Una Teoría Para El Desarrollo Software Construida Mediante Técnicas Y Modelos De Gestión Del Conocimiento

Total Page:16

File Type:pdf, Size:1020Kb

Una Teoría Para El Desarrollo Software Construida Mediante Técnicas Y Modelos De Gestión Del Conocimiento UNIVERSIDADE DA CORUÑA FACULTAD DE INFORMÁTICA Departamento de Tecnologías de la Información y de las Comunicaciones Tesis Doctoral UNA TEORÍA PARA EL DESARROLLO SOFTWARE CONSTRUIDA MEDIANTE TÉCNICAS Y MODELOS DE GESTIÓN DEL CONOCIMIENTO. Autor: Ingeniero María Aurora Martínez Rey. Directores: Doctor Juan M. Ares Casal. Doctor Alfonso Rodríguez-Patón. A Coruña, mayo del 2008 RESUMEN En esta tesis se muestra y demuestra, cómo la ecuación fundamental del conocimiento, aplicada al propio conocimiento, mejora éste. Naturalmente, ésta es la forma de trabajar de los científicos en sus investigaciones, pero aquí se trata de probar que, usando técnicas de gestión del conocimiento, cualquier especialista en una materia puede sacar provecho de dicha ecuación. En este trabajo, se eligió el dominio del desarrollo del software como marco donde investigar la tesis propuesta. Así, en primer lugar, se detectó que el conocido “gap” entre el desarrollo del hardware” y el del software es básicamente consecuencia de que el primero tiene una verdadera ingeniería que lo soporta y por lo tanto, una ciencia que lo avala y fundamente; respectivamente, la electrónica y la física, en tanto la segunda, es aún más un arte que una ingeniería sin teoría científica que la avale. Por ello, la propuesta que se hace es presentar una teoría que convierta el desarrollo software en una verdadera ingeniería. Con esto “in mente”, se han establecido las condiciones formales y materiales de adecuación de cualquier teoría. A continuación, utilizado el teorema de Löwehim-Skolem y la generación de los números ordinales a partir del vacío, por von Neumann, se demuestra la factibilidad de dicha teoría. Posteriormente, y tomando como dominio la programación funcional, y más en concreto la “curryficación”, se comprueba la viabilidad de la teoría. Para, finalmente, proponer una teoría que, cumpliendo los requisitos exigibles a cualquier teoría, fundamenta el desarrollo software. Más aún, pues la teoría propuesta es tan amplia y robusta que pude aplicarse a cualquier sistema de información incluido el ADN y el Cerebro. Para contrastarla, se proponen, en todos estos dominios, distintos experimentos cruciales que, supuestamente, son capaces de falsarla. Como resultados concretos se han obtenido los siguientes: A) Establecimiento de los límites computacionales en 10 50 operaciones por segundo y 10 31 bits de memoria, para un “mentefacto” de 1kg. B) Que la conjunción del teorema de Löwehim-Skolem y la propuesta de generación de ordinales de von Neumann son suficientes para establecer una teoría para el III desarrollo del software. De paso, y como resultado añadido, se ve que la expresión de Kronecker sobre la creación de los números enteros hay que modificarla en el siguiente sentido: Dios creó el vacío, el hombre hizo el resto. C) La idea de la Programación funcional de Frege y Schöfinkel que desarrolló Curry, establece la efectividad de una teoría axiomática para el desarrollo software. D) Se propone una teoría con dos constructos y tres postulados, no sólo para el desarrollo software, sino también para cualquier sistema de información. E) Finalmente, y como efecto colateral, se muestra como Leibniz plagió al español Caramuel en la creación del sistema binario de numeración. IV ABSTRACT This thesis shows and proves how the elementary knowledge equation, applied to knowledge itself, improves knowledge. This is, of course, the way in which scientists pursue their research. Here, however, we demonstrate that, using knowledge management techniques, any specialist in a subject can benefit from the knowledge equation. In this work, the domain of software development was chosen as the framework for researching the proposed thesis. First, it was found that the well-known gap between hardware development and software development is basically a consequence of hardware being underpinned by a genuine engineering discipline —and therefore backed and supported by science, respectively, electronics and physics—, whereas software is still more of an art than engineering without any underlying scientific theory. The proposal then is to put forward a theory that converts software development into a true engineering discipline. Bearing this in mind, the formal and material adequacy conditions have been established for any theory. Then the feasibility of the proposed theory was proved using the Löwenheim-Skolem theorem and von Neumann’s ordinal number generation from vacuum. Subsequently, the theory was tested in the functional programming domain and, specifically, on curryfication. Finally, we propose a theory that, conforming to the requirements placed on any theory, underpins software development. Moreover, the proposed theory is broad and robust enough to be applied to any information system, including DNA and the brain. To prove this, a number of crucial experiments are proposed