Who Invented Radio?

Total Page:16

File Type:pdf, Size:1020Kb

Who Invented Radio? Who invented Radio? In 2009, during my tenure as newsletter editor for the RN Electrical Branch Association (now incorporating the Weapons Branch RNEWBA), I received a request from Mr Mike Dixon. Mike had already completed searches into the career of his grandfather, CPO 1st Class W.J.Dixon, who served from 1902 to 1922. This is the letter. ‘I've always been fascinated by the life in the Royal Navy of my grandfather William Dixon. He served from 1902 to 1922 when he left and joined the Marconi Company at their newly formed Morse Code transmitting station, which was in a 'state of the art' building in Dorchester, and where he lived for a further ten years. In 1901 Marconi had just sent the first signals across the Atlantic, and my grandfather joined up in 1902 as an 'electrician', immediately working 'on-shore' on HMS Defiance (initially), HMS Vernon, HMS Pembroke, and HMS Actaeon All these 'ships' were shore establishments, and although he later spent several two year stints at sea, ( mostly on battleships), the majority of his Navy life was spent in these shore buildings. Now....what was he doing? Were 'electricians' trained at Devonport and Chatham? Is it possible he was an instructor who spent the majority of his time passing on his considerable knowledge of what was then a very new technical trade? OR, due to the fact that when he left to become a 'manager' for Marconi , living with his family in a 'works bungalow' directly on site at the transmitting station , was he engaged in something more experimental in the Navy such as the transmitting of electrical/radio signals in submarines, at the Chatham torpedo depot, or even working on th electrical circuitry of the actual torpedoes. DEFIANCE PRE 1930’s On this subject I dropped a line to Mr. Alan King who is Historical Collections Librarian at Portsmouth City Library. He came up with the the following information which makes the whole subject of just what was going on in those days before the 1st World War even more intriguing . Alan writes:- I have looked up Defiance, Actaeon, Pembroke II and Vernon in B. Warlow, Shore Establishments of the Royal Navy (2nd ed., 2000) and found that the one thing that three of them had in common was torpedoes. Two were connected with the Royal Naval Air Service. Defiance was commissioned as a Torpedo School Ship at Devonport on 31st December 1884. (She was eventually broken up in 1931.) Actaeon was commissioned as a Torpedo School at Sheerness in 1905 and from 1910 was a depot ship for Torpedo Boat Destroyers, Sheerness. Vernon was established as a torpedo school at Portsmouth on 26th April 1876. During World War I she was also the depot ship at Portsmouth for the Auxiliary Patrol. Has anyone any further knowledge of what was going on 'aboard' the Actaeon, Vernon, and Pembroke prior to the 1st World War? When he first joined HMS Defiance it was under the command of * Rear Admiral Sir Henry Jackson who worked extremely closely with Marconi in the early days of his experiments with radio, and who was the key figure in promoting radio on a ship to ship basis in the Navy. Was William encouraged to work on the 'new' radio transmitting signalling by a need by Sir Henry Jackson for competent electricians? Will I ever know? William was a very dour man, and never said a word of what he did to his family. I often wonder whether he was sworn under the Official Secrets Act not to say anything about the work that he undertook, which today would be the equivalent of working on extremely high powered computer guidance systems. Do any of your readers have knowledge of how I could explore the life of an 'electrician' in the early 1900's , when as I read on your web-site - ' the first electrical officer was commissioned in 1918, but the electrical artificers were sanctioned on the 13th May 1901.' Incidentally my grandfather did proceed through the ranks reaching the rank of Chief Petty Officer 1st Class, which he reached in 1915. The family story is that he 'always refused a commission’ but is the truth that there were no commissions 'available' until 1918, and that is why he remained a C.P.O until he left? Any comments, or any knowledge, of the very early days as an electrician in Devonport or Chatham would be most welcome. Mike Dixon [email protected]’ *There is a slight error in Mike’s contention that his grandfather served under Rear Admiral Sir Henry Jackson in Defiance. If CPO Dixon joined in 1902 this could not have been correct as Henry commanded Defiance from 1895 to 1897, first as a commander and then