. Rosetta is one simulation suite that would benefit from a robust real-time visualization solution. Several tools exist for the sole purpose of visualizing biomolecules; one of the most popular tools, PyMOL (Schro¨dinger), is a powerful, highly extensible, user friendly, and attractive package. Integrating Rosetta and PyMOL directly has many technical and logistical obstacles inhibiting usage. To circumvent these issues, we developed a novel solution based on transmitting biomolecular structure and energy information via UDP sockets. Rosetta and PyMOL run as separate processes, thereby avoiding many technical obstacles while visualizing information on-demand in real-time. When Rosetta detects changes in the structure of a protein, new coordinates are sent over a UDP network socket to a PyMOL instance running a UDP socket listener. PyMOL then interprets and displays the molecule. This implementation also allows remote execution of Rosetta. When combined with PyRosetta, this visualization solution provides an interactive environment for protein structure prediction and design. Citation: Baugh EH, Lyskov S, Weitzner BD, Gray JJ (2011) Real-Time PyMOL Visualization for Rosetta and PyRosetta. -
Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi -
An Explicit-Solvent Conformation Search Method Using Open Software
An explicit-solvent conformation search method using open software Kari Gaalswyk and Christopher N. Rowley Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada ABSTRACT Computer modeling is a popular tool to identify the most-probable conformers of a molecule. Although the solvent can have a large effect on the stability of a conformation, many popular conformational search methods are only capable of describing molecules in the gas phase or with an implicit solvent model. We have developed a work-flow for performing a conformation search on explicitly-solvated molecules using open source software. This method uses replica exchange molecular dynamics (REMD) to sample the conformational states of the molecule efficiently. Cluster analysis is used to identify the most probable conformations from the simulated trajectory. This work-flow was tested on drug molecules a-amanitin and cabergoline to illustrate its capabilities and effectiveness. The preferred conformations of these molecules in gas phase, implicit solvent, and explicit solvent are significantly different. Subjects Biophysics, Pharmacology, Computational Science Keywords Conformation search, Explicit solvent, Cluster analysis, Replica exchange molecular dynamics INTRODUCTION Many molecules can exist in multiple conformational isomers. Conformational isomers have the same chemical bonds, but differ in their 3D geometry because they hold different torsional angles (Crippen & Havel, 1988). The conformation of a molecule can affect Submitted 5 April 2016 chemical reactivity, molecular binding, and biological activity (Struthers, Rivier & Accepted 6May2016 Published 31 May 2016 Hagler, 1985; Copeland, 2011). Conformations differ in stability because they experience different steric, electrostatic, and solute-solvent interactions. The probability, p,ofa Corresponding author Christopher N. -
Python Tools in Computational Chemistry (And Biology)
Python Tools in Computational Chemistry (and Biology) Andrew Dalke Dalke Scientific, AB Göteborg, Sweden EuroSciPy, 26-27 July, 2008 “Why does ‘import numpy’ take 0.4 seconds? Does it need to import 228 libraries?” - My first Numpy-discussion post (paraphrased) Your use case isn't so typical and so suffers on the import time end of the balance. - Response from Robert Kern (Others did complain. Import time down to 0.28s.) 52,000 structures PDB doubles every 2½ years HEADER PHOTORECEPTOR 23-MAY-90 1BRD 1BRD 2 COMPND BACTERIORHODOPSIN 1BRD 3 SOURCE (HALOBACTERIUM $HALOBIUM) 1BRD 4 EXPDTA ELECTRON DIFFRACTION 1BRD 5 AUTHOR R.HENDERSON,J.M.BALDWIN,T.A.CESKA,F.ZEMLIN,E.BECKMANN, 1BRD 6 AUTHOR 2 K.H.DOWNING 1BRD 7 REVDAT 3 15-JAN-93 1BRDB 1 SEQRES 1BRDB 1 REVDAT 2 15-JUL-91 1BRDA 1 REMARK 1BRDA 1 .. ATOM 54 N PRO 8 20.397 -15.569 -13.739 1.00 20.00 1BRD 136 ATOM 55 CA PRO 8 21.592 -15.444 -12.900 1.00 20.00 1BRD 137 ATOM 56 C PRO 8 21.359 -15.206 -11.424 1.00 20.00 1BRD 138 ATOM 57 O PRO 8 21.904 -15.930 -10.563 1.00 20.00 1BRD 139 ATOM 58 CB PRO 8 22.367 -14.319 -13.591 1.00 20.00 1BRD 140 ATOM 59 CG PRO 8 22.089 -14.564 -15.053 