Chaetodipus Nelsoni) in the Guadalupe Mountains in Southeastern New Mexico
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Likely to Have Habitat Within Iras That ALLOW Road
Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing -
Impact of Grazing Systems on Rodent and Cottontail Rabbit Populations in South Texas Meenakshi Nagendran
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 1987 Impact of Grazing Systems on Rodent and Cottontail Rabbit Populations in South Texas Meenakshi Nagendran Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Natural Resources and Conservation Commons Recommended Citation Nagendran, Meenakshi, "Impact of Grazing Systems on Rodent and Cottontail Rabbit Populations in South Texas" (1987). Theses and Dissertations. 188. http://openprairie.sdstate.edu/etd/188 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. IMPACT OF GRAZING SYSTEMS ON RODENT AND COTTONTAIL RABBIT POPULATIONS IN SOUTH TEXAS BY MEENAKSHI NAGENDRAN A thesis submitted in partial fulfilllm' ent of the requirements for the degree Master of Science Major in Wtldlife' and Fisheries Sciences (Wildlife Option) South Dakota 1987State University IMPACT OF GRAZING SYSTEMS OrJ RODENT AND COTIONTAIL RABBIT POPULATIONS IN SOUTH TEXAS This thesis is approved as a creditable and independent investigation by a candidate for the degree, Master of Science, and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. Thesis Advisor Date Head, Dept. of Wildlife Date and Fisheries Sciences ii ACKNOWLEDGEMENTS I wish to extend my sincerest gratitude to all my friends and mentors without whose assistance nothing would have been possible. -
Laroche: Mouse Colouration
Review Activity Module 3: Genetics Laroche: Mouse Colouration During module 4 on evolution, we will spend several classes examining the evolutionary significance of fur colour in a certain group of mice from the Sonoran desert in the South-Western United States. To prepare for this module, in the review activities for the first 3 modules we will be examining the molecular, cellular, and genetic basis for mouse coat colour. In the review activities for modules 1 and 2, we learned about a protein called MC1R that is found in the cell membranes of specific mouse cells called melanocytes, whose job it is to produce the pigment melanin, which gives mice the colouration of their fur. In this activity we will further examine the genetic and molecular basis for the production of fur colour. The Rock Pocket Mouse: The rock pocket mouse, Chaetodipus intermedius, is a small, nocturnal animal found in the deserts of the south-western United States. Most rock pocket mice have a sandy, light-coloured coat that enables them to blend in with the light color of the desert rocks and sand on which they live. However, populations of primarily dark-coloured rock pocket mice have been found living in areas where the ground is covered in a dark rock called basalt caused by geologic lava flows thousands of years ago. Scientists have collected data from a population of primarily dark- coloured mice living in an area of basalt called the Pinacate lava flow in Arizona, as well as from a nearby light-coloured population. Researchers analyzed the data from these two populations in search of the genetic mutation responsible for the dark color. -
Plant and Rodent Communities of Organ Pipe Cactus National Monument
Plant and rodent communities of Organ Pipe Cactus National Monument Item Type text; Thesis-Reproduction (electronic) Authors Warren, Peter Lynd Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 16:51:51 Link to Item http://hdl.handle.net/10150/566520 PLANT AND RODENT COMMUNITIES OF ORGAN PIPE CACTUS NATIONAL.MONUMENT by Peter Lynd Warren A Thesis Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 9 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg ment the proposed use of the material is in the interests of scholar ship. In all other instances, however, permission must be obtained from the author. -
Hispid Pocket Mouse Chaetodipus Hispidus
Wyoming Species Account Hispid Pocket Mouse Chaetodipus hispidus REGULATORY STATUS USFWS: No special status USFS R2: No special status USFS R4: No special status Wyoming BLM: No special status State of Wyoming: Nongame Wildlife CONSERVATION RANKS USFWS: No special status WGFD: NSSU (U), Tier III WYNDD: G5, S1S3 Wyoming Contribution: LOW IUCN: Least Concern STATUS AND RANK COMMENTS The Wyoming Natural Diversity Database has assigned Hispid Pocket Mouse (Chaetodipus hispidus) a state conservation rank ranging from S1 (Critically Imperiled) to S3 (Vulnerable) because of uncertainty about the proportion of range occupied and population trends for this species in Wyoming. NATURAL HISTORY Taxonomy: Historically, there were four recognized subspecies of Hispid Pocket Mouse, and only C. h. paradoxus was found in Wyoming 1-5. A recent DNA-based study determined that the previously accepted subspecies are neither morphologically nor genetically distinct and instead proposed new subspecies boundaries delineated by four geographically and ecologically disjunct mitochondrial clades 6. Following this taxonomic revision, Wyoming remains within the distribution of the newly defined subspecies C. h. paradoxus 6. Description: It is possible to identify Hispid Pocket Mouse in the field. It is the largest Wyoming pocket mouse species; adults weigh between 40–60 g and can reach total lengths of 200–223 mm 2. Tail, hind foot, and ear length ranges from 90–113 mm, 25–28 mm, and 12–13 mm, respectively 2. Hispid Pocket Mouse is named for its distinctly coarse dorsal pelage, which is buff to yellowish orange mixed with black hairs, thus leading to an overall brownish or even olive appearance 1, 2, 4, 5, 7. -