captain. Unfortunately our electrical branch members were unable to help Mike but the piece did start some threads about HMS Defiance. Some of our older members contributed experiences of living and training in Defiance. The name covered three hulks moored on the Hamoaze, Torpoint, that served as a torpedo school and later an electrical training establishment. The original group of ships changed early 1930’s. I include one of the submissions as it describes far better than I the set up that Mike’s grandfather would have experienced. (reproduced under the non-commercial use allowed by BBC/history site). By Petty Officer Len Mason. EA 4th Class DMX 645610 Sir! WW2 People's War © Copyright of content rests with the author . http://www.bbc.co.uk/history/ww2peopleswar/stories/57/a3923057.shtml ‘Just about every ship or mother-ship had an EA of some rating and we were supposed to finish training knowing the layout of supplies to all of them. Town class, County class, frigates, carriers, battleships, the lot. The class room was hot and stuffy in summer or freezing in winter and those sketches kept on coming down and going up again at a rapid rate. DEFIANCE POST 1930’s Just for strangers to that excellent ship it comprised three old tubs lashed together with gangways between - HMS Andromeda which originally had sails as well as engines, she was a prize from the French sometime in the 1800 hundreds - HMS Inconstant, steel hulled - HMS Vulcan with a wooden bottom which used to be copper sheathed until it was discovered with salt water they had a battery between the two ships, so they took the copper off. All three were hardly sea going because, being anchored for years, they had become settled in mud. This meant you didn't get rocked to sleep. Theory instruction was dispensed by officers, practical work by chiefs. We learnt (?) maths, electrical principles, RN history (official and unofficial), how torpedoes worked, trimming gyros, sound powered telephones, Y-dischargers, depth charges, machine shop practice, fitting skills and other bits and pieces. The best bit of fun was firefighting and use of breathing apparatus in smoke filled ships. There was one fire alarm on Andromeda which I had to attend fully kitted. There was a small fire which I found and extinguished, I never admitted I had started it accidentally. Torpedoes were interesting; a 21" torpedo had a four cylinder engine using diesel fuel compressed by 3000 lb. air which caused ignition. The housing was 21" diameter and perhaps 12" long. It had to be stripped and rebuilt for practice. Just about everyone finished assembly with a pipe of some sort left in their box that could not be put in, - so strip and try again. A gyro driven by the 3000 lb. air provided guidance. They had to be trimmed so that on start up the top pivot did not describe a spiral. This required adjusting tiny little screws and could take ages. The workshop equipment looked old enough to have come from the 1800's. The Nile centre lathe with speed control using two pairs of adjustable cones and a vee belt. As one pair opened the other pair closed giving infinitely variable speed. The chiefs weren't quite as old as the lathe but on joining the ship I swopped my hard glazed collars for his soft ones, we were both delighted. Working in a white shirt and black tie took some getting used to, especially as I didn't mind getting dirty. Each mess had mess men who drew our food from the galley and dished it out us. Who can forget the Saturday dinner? Everyone who could was going ashore, including the mess men, so dinner was quick to prepare and quick to clear up. The menu for the day as, - Mashed potatoes (cool), boiled beetroot (cold) and herrings in tomato (cold). A sixpenny "tater oggy" at the station was much preferred. We also had a mess president who supplemented the food and dealt with our rum ration, neat for petty officers and above, watered down rum (grog) for leading hands and below. Rum was drawn from the spirit store under a guard of marines, taken up to the quarter deck of Inconstant and measured out one tot per rating. Any left over, there was never too little, was tipped into the scuppers in full view of all. Although illegal according to Admiralty instructions, it was a currency you could buy favours with or use as a birthday present. You were also not supposed to take it ashore or to save it for future use. Schemes for collecting the tipped away rum were not unknown. There were two routes for going ashore. Route one, row across to Wilcove landing stage and walk a couple of miles down into Torpoint to get the chain ferry across to Devonport.
