Sea-Level Rise and the Emergence of a Keystone Grazer Alter the Geomorphic Evolution and Ecology of Southeast US Salt Marshes
Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt marshes Sinéad M. Crottya,b,1, Collin Ortalsc, Thomas M. Pettengilld, Luming Shic, Maitane Olabarrietac, Matthew A. Joycee, Andrew H. Altieria, Elise Morrisonf, Thomas S. Bianchif, Christopher Craftg, Mark D. Bertnessd, and Christine Angelinia,c aDepartment of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611; bSchool of the Environment, Yale University, New Haven, CT 06511; cDepartment of Coastal Engineering, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611; dDepartment of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912; eDepartment of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, United Kingdom; fDepartment of Geological Sciences, University of Florida, Gainesville, FL 32611; and gSchool of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN 47405 Edited by Mary E. Power, University of California, Berkeley, CA, and approved June 9, 2020 (received for review October 15, 2019) Keystone species have large ecological effects relative to their effects of other species and functional groups potentially less abundance and have been identified in many ecosystems. However, vulnerable to exploitation or habitat loss, such as mutualists and global change is pervasively altering environmental conditions,
[Show full text]