Isometries We Determine the Motions in the Hyperbolic Plane That

Total Page:16

File Type:pdf, Size:1020Kb

Isometries We Determine the Motions in the Hyperbolic Plane That Isometries We determine the motions in the hyperbolic plane that preserve distances In regular Euclidean geometry, there are four kinds of actions that preserve distances. That is, there are three things we can do that keep distances between objects the same. These actions are called isometries and one way of thinking about geometry is the study of what kinds of actions preserve various geomtrical quantities. In Euclidean geometry, the three kinds of isometries are translation, rotation, reflection, and glide reflection. We can prove that these are the only kinds of isometries as follows. Given a triangle 4ABC if we perform an isometry to the plane it will turn into another triangle 4A0B0C0. There is a translation that moves A to A0, then a rotation that will rotate B onto B0 while leaving A0 alone, and finally, if needed, a reflection that will put C on top of C0. Once these points are fixed, all other point of the plane are fixed. So every isometry can be made up from the three types. We didn't even need glide reflections, because they can be made from the other types. But we'll keep them around for convenience. Combining any two of the four types gives another of the four types, as listed below: • Two translations compose to another translation. • Translation followed by reflection or vice versa is a reflection (in a different axis) or glide reflection (if axis is parallel to translation). • Translation followed by rotation or vice versa is a rotation (in a different center). • Translation followed by glide reflection or vice versa is a reflection, unless the transla- tion and glide are in the same direction in which case you get a glide reflection. • Two rotations compose to a rotation, unless they are rotations by the same angle in opposite directions, in which case you get a translation. • A rotation composed with a reflection or with a glide reflection is a reflection, or possibly a glide reflection. • Two reflections composed yield a rotation, unless they are in parallel lines of symmetry, in which case you get a translation. • A reflection composed with a glide reflection or vice versa is a rotation, or a translation if the reflection is parallel to the glide. • Two glide reflections composed yield a rotation, or a translation if the glides are par- allel. It turns out that we can also create any isometry from a composition of at most three reflections. For the isometry is determined by its effect on a triangle, so use each reflection to move one vertex of the triangle to its target location. Now, what are the isometries of hyperbolic geometry? We'll start with an easy one. 1 Theorem Horizontal translation is an isometry. PR · QS Proof: Remember the distance formula j ln(y =y )j for vertically aligned points, and j ln( )j 2 1 QR · PS for non-vertically aligned points P and Q, where R and S are the endpoints of the semicircle through P and Q on the x-axis. Since none of these Euclidean distances change as we move purely hoizontally, hyperbolic distances between points do not change. Here's an odd surprise|an isometry of hyperbolic geometry that is definitely not one for Euclidean: Theorem Dilation (x; y) 7! (kx; ky) for some positive constant k is an isometry of hyper- bolic geometry. Proof: in the distance formulas, all distances get multiplied by k. But then all the k's cancel out! Dilation is really just translation along the y-axis! Since the y-axis has an unusual distance on it, this is what will cause things to move parallel to the y-axis and in equal distances with each application. Combining with horizontal translations, we can now get a translation in any direction. Theorem Inversions in geodesics are isometries. Proof: Inversion in the y-axis sends (x; y) to (−x; y). Other vertical lines behave similarly. Semicircular geodesics have circle inversions. That the vertical reflection is an isometry should be obvious. For the circle inversion, keep in mind all the similar triangles involved in the inversion process and note that all the similarity factors will cancel out in the hyperbolic distance formula. See the diagram: In the diagram we are inverting in the solid circle; call its center O. Our points are P and Q, which invert to P 0 and Q0. Points R and S are the points where the semicircle through P and Q meet the x-axis, and similarly for R0 and S0. We wish to show that P 0R0 · Q0S0 PR · QS j ln( )j = j ln( )j. But from the similar trianlges that come from inver- Q0R0 · P 0S0 QR · PS 2 sion, P S=P 0S0 = OS=OP 0, QR=Q0R0 = OR=OQ0, P R=P 0R0 = OR=OP 0, and QS=Q0S0 = P 0R0 · Q0S0 PR(OP 0=OR)QS(OQ0=OS) PR · QS OS=OQ0. So = = as desired. Q0R0 · P 0S0 QR(OQ0=OR)PS(OP 0=OS) QR · PS How do these isometries combine? As in Euclidean, everything is a combination of reflections. Here are the combinations: • One reflection/inversion is an inversion. • Two reflections through geodesics that meet at a point P are a rotation around P . Points move around the hyperbolic circles centered at P (which are Euclidean circles that are not centered at P !) in fixed angular motions|where the angles have vertex at P and consist of hyperbolic sides! • Two reflections through geodesics that do not meet gives a translation. Given any two such geodesics, there is a unique geodesic perpendicular to both of them. Points on this geodesic are translated along it. Points not on this geodesic move in hypercycles parallel to this geodesic. • Two