Maisie Nash Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Maisie Nash Thesis This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Nash, Maisie V Title: Metagenomic insights into microbial communities in proglacial landscapes General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Metagenomic insights into microbial communities in proglacial landscapes Maisie Victoria Nash A thesis submitted to the University of Bristol in accordance with the requirements for award of the degree of Doctor of Philosophy in the Faculty of Science School of Geographical Sciences April 2019 Word count: 46,231 Abstract Environmental DNA analysis using metagenomics can provide an insight into the taxonomy and functional potential of microbial communities ex situ, without the need for culturing or DNA amplification. However, metagenomics has had limited application to environmental microbial ecology, in particular, to microbial communities in proglacial regions. This thesis aims to contribute to the body of literature on environmental metagenomics through evaluating assemblers for soil microbial ecologists, and subsequently applying metagenomics to investigate microbial communities in proglacial environments. Assembly of metagenome sequencing reads can improve sequence alignment to taxonomic and functional databases, thereby improving ecological conclusions. However, limited guidance is available for assembler choice by microbial ecologists. The first study in this thesis compares assemblers for soil metagenome data, demonstrating the importance of assembler evaluation and parameterization. The guidance produced was applied to investigate microbial communities in proglacial regions, including fjords and forefields. Proglacial forefields present a unique opportunity to understand microbial colonization in land exposed by glacier retreat. Here, metagenomics was used to investigate microbial diversity and functional potential during forefield succession, alongside comparing the diversity of nitrogen-fixing bacteria between Arctic forefields. This work contributes to our understanding of Arctic microbial ecology, which has significance given the continued exposure of forefield soils during global warming. In addition, metagenomics was used to investigate microbial communities in oligotrophic, dark, saline fjord waters, fed by glacial meltwater. This work highlights the potential of metagenomics to understand uncultured microbial samples and demonstrate areas for further analysis, such as targeting novel genomes. This thesis has contributed to the literature on metagenomics by providing methodological guidance for microbial ecologists, alongside enhancing understanding of microbial diversity in proglacial regions. It is hoped that this work will inspire others to use metagenomics to explore uncultured microbial samples and to target further analysis or exploration for unique genomes. 2 Acknowledgements I would like to thank the following people who have provided guidance and support over the course of my PhD. Firstly, I would like to thank my advisors, Patricia Sánchez-Baracaldo who has been a fantastic collaborator and a huge source of support, Alex Anesio for providing me with the opportunity to enter the world of microbiology, and Gary Barker for pushing me to become a better bioinformatician. Thank you to NERC for funding my project through a GW4+ DTP scholarship and the PISCES project for supporting my fieldwork. Many thanks to my cohort of PhD students and the Browns community, in particular Nathan Christmas for being my technical help desk, and Steve Chuter, Ale Urra and Claire Donnelly for supporting me through the ups and downs. I would like to thank my fieldwork team, including Jon Hawkings, Rebecca Huggett, Rory Burford, Alex Beaton, Helena Pryer, Hong Chin and all those on the PISCES project. Thank you to my team and coaches at CrossFit 605 who have kept my competitive spirit alive and motivated me to improve in all aspects of my life. I would like to thank my best friend, Alice Haworth and my sisters, Amy and Libby, for supporting me through my crazy pursuit in science. Finally, I would like to thank my parents, Trevor and Julie, without their support I would never have made it this far, and their work ethic and positive attitude inspires me every day. 3 Authors declaration I declare that the work was carried out in accordance with the requirements of the University’s regulations and Code of Practice for Research Degree programmes and that it has not been submitted for any other academic award. Except where indicated by specific reference in the text, the work is the candidate’s own work. Work done in collaboration with, or the assistance of others, is indicated as such. Any views expressed in the dissertation are those of the author. Signed: ………………………………………………………………. Date:………………… 4 Table of Contents Abstract……………………………………………………………………………………….2 Acknowledgements………………………………………………………………………….3 Authors declaration………………………………………………………………………….4 List of Figures………………………………………………………………………………...9 List of Tables……………………………………………………………………………..