1.00 20.00 1BRD 141 ATOM 60 CD PRO 8 20.647 -15.054 -15.103 1.00 20.00 1BRD 142 ATOM 61 N GLU 9 20.562 -14.211 -11.095 1.00 20.00 1BRD 143 ATOM 62 CA GLU 9 20.192 -13.808 -9.737 1.00 20.00 1BRD 144 ATOM 63 C GLU 9 19.567 -14.935 -8.932 1.00 20.00 1BRD 145 ATOM 64 O GLU 9 19.815 -15.104 -7.724 1.00 20.00 1BRD 146 ATOM 65 CB GLU 9 19.248 -12.591 -9.820 1.00 99.00 1 1BRD 147 ATOM 66 CG GLU 9 19.902 -11.351 -10.387 1.00 99.00 1 1BRD 148 ATOM 67 CD GLU 9 19.243 -10.169 -10.980 1.00 99.00 1 1BRD 149 ATOM 68 OE1 GLU 9 18.323 -10.191 -11.782 1.00 99.00 1 1BRD 150 ATOM 69 OE2 GLU 9 19.760 -9.089 -10.597 1.00 99.00 1 1BRD 151 ATOM 70 N TRP 10 18.764 -15.737 -9.597 1.00 20.00 1BRD 152 ATOM 71 CA TRP 10 18.034 -16.884 -9.090 1.00 20.00 1BRD 153 ATOM 72 C TRP 10 18.843 -17.908 -8.318 1.00 20.00 1BRD 154 ATOM 73 O TRP 10 18.376 -18.310 -7.230 1.00 20.00 1BRD 155 . -
Computational Chemistry for Chemistry Educators Shawn C
Volume 1, Issue 1 Journal Of Computational Science Education Computational Chemistry for Chemistry Educators Shawn C. Sendlinger Clyde R. Metz North Carolina Central University College of Charleston Department of Chemistry Department of Chemistry and Biochemistry 1801 Fayetteville Street, 66 George Street, Durham, NC 27707 Charleston, SC 29424 919-530-6297 843-953-8097 [email protected] [email protected] ABSTRACT 1. INTRODUCTION In this paper we describe an ongoing project where the goal is to The majority of today’s students are technologically savvy and are develop competence and confidence among chemistry faculty so often more comfortable using computers than the faculty who they are able to utilize computational chemistry as an effective teach them. In order to harness the student’s interest in teaching tool. Advances in hardware and software have made technology and begin to use it as an educational tool, most faculty research-grade tools readily available to the academic community. members require some level of instruction and training. Because Training is required so that faculty can take full advantage of this chemistry research increasingly utilizes computation as an technology, begin to transform the educational landscape, and important tool, our approach to chemistry education should reflect attract more students to the study of science. this. The ability of computer technology to visualize and manipulate objects on an atomic scale can be a powerful tool to increase both student interest in chemistry as well as their level of Categories and Subject Descriptors understanding. Computational Chemistry for Chemistry Educators (CCCE) is a project that seeks to provide faculty the J.2 [Physical Sciences and Engineering]: Chemistry necessary knowledge, experience, and technology access so that they can begin to design and incorporate computational approaches in the courses they teach. -
Introduction to GROMOS
CSCPB - Introduction to GROMOS Information: Prof. Dr. W.F. van Gunsteren Laboratory of Physical Chemistry, ETH-Z¨urich, 8092 Z¨urich, Switzerland Tel: +41-44-6325501 Fax: +41-44-6321039 e-mail: [email protected] Note: This MD tutorial is still under development. Please report any errors, incon- sistencies, obscurities or suggestions for improvements to [email protected]. Purpose: This molecular dynamics (MD) tutorial serves a number of objectives. These are to obtain experience with: • computer simulation in general • executing and understanding GROMOS • interpreting the results of computer simulations Version: SVN revision December 5, 2007 W.F.v.G., Z.G., J.D., A-P.K., C.C., N.S. 1 Required knowledge: Some knowledge about the following is required: • Computer programming languages: ability to read simple code (C++). • Computer operating system language of the machine on which the tutorial will be carried out: UNIX. Good books on MD are (Frenkel & Smit, 2002) and (Allen & Tildesley, 1987). 2 Contents 1 INTRODUCTION 4 1.1 The Lennard-Jones interaction . 4 1.2 Electrostatic interaction . 5 1.3 Periodic boundary conditions . 5 1.4 Newton’s equations of motion . 6 1.5 The leap-frog integration scheme . 7 1.6 Coupling to a temperature bath . 8 1.7 Pressure and the virial . 9 1.8 Center of mass motion . 9 1.9 Gaussian or Maxwellian distributions . 10 1.10 The radial distribution function g(r).................. 10 1.11 Units . 11 2 INSTALLATION OF GROMOS 12 2.1 System Requirements . 12 2.2 Getting and Installing GROMOSXX . 13 2.3 Getting and Installing GROMOS++ . -