reflections through geodeiscs that meet only at the x-axis result in a horolation which is like a rotation around the point at infinity. Points move in horocycles that are tangent to the x-axis at the common point of the geodesics. • Combinations of any two of the above give another of the above with one exception. If you reflect in three geodesics, two of which are perpendicular to the third, you get a glide reflection. A cool way to look at all this is with complex numbers. If we are looking at the entire complex plane, we can easily do isometries by simple operations on complex numbers! Translation is simply adding a fixed complex number: z 7! z + b where b is a complex constant. Reflection in the x-axis is accomplished by z 7! z, the complex conjugate of z. Dilation from the origin is simply multiplying by a positive real number; if you want to dilate around some other point you can first translate that point to the origin, then dilate, then translate back. Rotation about the origin is accomplished by multiplying by cis(θ). If you want to rotate about some other point, you can do the translate-rotate-translate-back trick. Inversion through the unit circle is accomplished by first taking z 7! 1=z and then taking the conjugate. Other centers can be accommodated via the translation trick, and other radii by simply dilating. So all of our operation can be accomplished by combinations of multiplying, adding, reciprocating, and taking conjugates. The most general thing you can do is then to send az + b a complex number z to , where a, b, c, and d are complex constants. This is called cz + d a linear fractional transform (because it is a fraction of two linear functions) or a M¨obius transformation. In a M¨obiustransformation, the combination ad − bc cannot equal zero, otherwise az + b b adz + bd b adz + bd b = = = is a boring constant. Because of this, it is often cz + d d bcz + bd d adz + bd d 3 p convenient to divide each of the constants by ad − bd. (Remember that we are working with complex numbers, so this square root always exists!) That way, ad − bc = 1. This is called normalizing. Now these transformations are a little bit too general. For any three complex numbers, there is such a M¨obiustransformation that will take them to any other three complex num- bers. For hyperbolic geometry, we need to make sure that the x-axis stays in place, and that the points in the upper half-plane stay there. That means we will need to find restrictions on the the coefficients a, b, c, and d that will cause this to happen. One thing we can do is plug in z = 0. Since this is real, it must go to a real number. So b=d must be real. Similarly, by plugging in a very large real number for z, we find that a=c must also be real. So we could say b = k1d and a = k2c. Substituting these and plugging in k c + k d (k − k )c z = 1 now tells us that 2 1 = k + 2 1 must be real. So c=(c + d) must be real. c + d 2 c + d Snce we can multiply all of a, b, c, and d by any constant without changing the function, we can assume that c is real. But then a = k2c is real, and d and finally b must all be real. So to make the x-axis go to the x-axis, we can choose all the coefficients to be real. Further analysis will require ad − bc > 0p if we want the upper half-plane to get sent to the upper-half plane. Thus, we can divide by ad − bc and everything stays real.
Recommended publications
  • Enhancing Self-Reflection and Mathematics Achievement of At-Risk Urban Technical College Students
    Psychological Test and Assessment Modeling, Volume 53, 2011 (1), 108-127 Enhancing self-reflection and mathematics achievement of at-risk urban technical college students Barry J. Zimmerman1, Adam Moylan2, John Hudesman3, Niesha White3, & Bert Flugman3 Abstract A classroom-based intervention study sought to help struggling learners respond to their academic grades in math as sources of self-regulated learning (SRL) rather than as indices of personal limita- tion. Technical college students (N = 496) in developmental (remedial) math or introductory col- lege-level math courses were randomly assigned to receive SRL instruction or conventional in- struction (control) in their respective courses. SRL instruction was hypothesized to improve stu- dents’ math achievement by showing them how to self-reflect (i.e., self-assess and adapt to aca- demic quiz outcomes) more effectively. The results indicated that students receiving self-reflection training outperformed students in the control group on instructor-developed examinations and were better calibrated in their task-specific self-efficacy beliefs before solving problems and in their self- evaluative judgments after solving problems. Self-reflection training also increased students’ pass- rate on a national gateway examination in mathematics by 25% in comparison to that of control students. Key words: self-regulation, self-reflection, math instruction 1 Correspondence concerning this article should be addressed to: Barry Zimmerman, PhD, Graduate Center of the City University of New York and Center for Advanced Study in Education, 365 Fifth Ave- nue, New York, NY 10016, USA; email: [email protected] 2 Now affiliated with the University of California, San Francisco, School of Medicine 3 Graduate Center of the City University of New York and Center for Advanced Study in Education Enhancing self-reflection and math achievement 109 Across America, faculty and policy makers at two-year and technical colleges have been deeply troubled by the low academic achievement and high attrition rate of at-risk stu- dents.