for all domains, which should falsify the theory. The findings are as follows: A) The computational limits for a 1kg mindfact are 10 50 operations per second and 10 31 bits of memory. B) The combination of the Löwenheim-Skolem theorem and von Neumann’s ordinal generation proposal are sufficient to establish a software development theory. As a spin-off, it was found that what Kronecker said about integer number creation needs to be restated as “ God made the vacuum; all else is the work of man”. V C) Frege and Schöfinkel’s idea of functional programming, developed by Curry, establishes the effectiveness of an axiomatic theory for software development. D) The proposed theory, which has two constructs and three postulates, applies not only to software development, but also to any information system. E) An incidental finding is that Leibniz plagiarized the Spaniard Caramuel’s binary numbering system. VI AGRADECIMIENTOS En primer lugar quisiera agradecer a mi familia el apoyo y comprensión incondicional que me han dado en todo momento, definitivamente sin ellos jamás hubiese llegado hasta aquí. En especial quiero destacar el esfuerzo de mis padres a fin de darme una educación que me permitiera tener unos cimientos lo suficientemente fuertes para poder alcanzar esta meta: A mi madre, por su constante dedicación, cariño y lucha para que continuara “al pie del cañón”. A mi padre, por su ejemplo incasable de trabajo y fortaleza, quien hasta en sus últimos momentos me enseñó la importancia de seguir adelante haciendo frente a las adversidades por grandes que fueran. También agradezco muy especialmente a mi hermana porque sin su ayuda, compañía y consejos, seguramente, no hubiese llegado más allá de la mitad del camino. También quiero agradecer a mis directores de tesis Profesores Doctores Juan Ares Casal y Alfonso Rodríguez-Patón Aradas, su comprensión y confianza en este trabajo tan arriesgado, sobre todo antes de presentarles resultados concretos. Naturalmente, sus consejos directos o indirectos fueron de valiosa ayuda para llevar a buen fin la investigación. Asimismo, en sus opiniones y conocimientos sobre la teoría propuesta en la que ellos habían trabajado previamente. Sin ellos, este trabajo no se habría llevado a cabo, en el peor de los casos, y en el mejor, no de ésta manera. Asimismo, quisiera mostrar mi reconocimiento a Javier Andrade y colegas, por permitirme usar sus propuestas experimentales como piedra de toque de la teoría propuesta. Mención aparte, merece el profesor Juan Pazos Sierra. Su apoyo, ayuda, ideas, conocimientos y críticas fueron esenciales tanto para la elección como el desarrollo de la investigación. Sólo voy a citar dos ejemplos de su apoyo crítico y sin contemplaciones para con la doctoranda. El primero, se produjo cuando, al explicarle el objeto de la tesis, me dijo: “Yo en estos casos siempre le doy a los doctorandos el siguiente consejo: Intenta una cosa que no has hecho tres veces. Una, para perderle el miedo a hacerlo. La segunda, para aprender a hacerlo. Y, la tercera, para ver si te gusta o no. ¡Ah! Y en cuanto veas que sabes hacer algo, inmediatamente ponte a hacer algo que no sepas”. Es decir, se creativa, perseverante y, por supuesto, la tesis no estará lista hasta que la escribas y reescribas al menos tres veces. El segundo, fue, tal vez, más descorazonador, fue cuando, al contarle en que quería trabajar, me soltó: “Hasta que te hayas leído el Menón de Platón (Platón, 1969) y entiendas VII perfectamente lo que es el método socrático de la “mayéutica”; es decir, el arte de, mediante el diálogo inquisitivo de pregunta-respuesta, alumbrar los espíritus, no quiero volver a hablar contigo de este asunto. Eso sí, después, en un tono menos perentorio, me empezó a hablar de Platón y los filósofos griegos clásicos, que me hizo aprender más de filosofía y ciencia que todo lo que me habían explicado y, o, leído hasta entonces. Posteriormente, y ya como fuente de conocimiento, fue una auténtica mina. No sólo me contestó con precisión y erudición a todo lo que le pregunté sino que sus consideraciones me hacían replantear mi investigación, haciendo ésta más productiva y eficiente. Y esto es de tal modo así, que tanto las ideas aportadas y los resultados obtenidos, como los métodos empleados para conseguirlos son tanto o más de él que míos. Naturalmente, el trabajo que implica todo ello es de la doctoranda, pero lo que quiero señalar es que cuando exponía una idea, absolutamente original para mí, él sin decirlo, ya parecía conocerla de toda la vida e inmediatamente me indicaba los problemas y dificultades que iba a encontrar en su desarrollo y verificación. Pero es que, además, Pazos siempre me insistió en que la mayéutica debe conducir a la claridad para que finalmente todo el mundo entendiera el conocimiento aflorado. Al respecto, ponía el ejemplo del premio Nobel de Física de 1965 Richard Philips Feyman (1918-1988). Éste en cierta ocasión fue requerido por un miembro del claustro del Caltech, donde trabajaba, para que le explicase por qué las partículas de espín un-medio obedecen a la estadística de Fermi-Dirac, en vez de la de Bose-Einstein.