…10 Key terms……………………………………………………………………………………11 Abbreviations………………………………………………………………………….……12 Chapter 1: Literature Review……………………………………………………………13 1.1 Introduction to glacial systems………………………………………………..13 1.2 Microbial communities in glacial systems……………………………………14 1.3 Proglacial forefields and microbial communities……………………………14 1.3.1 Using forefields to investigate microbial succession……………15 1.3.2 Plant succession and soil development………………………….16 1.3.3 Microbial succession in glacial forefields…………………………17 1.3.4 Microbial nitrogen cycling in glacial forefields……………………19 1.3.5 Carbon, phosphorous and sulfur in forefields……………………20 1.4 Proglacial fjords and microbial communities………………………………...22 1.4.1 Fjord systems……………………………………………………….22 1.4.2 The influence of glacial meltwater……………………...…………22 1.4.3 Microbial communities and fjord systems……………………..…23 1.5 Proglacial environments and climate change……………………………….24 1.6 Methodological considerations for investigating microbial communities…25 1.6.1 Methods available………………………………………………….25 1.6.2 Culture based studies……………………………………………...25 1.6.3 First generation DNA sequencing………………………………...26 1.6.4 Taxonomic marker genes…………………………….…………...27 1.6.5 Next generation DNA sequencing………………………………...27 1.6.6 Metagenomics……………………………………………………...28 Metagenome sequence assembly and annotation……………...29 Sequence assembly……………………………………………….29 Sequence annotation………………………………………………31 5 The choice of assembler…………………………………………..32 Selecting an appropriate assembler……………………………...33 1.7 Summary and research gaps…………………………………………………34 1.8 Aims and objectives……………………………………………………………35 Chapter 2: Comparison of publicly available metagenome assemblers for soil bacterial communities…………………………………………………………………...38 2.1 Introduction……………………………………………………………………..38 2.2 Methodology……………………………………………………………………40 2.3 Results……………………………………………………………………….…46 2.3.1 Assembly contiguity and completeness……………………………46 2.3.2 Modifying community complexity……………………………….….51 2.3.3 Assembly parameterization…………………………………………52 2.3.4 Assembly chimeras………………………………………………….56 2.3.5 Taxonomic distribution of assemblies……………………………...57 2.4 Discussion………………………………………………………………………59 2.4.1 The premise of the study……………………………………………59 2.4.2 Assembly evaluation metrics……………………………………….59 2.4.3 Simulated bacterial communities…………………………………..60 2.4.4 The choice of assembler………………………………………….…61 2.4.5 The importance of parameterisation……………………………….62 2.4.6 Best performing assemblers………………………………………..62 2.5 Conclusion……………………………………………………………………...63 2.6 Observations……………………………………………………...……………64 2.7 Recommendations for best practice…………………………………………65 2.8 Limitations and future work……………………………………………………66 Chapter 3: Metagenomic insights into diazotrophic communities across Arctic glacier forefields………………………………………………………………………….68 3.1 Introduction……………………………………………………………………..69 3.2 Materials and methods…………………………………………………...……71 3.2.1 Field sampling …………………………………………………….…71 3.2.2 Soil organic carbon and total nitrogen content……………….……72 3.2.3 DNA extraction, library preparation and sequencing…………..…72 3.2.4 Metagenome assembly and annotation……………………………73 3.2.5 Nif taxonomy…………………………………………………………74 6 3.2.6 Gene phylogeny…………………………………………………..…74 3.3 Results and Discussion……………………………………………………..…76 3.3.1 Soil carbon
Recommended publications
  • Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas Sp
    microorganisms Article Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5 Karel Kopejtka 1 , Yonghui Zeng 1,2, David Kaftan 1,3 , Vadim Selyanin 1, Zdenko Gardian 3,4 , Jürgen Tomasch 5,† , Ruben Sommaruga 6 and Michal Koblížek 1,* 1 Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Tˇreboˇn,Czech Republic; [email protected] (K.K.); [email protected] (Y.Z.); [email protected] (D.K.); [email protected] (V.S.) 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark 3 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 4 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Ceskˇ é Budˇejovice,Czech Republic 5 Research Group Microbial Communication, Technical University of Braunschweig, 38106 Braunschweig, Germany; [email protected] 6 Laboratory of Aquatic Photobiology and Plankton Ecology, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected] † Present Address: Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, 38106 Braunschweig, Germany. Abstract: An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 Citation: Kopejtka, K.; Zeng, Y.; (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Ty- Kaftan, D.; Selyanin, V.; Gardian, Z.; rolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic Tomasch, J.; Sommaruga, R.; Koblížek, analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas M. Characterization of the Aerobic and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Anoxygenic Phototrophic Bacterium Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%).
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • CUED Phd and Mphil Thesis Classes
    High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice.