Mammal Watching in Northern Mexico Vladimir Dinets
Mammal watching in Northern Mexico Vladimir Dinets Seldom visited by mammal watchers, Northern Mexico is a fascinating part of the world with a diverse mammal fauna. In addition to its many endemics, many North American species are easier to see here than in USA, while some tropical ones can be seen in unusual habitats. I travelled there a lot (having lived just across the border for a few years), but only managed to visit a small fraction of the number of places worth exploring. Many generations of mammologists from USA and Mexico have worked there, but the knowledge of local mammals is still a bit sketchy, and new discoveries will certainly be made. All information below is from my trips in 2003-2005. The main roads are better and less traffic-choked than in other parts of the country, but the distances are greater, so any traveler should be mindful of fuel (expensive) and highway tolls (sometimes ridiculously high). In theory, toll roads (carretera quota) should be paralleled by free roads (carretera libre), but this isn’t always the case. Free roads are often narrow, winding, and full of traffic, but sometimes they are good for night drives (toll roads never are). All guidebooks to Mexico I’ve ever seen insist that driving at night is so dangerous, you might as well just kill yourself in advance to avoid the horror. In my experience, driving at night is usually safer, because there is less traffic, you see the headlights of upcoming cars before making the turn, and other drivers blink their lights to warn you of livestock on the road ahead. -
Rock Pocket Mouse Answers
Rock Pocket Mouse Answers QUESTIONS 1. Explain why a rock pocket mouse’s color influences its overall fitness. Remember that “fitness” is defined by an organism’s ability to survive and produce offspring. Your explanation should include coat color as an important means of camouflage for the rock pocket mice and that this characteristic allows them to survive and produce offspring 2. Explain the presence of dark-colored mice at location A. Why didn’t this phenotype become more common in the population? The dark-colored mice arose in the population at location A by random mutation. The phenotype did not increase because it did not afford a selective advantage to the mice. 3. Write a scientific summary that describes changes in the rock pocket mouse populations at location B. Your summary should include • a description of how the population has changed over time, • an explanation of what caused the changes, and • a prediction that describes what the population will look like 100 years in the future. Base your prediction on trends in the data you have organized. You can assume that environmental conditions do not change over the 100 years. • Originally, location B had a sandy-colored substrate. Light-colored mice had a selective advantage because they could better avoid predation. • Location B became covered in dark-colored volcanic rock, which means that dark-colored mice now had an advantage over light-colored mice in that environment. • Over time, dark-colored mice became more common at location B because more of their offspring survived to reproduce and pass on their genes, including the gene for fur color. -
Colorado Field Ornithologists the Colorado Field Ornithologists' Quarterly
Journal of the Colorado Field Ornithologists The Colorado Field Ornithologists' Quarterly VOL. 36, NO. 1 Journal of the Colorado Field Ornithologists January 2002 Vol. 36, No. 1 Journal of the Colorado Field Ornithologists January 2002 TABLE OF C ONTENTS A LETTER FROM THE E DITOR..............................................................................................2 2002 CONVENTION IN DURANGO WITH KENN KAUFMANN...................................................3 CFO BOARD MEETING MINUTES: 1 DECEMBER 2001........................................................4 TREE-NESTING HABITAT OF PURPLE MARTINS IN COLORADO.................................................6 Richard T. Reynolds, David P. Kane, and Deborah M. Finch OLIN SEWALL PETTINGILL, JR.: AN APPRECIATION...........................................................14 Paul Baicich MAMMALS IN GREAT HORNED OWL PELLETS FROM BOULDER COUNTY, COLORADO............16 Rebecca E. Marvil and Alexander Cruz UPCOMING CFO FIELD TRIPS.........................................................................................23 THE SHRIKES OF DEARING ROAD, EL PASO COUNTY, COLORADO 1993-2001....................24 Susan H. Craig RING-BILLED GULLS FEEDING ON RUSSIAN-OLIVE FRUIT...................................................32 Nicholas Komar NEWS FROM THE C OLORADO BIRD R ECORDS COMMITTEE (JANUARY 2002).........................35 Tony Leukering NEWS FROM THE FIELD: THE SUMMER 2001 REPORT (JUNE - JULY)...................................36 Christopher L. Wood and Lawrence S. Semo COLORADO F IELD O -
Ecological Site R030XD040CA Hyperthermic Steep North Slopes