Recommended publications
  • The Monad.Reader Issue 6 by Bernie Pope [email protected] and Dan Piponi [email protected] and Russell O’Connor [email protected]
    The Monad.Reader Issue 6 by Bernie Pope [email protected] and Dan Piponi [email protected] and Russell O’Connor [email protected] Wouter Swierstra, editor. 1 Contents Wouter Swierstra Editorial 3 Bernie Pope Getting a Fix from the Right Fold 5 Dan Piponi Adventures in Classical-Land 17 Russell O’Connor Assembly: Circular Programming with Recursive do 35 2 Editorial by Wouter Swierstra [email protected] It has been many months since the last issue of The Monad.Reader. Quite a few things have changed since Issue Five. For better or for worse, we have moved from wikipublishing to LATEX. I, for one, am pleased with the result. This issue consists of three top-notch articles on a variety of subjects: Bernie Pope explores just how expressive foldr is; Dan Piponi shows how to compile proofs in classical logic to Haskell programs; Russell O’Connor has written an embedded assembly language in Haskell. Besides the authors, I would like to acknowledge several other people for their contributions to this issue. Andres L¨oh provided a tremendous amount of TEXnical support and wrote the class files. Peter Morris helped design the logo. Finally, I’d like to thank Shae Erisson for starting up The Monad.Reader – without his limitless enthusiasm for Haskell this magazine would never even have gotten off the ground. 3 Getting a Fix from the Right Fold by Bernie Pope [email protected] What can you do with foldr? This is a seemingly innocent question that will confront most functional programmers at some point in their life.
    [Show full text]
  • A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory
    A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory Adam Yedidia Scott Aaronson MIT MIT [email protected] [email protected] May 17, 2016 Abstract Since the definition of the Busy Beaver function by Rad´oin 1962, an interesting open question has been the smallest value of n for which BB(n) is independent of ZFC set theory. Is this n approximately 10, or closer to 1,000,000, or is it even larger? In this paper, we show that it is at most 7,910 by presenting an explicit description of a 7,910-state Turing machine Z with 1 tape and a 2-symbol alphabet that cannot be proved to run forever in ZFC (even though it presumably does), assuming ZFC is consistent. The machine is based on work of Harvey Friedman on independent statements involving order-invariant graphs. In doing so, we give the first known upper bound on the highest provable Busy Beaver number in ZFC. To create Z, we develop and use a higher-level language, Laconic, which is much more convenient than direct state manipulation. We also use Laconic to design two Turing machines, G and R, that halt if and only if there are counterexamples to Goldbach’s Conjecture and the Riemann Hypothesis, respectively. 1 Introduction 1.1 Background and Motivation Zermelo-Fraenkel set theory with the axiom of choice, more commonly known as ZFC, is an ax- iomatic system invented in the twentieth which has since been used as the foundation of most of modern mathematics. It encodes arithmetic by describing natural numbers as increasing sets of sets.