    [Show full text]
  • Proquest Dissertations
    Approaches to assessing microbial communities in soil, two examples: Biosurfactant production and phenanthrene degradation Item Type text; Dissertation-Reproduction (electronic) Authors Bodour, Adria Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 06:55:39 Link to Item http://hdl.handle.net/10150/280136 INFORMATION TO USERS This manuscript has been reproduced from the microfiinn master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal
    [Show full text]
  • Applications of Novosphingobium Puteolanum Pp1y
    A STUDY OF THE BIOTECHNOLOGICAL APPLICATIONS OF NOVOSPHINGOBIUM PUTEOLANUM PP1Y. Dr. Luca Troncone Dottorato in Scienze Biotecnologiche – XXIV° ciclo Indirizzo Biotecnologie Industriali e Molecolari Università di Napoli Federico II Dottorato in Scienze Biotecnologiche – XXIV° ciclo Indirizzo Biotecnologie Industriali e Molecolari Università di Napoli Federico II A STUDY OF THE BIOTECHNOLOGICAL APPLICATIONS OF NOVOSPHINGOBIUM PUTEOLANUM PP1Y. Dr. Luca Troncone Dottorando: Dr. Luca Troncone Relatore: Prof. Alberto Di Donato Coordinatore: Prof. Giovanni Sannia A zia Nanna Index INDEX RIASSUNTO pag. 3 SUMMARY pag. 8 I. INTRODUCTION pag. 9 1.1. Antropic pollution and bioremediation. 1.2. Microbial biofilm. 1.3. Bioremediation and biofilm. 1.4. Novosphingobium puteolanum PP1Y. 1.5. Aim of the project. II. MATERIALS & METHODS pag. 23 2.1. Culture Media. 2.2. PAH-Agar Plates. 2.3. Optimal Salt Concentration, pH and Temperature for Growth of Strain PP1Y. 2.4. Growth on Fuels. 2.5. Growth on Single Hydrocarbons. 2.6. Phase Contrast Microscopy. 2.7. Removal of Oil-Dissolved Aromatic Hydrocarbons by Strain PP1Y. 2.8. Removal of Aromatic Hydrocarbons from polluted soils: 2.8.1. Growing conditions; 2.8.2. Preparation of microcosms; 2.8.3. Removal of aromatic hydrocarbons from soil by strain PP1Y. 2.9. Heavy metals resistance. 2.10. Analysis of the Extracellular Products: 2.10.1. Proteins analysis: 2.10.1.1. Mass spectrometric analysis. 2.10.2. Carbohydrate analysis: 2.10.2.1. Acetylated methyl glycosides. 2.10.3. Emulsification procedures. 2.11. Genome Analysis. 1 Index 2.12. Other Methods. III. RESULTS & DISCUSSION pag. 31 3.1. Characterization of Novosphingobium puteolanum PP1Y.
    [Show full text]
  • Phenotypic and Microbial Influences on Dairy Heifer Fertility and Calf Gut Microbial Development
    Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal Science, Dairy Rebecca R. Cockrum Kristy M. Daniels Alan Ealy Katharine F. Knowlton September 17, 2020 Blacksburg, VA Keywords: microbiome, fertility, inoculation Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens ABSTRACT (Academic) Pregnancy loss and calf death can cost dairy producers more than $230 million annually. While methods involving nutrition, climate, and health management to mitigate pregnancy loss and calf death have been developed, one potential influence that has not been well examined is the reproductive microbiome. I hypothesized that the microbiome of the reproductive tract would influence heifer fertility and calf gut microbial development. The objectives of this dissertation were: 1) to examine differences in phenotypes related to reproductive physiology in virgin Holstein heifers based on outcome of first insemination, 2) to characterize the uterine microbiome of virgin Holstein heifers before insemination and examine associations between uterine microbial composition and fertility related phenotypes, insemination outcome, and season of breeding, and 3) to characterize the various maternal and calf fecal microbiomes and predicted metagenomes during peri-partum and post-partum periods and examine the influence of the maternal microbiome on calf gut development during the pre-weaning phase. In the first experiment, virgin Holstein heifers (n = 52) were enrolled over 12 periods, on period per month. On -3 d before insemination, heifers were weighed and the uterus was flushed.