Recommended publications
  • THE DIRECTOR with REFERENCE to The
    SETTORE SELEZIONE E CONTRATTI UFFICIO RICERCATORI A TEMPO DETERMINATO THE DIRECTOR WITH REFERENCE TO the rules referred to in Article 14 of the present call for application ORDERS Art. 1 – Purpose A procedure of comparative evaluation by qualifications and public discussion is called for the recruitment of 1 researcher with a fixed-term employment contract full-time for the three-year - pursuant to art. 24 paragraph 3 letter b) (senior) of Law no. 240/2010 -. Sector competition reference 02/C1 - Astronomy, Astrophysics, Earth and Planetary Physics, Scientific sector FIS/06 - Physics of The Earth and of The Circumterrestrial Medium. The job is activated for the needs of research and study of the Department of Physics and Astronomy "Augusto Righi" - DIFA. Serving primarily at the Department of Physics and Astronomy "Augusto Righi" - DIFA, in Bologna. The contract shall last three years. An annual gross total amount equal to € 42.880,00. The annual increase in this amount will be calculated according to the existing procedure for non-contracted personnel. Art. 2 – Activities to be performed The contract includes 350 hours of supplementary teaching and assistance to students, for each academic year covered by the contract. The contract shall schedule 60 hours of teaching on annual basis. Concerning the provisions of art. 10 regarding fixed term researchers, issued by Rectoral Decree no. 344 of 29/03/2011 and amendments, the researcher’s activities must be linked to the development of the project entitled: “Evaluation of the effectiveness of innovative nature-based solutions to mitigate the risks associated with climate change". The candidate will be responsible for coordinating and supporting the implementation of NBS catalogs in OPERANDUM's GeoIKP platform.
    [Show full text]
  • Practical Design of HF- VHF – Antennas!
    ANTENTOP 01 2003 # 002 ANTENTOP is FREE e-magazine devoted to ANTENnas Theory, Operation, and Practice Edited by hams for hams In the Issue: Thanks to our authors: Practical design of HF- VHF – Prof. Natalia K.Nikolova Antennas! John S. Belrose, VE2CV James P. Rybak Antennas Theory! Leonid Kryzhanovsky Alexey EW1LN Sergey A. Kovalev, USONE Propagation Mysteries! John Doty Robert Brown, NM7M History Early Radio! Michael Higgins, EI 0 CL Dick Rollema, PAOSE And More…. Peter Dodd, G3LDO And others….. EDITORIAL: Well, ANTENTOP # 001 come in! ANTENTOP is just authors’ opinions in the world of amateur radio. I do not correct and re-edit your articles, the articles are printed “as is”. A little note, I am not a native English, so, of course, there are some sentence and grammatical mistakes there… Please, be indulgent! (continued on next page) 73! Igor Grigorov, RK3ZK ex: UA3-117-386, UA3ZNW, UA3ZNW/UA1N, UZ3ZK op: UK3ZAM, UK5LAP, EN1NWB, EN5QRP, EN100GM Copyright: Here at ANTENTOP we just Contact us: Just email me or wanted to follow traditions of FREE flow of drop a letter. information in our great radio hobby around the world. A whole issue of Mailing address: ANTENTOP may be photocopied, printed, pasted onto websites. We don't want to Box 68, 308015, Belgorod, Russia control this process. It comes from all of Email: [email protected] us, and thus it belongs to all of us. This doesn't mean that there are no copyrights. NB: Please, use only plain text and mark email subject as: There is! Any work is copyrighted by the igor_ant.