    [Show full text]
  • Programming in XML”
    Growing a Language from the Inside Out Theo D’Hondt Growing a Language from the Inside Out Francqui Chair - 2010 Inaugural Lecture - 19 March 2010 Theo D’Hondt Software Languages Lab Faculty of Sciences - Vrije Universiteit Brussel http://soft.vub.ac.be Francqui Chair - 2010 1 Inaugural Lecture Growing a Language from the Inside Out Theo D’Hondt A Simple Experiment Francqui Chair - 2010 2 Inaugural Lecture Growing a Language from the Inside Out Theo D’Hondt A Simple Experiment Francqui Chair - 2010 2 Inaugural Lecture Growing a Language from the Inside Out Theo D’Hondt A Simple Experiment Converting to MP3 Francqui Chair - 2010 2 Inaugural Lecture Growing a Language from the Inside Out Theo D’Hondt A Simple Experiment Francqui Chair - 2010 3 Inaugural Lecture Growing a Language from the Inside Out Theo D’Hondt A Simple Experiment Compiling a big project Francqui Chair - 2010 3 Inaugural Lecture Growing a Language from the Inside Out Theo D’Hondt A Simple Experiment Francqui Chair - 2010 4 Inaugural Lecture Growing a Language from the Inside Out Theo D’Hondt A Simple Experiment Compiling a small project Francqui Chair - 2010 4 Inaugural Lecture Growing a Language from the Inside Out Theo D’Hondt A Simple Experiment Francqui Chair - 2010 5 Inaugural Lecture Growing a Language from the Inside Out Theo D’Hondt A Simple Experiment Application with green threads Francqui Chair - 2010 5 Inaugural Lecture Growing a Language from the Inside Out Theo D’Hondt A Simple Experiment Francqui Chair - 2010 6 Inaugural Lecture Growing a Language from the
    [Show full text]
  • Recovery, Convergence and Documentation of Languages
    Recovery, Convergence and Documentation of Languages by Vadim Zaytsev September 14, 2010 VRIJE UNIVERSITEIT Recovery, Convergence and Documentation of Languages ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. L.M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Exacte Wetenschappen op woensdag 27 oktober 2010 om 15.45 uur in de aula van de universiteit, De Boelelaan 1105 door Vadim Valerievich Zaytsev geboren te Rostov aan de Don, Rusland promotoren: prof.dr. R. Lammel¨ prof.dr. C. Verhoef Dit onderzoek werd ondersteund door de Nederlandse Organisatie voor Wetenschappelijk Onderzoek via: This research has been sponsored by the Dutch Organisation of Scientific Research via: NWO 612.063.304 LPPR: Language-Parametric Program Restructuring Acknowledgements Working on a PhD is supposed to be an endeavour completed in seclusion, but in practice one cannot survive without the help and support from others, fruitful scientific discus- sions, collaborative development of tools and papers and valuable pieces of advice. My work was supervised by Prof. Dr. Ralf Lammel¨ and Prof. Dr. Chris Verhoef, who often believed in me more than I did and were always open to questions and ready to give expert advice. They have made my development possible. LPPR colleagues — Jan Heering, Prof. Dr. Paul Klint, Prof. Dr. Mark van den Brand — have been a rare yet useful source of new research ideas. All thesis reading committee members have dedicated a lot of attention to my work and delivered exceptionally useful feedback on the late stage of the research: Prof.
    [Show full text]
  • DM820 Advanced Topics in Programming Languages Peter Schneider-Kamp [email protected]! COURSE ORGANIZATION
    DM820 Advanced Topics in Programming Languages Peter Schneider-Kamp [email protected]! http://imada.sdu.dk/~petersk/DM820/! COURSE ORGANIZATION • slid e 2 Course Elements § 7 lectures Thursday 08-10 (Weeks 15–17, 19–22) § 3 lectures Monday 16-18 (Weeks 16–18) § 7 discussion sections Wednesday 08-10 (Weeks 16–22) § 4 presentation sessions Monday 16-18 (Weeks 19–22) § exam = oral presentation + practical project § oral presentation is internal pass/fail § practical project is external with grades • 3 • June 2009 Course Goals § Learn more ways to program! § To this end, you will learn § to use advanced concepts in standard programming languages § to use non-standard programming languages § to use programming in widely differing contexts § Focus of the course on broadly covering (parts of) the field § Depth added through individually assigned topics • 4 • June 2009 Course Contract § I am offering you the following: 1. I will help you in picking a topic 2. I am always willing to help you § From you I expect the following: 1. You give a good presentation of your assigned topic 2. You have FUN programming! § You and I have the right and duty to call upon the contract! • slid e 5 Topics for Lectures 1–6 § Mostly up to you! § Lectures can be picked from following topics a) scripting languages b) constraint programming c) multi-paradigm programming languages d) string/term/graph rewriting e) domain specific languages f) program verification g) extensible programming h) aspect-oriented programming i) parser generation § Today (& next time): A little history of programming languages • slid e 6 Topics for Lectures 7–10 § Up to me! § Selection criteria: § Topics must supplement your chosen topics in order to guarantee a broad overview § Topics must be fun (in some weird way) • slid e 7 Individually Assigned Topics 1/3 Specific Languages: A.