Natural Resources Conservation Service Ecological site R030XD040CA Hyperthermic Steep North Slopes Accessed: 09/27/2021 General information Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. Figure 1. Mapped extent Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated. MLRA notes Major Land Resource Area (MLRA): 030X–Mojave Desert MLRA Description: Major Land Resource Area (MLRA) 30, Mojave Desert, is found in southern California, southern Nevada, the extreme southwest corner of Utah and northwestern Arizona within the Basin and Range Province of the Intermontane Plateaus. The climate of the area is hot (primarily hyperthermic and thermic; however at higher elevations, generally above 5000 feet, mesic, cryic and frigid) and dry (aridic). Elevations range from below sea level to over 12,000 feet in the higher mountain areas found within the MLRA. Due to the extreme elevational range found within this MLRA, Land Resource Units (LRUs) were designated to group the MLRA into similar land units. LRU Description: This Land Resource Unit (designated by ‘XD’) is found on the eastern side of California. Elevations range from 400 to 2200 feet on average, but may be found up to 3600 feet on southern exposures. Precipitation ranges from 1 to 6 inches per year, but averages between 2-4 inches. -
Natural Selection and Evolution of Rock Pocket Mouse Populations
ANSWER KEY PART A: NATURAL SELECTION AND EVOLUTION OF ROCK POCKET MOUSE POPULATIONS INTRODUCTION The rock pocket mouse, Chaetodipus intermedius, a small, nocturnal animal, is found in the deserts of the southwestern United States. Most of these mice have a sandy, light-colored coat that enables them to blend in with the light-colored desert rocks and sand on which they live. However, populations of primarily dark-colored rock pocket mice have been found living in areas where a dark rock called basalt covers the ground. The basalt formed from cooling lava flows thousands of years ago. Scientists have collected data from a population of primarily dark-colored mice living in an area of basalt in Arizona called the Pinacate lava flow, as well as from a nearby light-colored population. Researchers analyzed the data from these two populations in search of the genetic mutation responsible for the dark color. Their analyses led to their discovery of a mutation in the Mc1r gene, which is involved in coat-color determination. MATERIALS genetic code chart (see page 4 or any biology textbook) PROCEDURE 1. Read the following excerpt from an article published in Smithsonian magazine by Dr. Sean Carroll, a leading evolutionary biologist and Howard Hughes Medical Institute investigator: “One of the most widespread phenomena in the animal kingdom is the occurrence of darkly pigmented varieties within species. All sorts of moths, beetles, butterflies, snakes, lizards and birds have forms that are all or mostly black. All of these so-called “melanic” forms result from increased production of the pigment melanin in the skin, fur, scales, or feathers. -
Illegal Immigrants in US-Mexico Border Counties
The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Illegal Immigrants in U.S.-Mexico Border Counties: Costs of Law Enforcement, Criminal Justice and Emergency Medical Services Author(s): Tanis J. Salant D.P.A ; Alexis L. Hover ; Colleen Hench ; Christine Brenner Ph.D. ; Nadia Rubaii- Barrett Ph.D. ; John R. Weeks Ph.D. Document No.: 201492 Date Received: 08/26/2003 Award Number: 2000-IJ-CX-0020 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant final report available electronically in addition to traditional paper copies. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. ILLEGAL IMMIGRANTS IN U.S.-MEXICO BORDER COUNTIES: I COSTS OF LAW ENFORCEMENT, CRIMINAL JUSTICE I and EMERGENCY MEDICAL SERVICE,S PROPERTY OF National Criminal Justice Reference Service (NCJRS) Box 6000 Rockville, MD 20849-6000 -- , a January 2001 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. This project was supported by Grant Number 2OWIJ-CX-0020awarded by the National Institute of Justice, Office of Justice Programs, U.S.Department of Justice. -
Chaetodipus Baileyi) and the Peromyscus Eremicus Species Group: Historical Vicariance of the Baja California Peninsular Desert Brett R
Molecular Phylogenetics and Evolution Vol. 17, No. 2, November, pp. 161–172, 2000 doi:10.1006/mpev.2000.0842, available online at http://www.idealibrary.com on Comparative Phylogeography of Baileys’ Pocket Mouse (Chaetodipus baileyi) and the Peromyscus eremicus Species Group: Historical Vicariance of the Baja California Peninsular Desert Brett R. Riddle,* David J. Hafner,† and Lois F. Alexander* *Department of Biological Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154-4004; and †New Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, New Mexico 87104 Received October 13, 1999; revised July 24, 2000 Nelson and E. A. Goldman surveyed the Peninsula on Phylogenetic analysis of 699 bp of the mitochondrial horseback for the U. S. Bureau of Biological Survey in DNA (mtDNA) COIII and 450 bp of the cytochrome b 1905 and 1906 (Nelson, 1921). Huey (1964) provided a genes among 14 species of coarse-haired pocket mice description of the Peninsula’s mammals as of 1960, and (Heteromyidae: Chaetodipus) corroborated previous a general description of the mammalian biogeography indications that genetic divergence between species of the region by Orr (1960) was followed by more de- and species groups within the genus is generally very tailed analyses of the ecological (Lawlor, 1983a,b) and high, suggesting old times of divergence, and that the historical biogeography of the mammals of the Penin- nominal species C. baileyi represents a highly diver- sular mainland and surrounding islands (Hafner and gent lineage within the genus, with no closely related Riddle, 1997). In concert with these studies have been extant sister species.