Qwikmd-Tutorial.Pdf
University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology Theoretical and Computational Biophysics Group Computational Biophysics Workshop QwikMD - Easy Molecular Dynamics with NAMD and VMD Tutorial by Rafael C. Bernardi, Till Rudack, Joao V. Ribeiro, Angela Barragan, Muyun Lihan, Rezvan Shahoei and Yi Zhang July 12 2017 QwikMD Developers: Joao V. Ribeiro Rafael C. Bernardi Till Rudack A current version of this tutorial is available at http://www.ks.uiuc.edu/Training/Tutorials/ CONTENTS 2 Contents 1 Introduction 3 1.1 NAMD . 3 1.2 QwikMD . 4 2 Required programs 4 2.1 For Linux/Mac Users: . 5 2.2 For Windows Users: . 5 3 Getting Started 5 4 Installing the Required Programs 6 4.1 VMD . 6 4.2 QwikMD . 6 4.3 NAMD . 6 5 Running my First Molecular Dynamics Simulation 7 5.1 Ubiquitin in implicit solvent . 8 5.1.1 Preparing structures and starting simulations . 9 5.1.2 Analyzing during a Live Simulation . 11 5.2 Ubiquitin in a Water Box . 12 5.2.1 Starting a New Simulation . 12 5.2.2 Creating a Salt Solution . 13 5.3 Running your Simulation outside of QwikMD . 14 6 Tackling common scientific problems 15 6.1 Cancer mutation in Ras . 16 6.2 HIV protease . 19 6.3 Proton transport through a membrane by bactheriorhodopsin . 25 7 Steered Molecular Dynamics 31 7.1 Biomolecular interactions during protein unfolding . 31 7.1.1 Preparing a SMD system . 32 7.1.2 Analyzing during a Live Simulation . 33 7.2 Setting-up steered molecular dynamics to study protein complex interaction . -
Preparing and Analyzing Large Molecular Simulations With
Preparing and Analyzing Large Molecular Simulations with VMD John Stone, Senior Research Programmer NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign VMD Tutorials Home Page • http://www.ks.uiuc.edu/Training/Tutorials/ – Main VMD tutorial – VMD images and movies tutorial – QwikMD simulation preparation and analysis plugin – Structure check – VMD quantum chemistry visualization tutorial – Visualization and analysis of CPMD data with VMD – Parameterizing small molecules using ffTK Overview • Introduction • Data model • Visualization • Scripting and analytical features • Trajectory analysis and visualization • High fidelity ray tracing • Plugins and user-extensibility • Large system analysis and visualization VMD – “Visual Molecular Dynamics” • 100,000 active users worldwide • Visualization and analysis of: – Molecular dynamics simulations – Lattice cell simulations – Quantum chemistry calculations – Cryo-EM densities, volumetric data • User extensible scripting and plugins • http://www.ks.uiuc.edu/Research/vmd/ Cell-Scale Modeling MD Simulation VMD – “Visual Molecular Dynamics” • Unique capabilities: • Visualization and analysis of: – Trajectories are fundamental to VMD – Molecular dynamics simulations – Support for very large systems, – “Particle” systems and whole cells now reaching billions of particles – Cryo-EM densities, volumetric data – Extensive GPU acceleration – Quantum chemistry calculations – Parallel analysis/visualization with MPI – Sequence information MD Simulations Cell-Scale -
Kepler Gpus and NVIDIA's Life and Material Science
LIFE AND MATERIAL SCIENCES Mark Berger; [email protected] Founded 1993 Invented GPU 1999 – Computer Graphics Visual Computing, Supercomputing, Cloud & Mobile Computing NVIDIA - Core Technologies and Brands GPU Mobile Cloud ® ® GeForce Tegra GRID Quadro® , Tesla® Accelerated Computing Multi-core plus Many-cores GPU Accelerator CPU Optimized for Many Optimized for Parallel Tasks Serial Tasks 3-10X+ Comp Thruput 7X Memory Bandwidth 5x Energy Efficiency How GPU Acceleration Works Application Code Compute-Intensive Functions Rest of Sequential 5% of Code CPU Code GPU CPU + GPUs : Two Year Heart Beat 32 Volta Stacked DRAM 16 Maxwell Unified Virtual Memory 8 Kepler Dynamic Parallelism 4 Fermi 2 FP64 DP GFLOPS GFLOPS per DP Watt 1 Tesla 0.5 CUDA 2008 2010 2012 2014 Kepler Features Make GPU Coding Easier Hyper-Q Dynamic Parallelism Speedup Legacy MPI Apps Less Back-Forth, Simpler Code FERMI 1 Work Queue CPU Fermi GPU CPU Kepler GPU KEPLER 32 Concurrent Work Queues Developer Momentum Continues to Grow 100M 430M CUDA –Capable GPUs CUDA-Capable GPUs 150K 1.6M CUDA Downloads CUDA Downloads 1 50 Supercomputer Supercomputers 60 640 University Courses University Courses 4,000 37,000 Academic Papers