    [Show full text]
  • The Cognitive Programming Paradigm - the Next Programming Structure
    American Journal of Software Engineering and Applications 2013; 2(2): 54-67 Published online April 2, 2013 (http://www.sciencepublishinggroup.com/j/ajsea) doi: 10.11648/j.ajsea.20130202.15 The cognitive programming paradigm - the next programming structure Benjamin Odei Bempong Information and Communication Technology/Mathematics Department Presbyterian University College, Ghana. Abetifi-Kwahu, Eastern Region Emailaddress: [email protected] / [email protected] (B. Odei Bempong) To cite this article: Benjamin Odei Bempong.The Cognitive Programming Paradigm the Next Programming Struture, American Journal of Software Engi- neering and Applications . Vol. 2, No. 2, 2013, pp. 54-67. doi: 10.11648/j.ajsea.20130202.15 Abstract: The development of computer programming started with the development of the switching logic, because, the computer hardware is made up of millions of digital switches. The activation and deactivation of these switches are through codified instructions – (program) which trigger the switches to function. The computer programming languages have gone through a revolution, from the machine code language, through assembly mnemonics to the high level programming lan- guages like FORTRAN, ALGOL, COBOL, LISP, BASIC, ADA and C/C ++ . It is a fact that, these programming languages are not the exact codes that microprocessors do understand and work with, because through compiler and interpreter pro- grams, these high level programming languages that are easily understood by people are converted to machine code lan- guages for the microprocessor to understand and do the work human knowledge has instructed it to do. The various pro- gramming languages stem from the difficulties man has in using one programming language to solve different problems on the computer.
    [Show full text]
  • Recovery, Convergence and Documentation of Languages Zaytsev, V.V
    VU Research Portal Recovery, Convergence and Documentation of Languages Zaytsev, V.V. 2010 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Zaytsev, V. V. (2010). Recovery, Convergence and Documentation of Languages. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 25. Sep. 2021 VRIJE UNIVERSITEIT Recovery, Convergence and Documentation of Languages ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. L.M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Exacte Wetenschappen op woensdag 27 oktober 2010 om 15.45 uur in de aula van de universiteit, De Boelelaan 1105 door Vadim Valerievich Zaytsev geboren te Rostov aan de Don, Rusland promotoren: prof.dr.
    [Show full text]
  • Xcoax 2017 Lisbon: Unusable for Programming
    UNUSABLE FOR PROGRAMMING DANIEL TEMKIN Independent, New York, USA [email protected] 2017.xCoAx.org Lisbon Abstract Computation Esolangs are programming languages designed for Keywords Communication Aesthetics non-practical purposes, often as experiments, par- Esolangs & X odies, or experiential art pieces. A common goal of Programming languages esolangs is to achieve Turing Completeness: the capa- Code art bility of implemen ing algorithms of any complexity. Oulipo They just go about getting to Turing Completeness Tangible Computing with an unusual and impractical set of commands, or unexpected ways of representing code. However, there is a much smaller class of esolangs that are en- tirely “Unusable for Programming.” These languages explore the very boundary of what a programming language is; producing unstable programs, or for which no programs can be written at all. This is a look at such languages and how they function (or fail to). 92 1. INTRODUCTION Esolangs (for “esoteric programming languages”) include languages built as thought experiments, jokes, parodies critical of language practices, and arte- facts from imagined alternate computer histories. The esolang Unlambda, for example, is both an esolang masterpiece and typical of the genre. Written by David Madore in 1999, Unlambda gives us a version of functional programming taken to its most extreme: functions can only be applied to other functions, returning more functions, all of them unnamed. It’s a cyberlinguistic puzzle intended as a challenge and an experiment at the extremes of a certain type of language design. The following is a program that calculates the Fibonacci sequence. The code is nearly opaque, with little indication of what it’s doing or how it works.