    [Show full text]
  • THE DIRECTOR with REFERENCE to The
    SETTORE SELEZIONE E CONTRATTI UFFICIO RICERCATORI A TEMPO DETERMINATO THE DIRECTOR WITH REFERENCE TO the rules referred to in Article 14 of the present call for application ORDERS Art. 1 – Purpose A procedure of comparative evaluation by qualifications and public discussion is called for the recruitment of 1 researcher with a fixed-term employment contract full-time for the three-year - pursuant to art. 24 paragraph 3 letter a) (junior) of Law no. 240/2010 - Sector competition reference 02/A1 - Experimental Physics of Fundamental Interactions, Scientific sector FIS/01 - Experimental Physics. The job is activated for the needs of research and study of the Department of Physics and Astronomy "Augusto Righi" - DIFA of the Alma Mater Studiorum - Università di Bologna. Serving primarily at the Department Physics and Astronomy "Augusto Righi" - DIFA, in Bologna. The contract shall last three years. An annual gross total amount equal to € 35.733,00. The annual increase in this amount will be calculated according to the existing procedure for non-contracted personnel. Art. 2 – Activities to be performed The contract includes 350 hours of supplementary teaching and assistance to students, for each academic year covered by the contract. The contract shall schedule 60 hours of teaching on annual basis. Concerning the provisions of art. 10 regarding fixed term researchers, issued by Rectoral Decree no. 344 of 29/03/2011 and amendments, the researcher’s activities must be linked to the development of the project entitled: “High-precision measurements of CP violation and the CKM matrix parameters with the LHCb-upgrade data, at the CERN Large Hadron Collider”, co-financed by the Istituto Nazionale di Fisica Nucleare - INFN.
    [Show full text]
  • Magnets in Particle Physics
    MAGNETS IN PARTICLE PHYSICS F. Bonaudi CERN, Geneva, Switzerland Abstract This review talk introduces a week of specialized lectures on all aspects of magnet design and construction. The programme includes theory, materials, measurements, alignment and some particular applications: it is therefore a very complete coverage of the field and will certainly shed a lot of new light on the subject. Rather than entering into any of these specialized areas, the present lecture will try to present a broad survey of the applications of magnets to particle physics research, and will include a section on the historical developments that led to our present understanding of magnetic phenomena. 1 . ACCELERATORS, DETECTORS AND (ELECTRO)MAGNETS In modern times it is hardly conceivable to design a particle accelerator without resorting to the use of magnets. By "magnets" we almost exclusively mean electromagnets, although permanent magnets have had applications too. In the past these were mainly for vacuum pumps and gauges of various sorts, or for sweeping magnets. It is very encouraging to see that in the last ten years or so permanent magnets have started to be used for focussing (quadrupole) magnetic devices. In fact, one session of this Accelerator School deals with permanent magnets. Particle detectors very often incorporate an analyzing magnet in order to measure the momentum of charged secondary particles by track curvature. The most recent applications in colliding beam experiments have all adopted a solenoidal field geometry coaxial with the (mean) beam direction. It should be recalled that particle "observation" nowadays is done exclusively by electronic means, therefore the "tracking" information is provided by many small sensitive elements (wires, pads, pixels, fibres etc.) and the reconstruction computer programs make a tit to a continuous curve (circle or helix).
    [Show full text]
  • Claudio Pellegrini By: David Zierler
    Interviewee: Claudio Pellegrini By: David Zierler Place: Videoconference Date: April 2nd, 2020 ZIERLER: Okay, it is April 2nd, 2020. This is David Zierler, oral historian for the American Institute of Physics. It is my great pleasure to be here today with Dr. Claudio Pellegrini. Dr. Pellegrini, thank you so much for being with me today. PELLEGRINI: Oh, it's my pleasure. Thank you for inviting me. ZIERLER: Would you please tell us your title and your current affiliation? PELLEGRINI: I am a distinguished professor of physics emeritus at UCLA. I retired from UCLA some years ago. Now, I'm working at the SLAC National Accelerator Laboratory. My main area of research is the development of the x-ray free-electron lasers, which has been built here following a proposal that I made in 1992. ZIERLER: So let's start right at the beginning. Tell us about your childhood and your birthplace in Italy. PELLEGRINI: I was born in Rome in 1935. I spent the war years, when I was a kid, 5 to 10 years old, in a mountain area, east of Rome. My family decided to move out of Rome when the war started, and we went to live in a small village, Villa Santa Maria, up in the mountains in Abruzzo. We went back to Rome at the end of the war, so I did my elementary schools in this little place. And then-- ZIERLER: So you went out of Rome because of the war? PELLEGRINI: Yes, because of the war. ZIERLER: It was dangerous? It was dangerous to be in Rome during the war? PELLEGRINI: Well, Rome was bombed by the Allied and the Nazis, in 1943 and 1944, and thousands of civilians were killed.