Academic Papers 2008 2013 Explosive Growth of GPU Accelerated Apps # of Apps Top Scientific Apps 200 61% Increase Molecular AMBER LAMMPS CHARMM NAMD Dynamics GROMACS DL_POLY 150 Quantum QMCPACK Gaussian 40% Increase Quantum Espresso NWChem Chemistry GAMESS-US VASP CAM-SE 100 Climate & COSMO NIM GEOS-5 Weather WRF Chroma GTS 50 Physics Denovo ENZO GTC MILC ANSYS Mechanical ANSYS Fluent 0 CAE MSC Nastran OpenFOAM 2010 2011 2012 SIMULIA Abaqus LS-DYNA Accelerated, In Development NVIDIA GPU Life Science Focus Molecular Dynamics: All codes are available AMBER, CHARMM, DESMOND, DL_POLY, GROMACS, LAMMPS, NAMD Great multi-GPU performance GPU codes: ACEMD, HOOMD-Blue Focus: scaling to large numbers of GPUs Quantum Chemistry: key codes ported or optimizing Active GPU acceleration projects: VASP, NWChem, Gaussian, GAMESS, ABINIT, Quantum Espresso, BigDFT, CP2K, GPAW, etc. -
Investigating the Dynamics of Aggregation in Chromophores Used in Organic Photovoltaics with the Help of Simulations
Investigating the Dynamics of Aggregation in Chromophores used in Organic Photovoltaics with the Help of Simulations Von der Universität Bayreuth zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung von Axel Bourdick geboren in Frankfurt am Main 1. Gutachter: Prof. Dr. Stephan Gekle 2. Gutachter: Prof. Dr. Stephan Kümmel Tag der Einreichung: 20.12.2019 Tag des Kolloquiums: 28.04.2020 When one experiences truth, the madness of finding fault with others disappears. - S. N. Goenka Contents 1 Summary1 2 Introduction6 2.1 Motivation of this dissertation . .6 2.2 Morphology . .8 2.3 Methological details . 12 2.3.1 Molecular dynamics simulations . 12 2.3.2 Free energy and umbrella sampling . 13 2.3.3 Metadynamics . 16 2.3.4 Density functional theory . 17 2.3.5 Model building . 18 3 Overview of the publications 20 3.1 Investigated systems . 20 3.2 Summary and scientific context . 22 3.3 Summary of individual publications . 26 3.3.1 Elucidating Aggregation Pathways in the Donor-Acceptor Type Molecules p-DTS(FBTTh2)2 and p-SIDT(FBTTh2)2 . 26 3.3.2 What is the role of planarity and torsional freedom for ag- gregation in a π-conjugated donor-acceptor model oligomer? 30 3.3.3 Directing the Aggregation of Native Polythiophene during in Situ Polymerization . 33 4 References 37 5 Publications 50 5.1 Elucidating Aggregation Pathways in the Donor-Acceptor Type Molecules p-DTS(FBTTh2)2 and p-SIDT(FBTTh2)2 ......... 52 5.2 What is the role of planarity and torsional freedom for aggregation in a π-conjugated donor-acceptor model oligomer? . -
A Molecular Simulation Study of CO2 Adsorption in Metal-Organic Frameworks
A molecular simulation study of CO2 adsorption in metal-organic frameworks Pan YANG Master of Philosophy (Engineering) Supervisor: Dr Qinghua Zeng Co-Supervisor: Dr Kejun Dong School of Computing, Engineering and Mathematics Western Sydney University Sydney, Australia May 2018 ACKNOWLEDGEMENTS I would like to thank my principal supervisor Dr Qinghua Zeng for offering me the opportunity to do the molecular dynamics research on metal-organic frameworks. I really appreciate his patience, enthusiasm, encouragement and broad knowledge. I was continuously advised and supported by his guidance in all the time of research timeframe and writing of this thesis. I am also grateful for the comments and feedbacks given by my co-supervisor Dr Kejun Dong during my 2-year research period and my thesis writing. Also, I appreciate many friends and visiting scholars for their insightful views and valuable suggestions. Lastly, thanks to the research service team of SCEM and HDR, Western Sydney University for organising conferences and providing administrative and technical support. ii ABSTRACT The increasing carbon dioxide density in the atmosphere has led to the global warming and other environmental issues. Such increase in carbon dioxide comes mainly from the combustion of thousands of tons of fossil fuels (coal, oil and natural gas). Thus, the development of novel materials for CO2 capture, separation and sequestration is becoming critically essential. Many materials including aqueous amine solvent, micro and mesoporous solid substances have been extensively investigated for CO2 absorption/adsorption. It is found that quite a lot of distinct metal-organic frameworks (MOFs) have remarkable CO2 adsorption capacity in room temperature, particularly HKUST-1 and MIL-68(In).