    [Show full text]
  • Reflection Invariant and Symmetry Detection
    1 Reflection Invariant and Symmetry Detection Erbo Li and Hua Li Abstract—Symmetry detection and discrimination are of fundamental meaning in science, technology, and engineering. This paper introduces reflection invariants and defines the directional moments(DMs) to detect symmetry for shape analysis and object recognition. And it demonstrates that detection of reflection symmetry can be done in a simple way by solving a trigonometric system derived from the DMs, and discrimination of reflection symmetry can be achieved by application of the reflection invariants in 2D and 3D. Rotation symmetry can also be determined based on that. Also, if none of reflection invariants is equal to zero, then there is no symmetry. And the experiments in 2D and 3D show that all the reflection lines or planes can be deterministically found using DMs up to order six. This result can be used to simplify the efforts of symmetry detection in research areas,such as protein structure, model retrieval, reverse engineering, and machine vision etc. Index Terms—symmetry detection, shape analysis, object recognition, directional moment, moment invariant, isometry, congruent, reflection, chirality, rotation F 1 INTRODUCTION Kazhdan et al. [1] developed a continuous measure and dis- The essence of geometric symmetry is self-evident, which cussed the properties of the reflective symmetry descriptor, can be found everywhere in nature and social lives, as which was expanded to 3D by [2] and was augmented in shown in Figure 1. It is true that we are living in a spatial distribution of the objects asymmetry by [3] . For symmetric world. Pursuing the explanation of symmetry symmetry discrimination [4] defined a symmetry distance will provide better understanding to the surrounding world of shapes.
    [Show full text]
  • Isometries and the Plane
    Chapter 1 Isometries of the Plane \For geometry, you know, is the gate of science, and the gate is so low and small that one can only enter it as a little child. (W. K. Clifford) The focus of this first chapter is the 2-dimensional real plane R2, in which a point P can be described by its coordinates: 2 P 2 R ;P = (x; y); x 2 R; y 2 R: Alternatively, we can describe P as a complex number by writing P = (x; y) = x + iy 2 C: 2 The plane R comes with a usual distance. If P1 = (x1; y1);P2 = (x2; y2) 2 R2 are two points in the plane, then p 2 2 d(P1;P2) = (x2 − x1) + (y2 − y1) : Note that this is consistent withp the complex notation. For P = x + iy 2 C, p 2 2 recall that jP j = x + y = P P , thus for two complex points P1 = x1 + iy1;P2 = x2 + iy2 2 C, we have q d(P1;P2) = jP2 − P1j = (P2 − P1)(P2 − P1) p 2 2 = j(x2 − x1) + i(y2 − y1)j = (x2 − x1) + (y2 − y1) ; where ( ) denotes the complex conjugation, i.e. x + iy = x − iy. We are now interested in planar transformations (that is, maps from R2 to R2) that preserve distances. 1 2 CHAPTER 1. ISOMETRIES OF THE PLANE Points in the Plane • A point P in the plane is a pair of real numbers P=(x,y). d(0,P)2 = x2+y2. • A point P=(x,y) in the plane can be seen as a complex number x+iy.