    [Show full text]
  • Wireless World Without Wires
    BROAD SHEET 25th April to 1st October 2006 communicates the work of the Museum of the History of Science, Oxford. It is posted on the Museum’s website, sold in the shop, and distributed to members of the mailing list, see www.mhs.ox.ac.uk. £1.00 T e l e g r a p h y that the universe was filled with a distance had been extended to over Wireless World Without Wires. homogeneous, continuous, elastic eight miles. The system was now -Last night, at medium which transmitted heat, to be put in operation officially n 2004 the Marconi Collection was presented to the University M y d d l e t o n - h a l l , light, electricity, and other forms between Sark and the other Channel of Oxford by the Marconi Corporation. This large and of energy from Islands, and in a short Upper-street, Islington, Mr. Marconi unrivalled archive of objects and documents records the Mr. W.H. Preece one point of space time a telegraph office I work of Guglielmo Marconi and the wireless telegraph to another. This had produced would be opened there “ delivered a lecture on company he founded. The documents are kept in the medium was ether, an instrument and messages would be “Telegraphy without Wires.” The Bodleian Library and the objects in the Museum of proceeds of the lecture are to be not air; and the which he had received and transmitted the History of Science. This exhibition of material devoted to the funds of the Islington discovery of its no hesitation without the aid of any real existence was communicating wires.
    [Show full text]
  • History of Communications Media
    History of Communications Media Class 6 [email protected] What We Will Cover Today • Radio – Origins – The Emergence of Broadcasting – The Rise of the Networks – Programming – The Impact of Television – FM • Phonograph – Origins – Timeline – The Impact of the Phonograph Origins of Radio • James Clerk Maxwell’s theory had predicted the existence of electromagnetic waves that traveled through space at the speed of light – Predicted that these waves could be generated by electrical oscillations – Predicted that they could be detected • Heinrich Hertz in 1886 devised an experiment to detect such waves. Origins of Radio - 2 • Hertz’ experiments showed that the waves: – Conformed to Maxwell’s theory – Had many of the same properties as light except that the wave lengths were much longer than those of light – several meters as opposed to fractions of a millimeter. Origins of Radio - 3 • Edouard Branly & Oliver Lodge perfected a coherer • Alexander Popov used a coherer attached to a vertical wire to detect thunderstorms in advance • William Crookes published an article on electricity which noted the possibility of using “electrical rays” for “transmitting and receiving intelligence” Origins of Radio - 4 • Guglielmo Marconi had attended lectures on Maxwell’s theory and read an account of Hertz’s experiments – Read Crookes article – Attended Augusto Righi’s lectures at Bologna University on Maxwell’s theory and Hertz’s experiments – Read Oliver Lodge’s article on Hertz’s experiments and Branly’s coherer What Marconi Accomplished - 1 • Realized that
    [Show full text]
  • THE DIRECTOR with REFERENCE to the Rules Referred to In
    SETTORE SELEZIONE E CONTRATTI UFFICIO RICERCATORI A TEMPO DETERMINATO THE DIRECTOR WITH REFERENCE TO the rules referred to in Article 14 of the present call for application ORDERS Art. 1 – Purpose A procedure of comparative evaluation by qualifications and public discussion is called for the recruitment of 1 researcher with a fixed-term employment contract full-time for the three-year - pursuant to art. 24 paragraph 3 letter a) (junior) of Law no. 240/2010 -. Sector competition reference 02/B1 - Experimental Physics of Matter, Scientific sector FIS/03 - Physics of Matter. The job is activated for the needs of research and study of the Department of Physics and Astronomy "Augusto Righi" - DIFA of the Alma Mater Studiorum - Università di Bologna. Serving primarily at the Department Physics and Astronomy "Augusto Righi" - DIFA, in Bologna. The contract shall last three years. An annual gross total amount equal to € 35.733,00. The annual increase in this amount will be calculated according to the existing procedure for non-contracted personnel. Art. 2 – Activities to be performed The contract includes 350 hours of supplementary teaching and assistance to students, for each academic year covered by the contract. The contract shall schedule 60 hours of teaching on annual basis. Concerning the provisions of art. 10 regarding fixed term researchers, issued by Rectoral Decree no. 344 of 29/03/2011 and amendments, the researcher’s activities must be linked to the development of the project entitled: “Structure and growth of advanced functional materials”. He/she will conduct research in the field of experimental condensed matter physics.