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Sphingomonas Sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere Microbial Community Structure of Arabidopsis Thaliana Under Drought Stress
    fmicb-10-01221 June 4, 2019 Time: 15:3 # 1 ORIGINAL RESEARCH published: 05 June 2019 doi: 10.3389/fmicb.2019.01221 Sphingomonas sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere Microbial Community Structure of Arabidopsis thaliana Under Drought Stress Yang Luo1, Fang Wang1, Yaolong Huang1, Meng Zhou1, Jiangli Gao1, Taozhe Yan1, Hongmei Sheng1* and Lizhe An1,2* 1 Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China, 2 The College of Forestry, Beijing Forestry University, Beijing, China The rhizosphere is colonized by a mass of microbes, including bacteria capable of Edited by: promoting plant growth that carry out complex interactions. Here, by using a sterile Camille Eichelberger Granada, experimental system, we demonstrate that Sphingomonas sp. Cra20 promotes the University of Taquari Valley, Brazil growth of Arabidopsis thaliana by driving developmental plasticity in the roots, thus Reviewed by: Muhammad Saleem, stimulating the growth of lateral roots and root hairs. By investigating the growth Alabama State University, dynamics of A. thaliana in soil with different water-content, we demonstrate that Cra20 United States Andrew Gloss, increases the growth rate of plants, but does not change the time of reproductive The University of Chicago, transition under well-water condition. The results further show that the application of United States Cra20 changes the rhizosphere indigenous bacterial community, which may be due *Correspondence: to the change in root structure. Our findings provide new insights into the complex Hongmei Sheng [email protected] mechanisms of plant and bacterial interactions. The ability to promote the growth of Lizhe An plants under water-deficit can contribute to the development of sustainable agriculture.
    [Show full text]
  • And Diacylglycerol Lipase from Marine Member Janibacter Sp
    Int. J. Mol. Sci. 2014, 15, 10554-10566; doi:10.3390/ijms150610554 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Biochemical Properties of a New Cold-Active Mono- and Diacylglycerol Lipase from Marine Member Janibacter sp. Strain HTCC2649 Dongjuan Yuan 1, Dongming Lan 1, Ruipu Xin 1, Bo Yang 2 and Yonghua Wang 1,* 1 College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China; E-Mails: [email protected] (D.Y.); [email protected] (D.L.); [email protected] (R.X.) 2 School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-20-8711-3842. Received: 29 April 2014 / in revised form: 15 May 2014 / Accepted: 22 May 2014 / Published: 12 June 2014 Abstract: Mono- and di-acylglycerol lipase has been applied to industrial usage in oil modification for its special substrate selectivity. Until now, the reported mono- and di-acylglycerol lipases from microorganism are limited, and there is no report on the mono- and di-acylglycerol lipase from bacteria. A predicted lipase (named MAJ1) from marine Janibacter sp. strain HTCC2649 was purified and biochemical characterized. MAJ1 was clustered in the family I.7 of esterase/lipase. The optimum activity of the purified MAJ1 occurred at pH 7.0 and 30 °C. The enzyme retained 50% of the optimum activity at 5 °C, indicating that MAJ1 is a cold-active lipase.
    [Show full text]
  • Bioinformatic and Mutational Studies of Related Toxin–Antitoxin Pairs in M
    Bioinformatic and mutational studies of related toxin–antitoxin pairs in M. tuberculosis predict and identify key functional residues Running title: Toxin-Antitoxin relationships in M.tuberculosis Himani Tandon1, Arun Sharma2, Saruchi Wadhwa2, Raghavan Varadarajan1, Ramandeep Singh2, Narayanaswamy Srinivasan1*, and Sankaran Sandhya1* 1Molecular Biophysics Unit, Indian Institute of Science, Bangalore- 560012, India. 2Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO Box # 4, Faridabad, Haryana- 121001, India. * To whom correspondence should be addressed. Sankaran Sandhya: Molecular Biophysics Unit, Indian Institute of Science, Bangalore- 560012; [email protected]; Tel: +918022932837; Fax: +918023600535. Correspondence may also be addressed to Narayanaswamy Srinivasan. Molecular Biophysics Unit, Indian Institute of Science, Bangalore- 560012; [email protected]; Tel: +918022932837; Fax: +918023600535. Keywords: Toxin-antitoxin, homology, paralogues, structure-function, Mycobacterium tuberculosis, genome analysis, bacteriostasis, VapBC, PIN domain, phylogeny, molecular modelling, protein evolution 1 S1. Trends observed in the distribution of homologues of M.tuberculosis TA systems within MTBC and conservation pattern of Rv0909-Rv0910 and Rv1546 in MTBC and other organisms. Ramage et. al, have earlier probed the spread of M.tuberculosis type II TA in 5 of the 10 genomes in the MTBC complex (1). In addition to these genomes, we have included the genomes of M.orygis, M.caprae and M.mungi that are now available since their study, for our analysis. A search of M.tuberculosis TA in MTBC revealed that not all TAs were found as a pair with the same confidence in M.mungi, M.orygis and M.canetti.
    [Show full text]
  • 1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
    Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds.
    [Show full text]