    [Show full text]
  • Understand the Principles and Properties of Axiomatic (Synthetic
    Michael Bonomi Understand the principles and properties of axiomatic (synthetic) geometries (0016) Euclidean Geometry: To understand this part of the CST I decided to start off with the geometry we know the most and that is Euclidean: − Euclidean geometry is a geometry that is based on axioms and postulates − Axioms are accepted assumptions without proofs − In Euclidean geometry there are 5 axioms which the rest of geometry is based on − Everybody had no problems with them except for the 5 axiom the parallel postulate − This axiom was that there is only one unique line through a point that is parallel to another line − Most of the geometry can be proven without the parallel postulate − If you do not assume this postulate, then you can only prove that the angle measurements of right triangle are ≤ 180° Hyperbolic Geometry: − We will look at the Poincare model − This model consists of points on the interior of a circle with a radius of one − The lines consist of arcs and intersect our circle at 90° − Angles are defined by angles between the tangent lines drawn between the curves at the point of intersection − If two lines do not intersect within the circle, then they are parallel − Two points on a line in hyperbolic geometry is a line segment − The angle measure of a triangle in hyperbolic geometry < 180° Projective Geometry: − This is the geometry that deals with projecting images from one plane to another this can be like projecting a shadow − This picture shows the basics of Projective geometry − The geometry does not preserve length
    [Show full text]
  • Hyperbolic Geometry
    Flavors of Geometry MSRI Publications Volume 31,1997 Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY Contents 1. Introduction 59 2. The Origins of Hyperbolic Geometry 60 3. Why Call it Hyperbolic Geometry? 63 4. Understanding the One-Dimensional Case 65 5. Generalizing to Higher Dimensions 67 6. Rudiments of Riemannian Geometry 68 7. Five Models of Hyperbolic Space 69 8. Stereographic Projection 72 9. Geodesics 77 10. Isometries and Distances in the Hyperboloid Model 80 11. The Space at Infinity 84 12. The Geometric Classification of Isometries 84 13. Curious Facts about Hyperbolic Space 86 14. The Sixth Model 95 15. Why Study Hyperbolic Geometry? 98 16. When Does a Manifold Have a Hyperbolic Structure? 103 17. How to Get Analytic Coordinates at Infinity? 106 References 108 Index 110 1. Introduction Hyperbolic geometry was created in the first half of the nineteenth century in the midst of attempts to understand Euclid’s axiomatic basis for geometry. It is one type of non-Euclidean geometry, that is, a geometry that discards one of Euclid’s axioms. Einstein and Minkowski found in non-Euclidean geometry a This work was supported in part by The Geometry Center, University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc., by the Mathematical Sciences Research Institute, and by NSF research grants. 59 60 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY geometric basis for the understanding of physical time and space. In the early part of the twentieth century every serious student of mathematics and physics studied non-Euclidean geometry.
    [Show full text]
  • Lesson 4: Definition of Reflection and Basic Properties
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 4 8•2 Lesson 4: Definition of Reflection and Basic Properties Student Outcomes . Students know the definition of reflection and perform reflections across a line using a transparency. Students show that reflections share some of the same fundamental properties with translations (e.g., lines map to lines, angle- and distance-preserving motion). Students know that reflections map parallel lines to parallel lines. Students know that for the reflection across a line 퐿 and for every point 푃 not on 퐿, 퐿 is the bisector of the segment joining 푃 to its reflected image 푃′. Classwork Example 1 (5 minutes) The reflection across a line 퐿 is defined by using the following example. MP.6 . Let 퐿 be a vertical line, and let 푃 and 퐴 be two points not on 퐿, as shown below. Also, let 푄 be a point on 퐿. (The black rectangle indicates the border of the paper.) . The following is a description of how the reflection moves the points 푃, 푄, and 퐴 by making use of the transparency. Trace the line 퐿 and three points onto the transparency exactly, using red. (Be sure to use a transparency that is the same size as the paper.) . Keeping the paper fixed, flip the transparency across the vertical line (interchanging left and right) while keeping the vertical line and point 푄 on top of their black images. The position of the red figures on the transparency now represents the Scaffolding: reflection of the original figure. 푅푒푓푙푒푐푡푖표푛(푃) is the point represented by the There are manipulatives, such red dot to the left of 퐿, 푅푒푓푙푒푐푡푖표푛(퐴) is the red dot to the right of 퐿, and point as MIRA and Georeflector, 푅푒푓푙푒푐푡푖표푛(푄) is point 푄 itself.