    [Show full text]
  • A Microhistory of Microwave Technology
    Cambridge University Press 978-0-521-83526-8 - Planar Microwave Engineering: A Practical Guide to Theory, Measurement, and Circuits Thomas H. Lee Excerpt More information CHAPTER ONE A MICROHISTORY OF MICROWAVE TECHNOLOGY 1.1 INTRODUCTION Many histories of microwave technology begin with James Clerk Maxwell and his equations, and for excellent reasons. In 1873, Maxwell published A Treatise on Elec- tricity and Magnetism, the culmination of his decade-long effort to unify the two phenomena. By arbitrarily adding an extra term (the “displacement current”) to the set of equations that described all previously known electromagnetic behavior, he went beyond the known and predicted the existence of electromagnetic waves that travel at the speed of light. In turn, this prediction inevitably led to the insight that light itself must be an electromagnetic phenomenon. Electrical engineering students, perhaps benumbed by divergence, gradient, and curl, often fail to appreciate just how revolutionary this insight was.1 Maxwell did not introduce the displacement cur- rent to resolve any outstanding conundrums. In particular, he was not motivated by a need to fix a conspicuously incomplete continuity equation for current (contrary to the standard story presented in many textbooks). Instead he was apparently in- spired more by an aesthetic sense that nature simply should provide for the existence of electromagnetic waves. In any event the word genius, though much overused to- day, certainly applies to Maxwell, particularly given that it shares origins with genie. What he accomplished was magical and arguably ranks as the most important intel- lectual achievement of the 19th century.2 Maxwell – genius and genie – died in 1879, much too young at age 48.
    [Show full text]
  • Satellites Around Milky Way Analogs: Tension in the Number and Fraction
    Draft version July 21, 2021 Typeset using LATEX twocolumn style in AASTeX62 Satellites Around Milky Way Analogs: Tension in the Number and Fraction of Quiescent Satellites Seen in Observations Versus Simulations Ananthan Karunakaran,1 Kristine Spekkens,2, 1 Kyle A. Oman,3 Christine M. Simpson,4, 5 Azadeh Fattahi,3 David J. Sand,6 Paul Bennet,7 Denija Crnojevic´,8 Carlos S. Frenk,3 Facundo A. Gomez´ ,9, 10 Robert J. J. Grand,11 Michael G. Jones,6 Federico Marinacci,12 Burc¸_ınMutlu-Pakd_ıl,13, 5 Julio F. Navarro,14 and Dennis Zaritsky6 1Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6, Canada 2Department of Physics and Space Science, Royal Military College of Canada P.O. Box 17000, Station Forces Kingston, ON K7K 7B4, Canada 3Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK 4Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA 5Department of Astronomy and Astrophysics, University of Chicago, Chicago IL 60637, USA 6Steward Observatory, University of Arizona, 933 North Cherry Avenue, Rm. N204, Tucson, AZ 85721-0065, USA 7Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 8University of Tampa, 401 West Kennedy Boulevard, Tampa, FL 33606, USA 9Instituto de Investigaci´onMultidisciplinar en Ciencia y Tecnolog´ıa,Universidad de La Serena, Ra´ulBitr´an1305, La Serena, Chile 10Departamento de Astronom´ıa,Universidad de La Serena, Av. Juan Cisternas 1200 Norte, La Serena, Chile 11Max-Planck-Institut f¨urAstrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany 12Department of Physics & Astronomy \Augusto Righi", University of Bologna, via Gobetti 93/2, I-40129 Bologna, Italy 13Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA 14Department of Physics and Astronomy, University of Victoria, P.O.