    [Show full text]
  • 2-D Drawing Geometry Homogeneous Coordinates
    2-D Drawing Geometry Homogeneous Coordinates The rotation of a point, straight line or an entire image on the screen, about a point other than origin, is achieved by first moving the image until the point of rotation occupies the origin, then performing rotation, then finally moving the image to its original position. The moving of an image from one place to another in a straight line is called a translation. A translation may be done by adding or subtracting to each point, the amount, by which picture is required to be shifted. Translation of point by the change of coordinate cannot be combined with other transformation by using simple matrix application. Such a combination is essential if we wish to rotate an image about a point other than origin by translation, rotation again translation. To combine these three transformations into a single transformation, homogeneous coordinates are used. In homogeneous coordinate system, two-dimensional coordinate positions (x, y) are represented by triple- coordinates. Homogeneous coordinates are generally used in design and construction applications. Here we perform translations, rotations, scaling to fit the picture into proper position 2D Transformation in Computer Graphics- In Computer graphics, Transformation is a process of modifying and re- positioning the existing graphics. • 2D Transformations take place in a two dimensional plane. • Transformations are helpful in changing the position, size, orientation, shape etc of the object. Transformation Techniques- In computer graphics, various transformation techniques are- 1. Translation 2. Rotation 3. Scaling 4. Reflection 2D Translation in Computer Graphics- In Computer graphics, 2D Translation is a process of moving an object from one position to another in a two dimensional plane.
    [Show full text]
  • In This Handout, We Discuss Orthogonal Maps and Their Significance from A
    In this handout, we discuss orthogonal maps and their significance from a geometric standpoint. Preliminary results on the transpose The definition of an orthogonal matrix involves transpose, so we prove some facts about it first. Proposition 1. (a) If A is an ` × m matrix and B is an m × n matrix, then (AB)> = B>A>: (b) If A is an invertible n × n matrix, then A> is invertible and (A>)−1 = (A−1)>: Proof. (a) We compute the (i; j)-entries of both sides for 1 ≤ i ≤ n and 1 ≤ j ≤ `: m m m > X X > > X > > > > [(AB) ]ij = [AB]ji = AjkBki = [A ]kj[B ]ik = [B ]ik[A ]kj = [B A ]ij: k=1 k=1 k=1 (b) It suffices to show that A>(A−1)> = I. By (a), A>(A−1)> = (A−1A)> = I> = I: Orthogonal matrices Definition (Orthogonal matrix). An n × n matrix A is orthogonal if A−1 = A>. We will first show that \being orthogonal" is preserved by various matrix operations. Proposition 2. (a) If A is orthogonal, then so is A−1 = A>. (b) If A and B are orthogonal n × n matrices, then so is AB. Proof. (a) We have (A−1)> = (A>)> = A = (A−1)−1, so A−1 is orthogonal. (b) We have (AB)−1 = B−1A−1 = B>A> = (AB)>, so AB is orthogonal. The collection O(n) of n × n orthogonal matrices is the orthogonal group in dimension n. The above definition is often not how we identify orthogonal matrices, as it requires us to compute an n × n inverse.
    [Show full text]
  • Some Linear Transformations on R2 Math 130 Linear Algebra D Joyce, Fall 2013
    Some linear transformations on R2 Math 130 Linear Algebra D Joyce, Fall 2013 Let's look at some some linear transformations on the plane R2. We'll look at several kinds of operators on R2 including reflections, rotations, scalings, and others. We'll illustrate these transformations by applying them to the leaf shown in figure 1. In each of the figures the x-axis is the red line and the y-axis is the blue line. Figure 1: Basic leaf Figure 2: Reflected across x-axis 1 0 Example 1 (A reflection). Consider the 2 × 2 matrix A = . Take a generic point 0 −1 x x = (x; y) in the plane, and write it as the column vector x = . Then the matrix product y Ax is 1 0 x x Ax = = 0 −1 y −y Thus, the matrix A transforms the point (x; y) to the point T (x; y) = (x; −y). You'll recognize this right away as a reflection across the x-axis. The x-axis is special to this operator as it's the set of fixed points. In other words, it's the 1-eigenspace. The y-axis is also special as every point (0; y) is sent to its negation −(0; y). That means the y-axis is an eigenspace with eigenvalue −1, that is, it's the −1- eigenspace. There aren't any other eigenspaces. A reflection always has these two eigenspaces a 1-eigenspace and a −1-eigenspace. Every 2 × 2 matrix describes some kind of geometric transformation of the plane. But since the origin (0; 0) is always sent to itself, not every geometric transformation can be described by a matrix in this way.
    [Show full text]
  • Math 21B Orthogonal Matrices
    Math 21b Orthogonal Matrices T Transpose. The transpose of an n × m matrix A with entries aij is the m × n matrix A with entries aji. The transpose AT and A are related by swapping rows with columns. Properties. Let A, B be matrices and ~v, ~w be vectors. 1.( AB)T = BT AT 2. ~vT ~w = ~v · ~w. 3.( A~v) · ~w = ~v · (AT ~w) 4. If A is invertible, so is AT and (AT )−1 = (A−1)T . 5. ker(AT ) = (im A)? and im(AT ) = (ker A)? Orthogonal Matrices. An invertible matrix A is called orthogonal if A−1 = AT or equivalently, AT A = I. The corresponding linear transformation T (~x) = A~x is called an orthogonal transformation. Caution! Orthogonal projections are almost never orthogonal transformations! Examples. Determine which of the following types of matrices are orthogonal. For those which aren't, under what conditions would they be? cos α − sin α 1. (Rotation) A = sin α cos α Solution. Check if AAT = I: cos α − sin α cos α sin α 1 0 AAT = = sin α cos α − sin α cos α 0 1 so yes this matrix is orthogonal. This shows that any rotation is an orthogonal transforma- tion. a b 2. (Reflection Dilation) B = . b −a Solution. Check if BBT = I: a b a b a2 + b2 0 BBT = = : b −a b −a 0 a2 + b2 This will equal I only if a2 + b2 = 1, i.e., B is a reflection (no dilation). This shows that any reflection is an orthogonal transformation. 2 j j j 3 3 3.
    [Show full text]
  • Chapter 14 Hyperbolic Geometry Math 4520, Fall 2017
    Chapter 14 Hyperbolic geometry Math 4520, Fall 2017 So far we have talked mostly about the incidence structure of points, lines and circles. But geometry is concerned about the metric, the way things are measured. We also mentioned in the beginning of the course about Euclid's Fifth Postulate. Can it be proven from the the other Euclidean axioms? This brings up the subject of hyperbolic geometry. In the hyperbolic plane the parallel postulate is false. If a proof in Euclidean geometry could be found that proved the parallel postulate from the others, then the same proof could be applied to the hyperbolic plane to show that the parallel postulate is true, a contradiction. The existence of the hyperbolic plane shows that the Fifth Postulate cannot be proven from the others. Assuming that Mathematics itself (or at least Euclidean geometry) is consistent, then there is no proof of the parallel postulate in Euclidean geometry. Our purpose in this chapter is to show that THE HYPERBOLIC PLANE EXISTS. 14.1 A quick history with commentary In the first half of the nineteenth century people began to realize that that a geometry with the Fifth postulate denied might exist. N. I. Lobachevski and J. Bolyai essentially devoted their lives to the study of hyperbolic geometry. They wrote books about hyperbolic geometry, and showed that there there were many strange properties that held. If you assumed that one of these strange properties did not hold in the geometry, then the Fifth postulate could be proved from the others. But this just amounted to replacing one axiom with another equivalent one.
    [Show full text]
  • 4. Hyperbolic Geometry
    4. Hyperbolic Geometry 4.1 The three geometries Here we will look at the basic ideas of hyperbolic geometry including the ideas of lines, distance, angle, angle sum, area and the isometry group and Þnally the construction of Schwartz triangles. We develop enough formulas for the disc model to be able to understand and calculate in the isometry group and to work with the isometries arising from Schwartz triangles. Some of the derivations are complicated or just brute force symbolic computations, so we illustrate the basic idea with hand calculation and relegate the drudgery to Maple worksheets. None of the major results are proven but rather are given as statements of fact. Refer to the Beardon [10] and Magnus [21] texts for more background on hyperbolic geometry. 4.2 Synthetic and analytic geometry similarities To put hyperbolic geometry in context we compare the three basic geometries. There are three two dimensional geometries classiÞed on the basis of the parallel postulate, or alternatively the angle sum theorem for triangles. Geometry Parallel Postulate Angle sum Models spherical no parallels > 180◦ sphere euclidean unique parallels =180◦ standard plane hyperbolic inÞnitely many parallels < 180◦ disc, upper half plane The three geometries share a lot of common properties familiar from synthetic geom- etry. Each has a collection of lines which are certain curves in the given model as detailed in the table below. Geometry Symbol Model Lines spherical S2, C sphere great circles euclidean C standard plane standard lines b lines and circles perpendicular unit disc D z C : z < 1 { ∈ | | } to the boundary lines and circles perpendicular upper half plane U z C :Im(z) > 0 { ∈ } to the real axis Remark 4.1 If we just want to refer to a model of hyperbolic geometry we will use H to denote it.
    [Show full text]