    [Show full text]
  • Ferro-Octupolar Order and Low-Energy Excitations in D $^ 2$ Double
    Ferro-octupolar order and low-energy excitations in d2 double perovskites of Osmium Leonid V. Pourovskii,1, 2 Dario Fiore Mosca,3 and Cesare Franchini3, 4 1Centre de Physique Th´eorique,Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France 2Coll`egede France, 11 place Marcelin Berthelot, 75005 Paris, France 3University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria 4Department of Physics and Astronomy ”Augusto Righi”, Alma Mater Studiorum - Universit`adi Bologna, Bologna, 40127 Italy Conflicting interpretations of experimental data preclude the understanding of the quantum mag- netic state of spin-orbit coupled d2 double perovskites. Whether the ground state is a Janh-Teller- distorted order of quadrupoles or the hitherto elusive octupolar order remains debated. We resolve this uncertainty through direct calculations of all-rank inter-site exchange interactions and inelastic 2 neutron scattering (INS) cross-section for the d double perovskite series Ba2MOsO6 (M= Ca, Mg, Zn). Using advanced many-body first principles methods we show that the ground state is formed by ferro-ordered octupoles coupled within the ground-stated Eg doublet. Computed ordering temper- ature of the single second-order phase-transition and gapped excitation spectra are fully consistent with observations. Minuscule distortions of the parent cubic structure are shown to qualitatively modify the structure of magnetic excitations. Identification of complex magnetic orders in spin- 23], its origin remains unclear, in particular regarding orbital entangled and electronically correlated transition the rank of the multipolar interactions and the degree metal oxides has emerged as a fascinating field of study, of JT distortions.
    [Show full text]
  • Guglielmo Marconi ­ Wikipedia, the Free Encyclopedia Guglielmo Marconi from Wikipedia, the Free Encyclopedia
    10/5/2016 Guglielmo Marconi ­ Wikipedia, the free encyclopedia Guglielmo Marconi From Wikipedia, the free encyclopedia Guglielmo Marconi, 1st Marquis of Marconi (Italian: [ɡuʎ ˈʎɛlmo marˈkoːni]; 25 April 1874 – 20 July 1937) was an Italian Guglielmo Marconi inventor and electrical engineer known for his pioneering work on long­distance radio transmission[1] and for his development of Marconi's law and a radio telegraph system. He is often credited as the inventor of radio,[2] and he shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun "in recognition of their contributions to the development of wireless telegraphy".[3][4][5] Marconi was an entrepreneur, businessman, and founder of The Wireless Telegraph & Signal Company in the United Kingdom in 1897 (which became the Marconi Company). He succeeded in making a commercial success of radio by innovating and building on the work of previous experimenters and physicists.[6][7] In 1929, the King of Italy ennobled Marconi as a Marchese (marquis). Born Guglielmo Giovanni Maria Marconi Contents 25 April 1874 Palazzo Marescalchi, Bologna, 1 Biography Italy 1.1 Early years 1.2 Radio work Died 20 July 1937 (aged 63) 1.2.1 Developing radio telegraphy Rome, Italy 1.2.2 Transmission breakthrough Residence Italy 1.2.3 The British become interested 1.2.4 Transatlantic transmissions Nationality Italian 1.2.5 Titanic Alma mater University of Bologna 1.2.6 Continuing work 1.3 Later years Academic Augusto Righi 2 Personal life advisors 3 Legacy and honours Known for Radio 3.1 Honours and awards
    [Show full text]