    [Show full text]
  • Uva Msc SE: Software Evolution 2014
    MetaEnvironment QBasic Eclipse LaTeX PHP ΞBGF TSR LDF M3 jQuery SVG CSS FST BGF JCL XHTML C++ DCG BNF PDG DMS git SQL XSD JS XCK Inkscape PascalLCF Graphviz Assembly ksh DHTML GraphML Erlang GWBasic C# ATL Delphi CodeSurfer yED JavaXLDF Prolog SoftwarePromela MediaWiki ParsingRuby sh OS/400 CGI EMF Markdown DITA COBOL GIF C FPU HTMLHaskell dot Python SPARQL Flash CRC 80x86 GrammarLab Matlab JSON and ModellingGDK Wikia Blowfish Ecore PCRE Turbo Vision Wikidot phpbb LCI CVS Smalltalk Wordpress Rascal XBGF EBNF VB Ada ASF Jenkins EDD bibTeX WinIceUvA MSc SE: XSLTSoftware SubversionEvolution 2014 Maple SDF HASP DeGlucker SoftIce JAXB XML Django SPIN Dr. Vadim Zaytsev,IDA Grammar Universiteit Huntervan Amsterdam Scheme DTD Unlambda Zope GRK Grammar Hawk Perl make ANTLR What is parsing? What is modelling? Parsing? if (/^<s:.*>\/\/.*$/ := x) {…} awk '{print $1}' file.txt sed '/^$/d;G' file.txt Parsing techniques Parsing techniques: LR • Bottom-up • Deterministic • Operations • shift • reduce Left recursion is preferred • &$5CPFJVVRUGPYKMKRGFKCQTIYKMK(KNG5JKHV 4GFWEGA2CTUGA5VGRUAHQTA# $UXI%%$;5# -PWVJ1PVJG6TCPUNCVKQPQH.CPIWCIGUHTQO.GHVVQ4KIJV+% Parsing techniques: LL • Top-down • Backtracking • Needed • stack • parsing table • Left recursion is deadly %KWOCE5GTIKW../CVJGOCVKECN2CTUGT JVVRYYYEQFGRTQLGEVEQO#TVKENGU../CVJGOCVKECN2CTUGT .GYKU5VGCTPU5[PVCZ&KTGEVGF6TCPUFWEVKQP,#%/ Parsing techniques: … • Recursive descent — ↓ & accept() • Cocke-Younger-Kasami — ↑ & dynamic programming • Earley — ↓ & dynamic programming • Packrat — recursive descent
    [Show full text]
  • The Joy of Clojure by Michael Fogus and Chris Houser
    Michael Fogus Chris Houser FOREWORD BY STEVE YEGGE MANNING The Joy of Clojure by Michael Fogus and Chris Houser Chapter 1 Copyright 2011 Manning Publications brief contents PART 1 FOUNDATIONS ......................................................................1 1 ■ Clojure philosophy 3 2 ■ Drinking from the Clojure firehose 20 3 ■ Dipping our toes in the pool 43 PART 2 DATA TYPES ........................................................................59 4 ■ On scalars 61 5 ■ Composite data types 76 PART 3 FUNCTIONAL PROGRAMMING............................................. 105 6 ■ Being lazy and set in your ways 107 7 ■ Functional programming 125 PART 4 LARGE-SCALE DESIGN ........................................................ 155 8 ■ Macros 157 9 ■ Combining data and code 177 10 ■ Java.next 207 11 ■ Mutation 234 PART 5 TANGENTIAL CONSIDERATIONS.......................................... 275 12 ■ Performance 277 13 ■ Clojure changes the way you think 292 vii Clojure philosophy This chapter covers The Clojure way Why a(nother) Lisp? Functional programming Why Clojure isn’t especially object-oriented Learning a new language generally requires significant investment of thought and effort, and it is only fair that programmers expect each language they consider learning to justify that investment. Clojure was born out of creator Rich Hickey’s desire to avoid many of the complications, both inherent and incidental, of manag- ing state using traditional object-oriented techniques. Thanks to a thoughtful design based in rigorous programming language research, coupled with a fervent look toward practicality, Clojure has blossomed into an important programming language playing an undeniably important role in the current state of the art in lan- guage design. On one side of the equation, Clojure utilizes Software Transactional Memory (STM), agents, a clear distinction between identity and value types, arbi- trary polymorphism, and functional programming to provide an environment con- ducive to making sense of state in general, and especially in the face of concurrency.
    [Show full text]
  • A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory
    A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory Adam Yedidia Scott Aaronson Massachusetts Institute of Technology [email protected] [email protected] Since the definition of the busy beaver function by Rado in 1962, an in- teresting open question has been the smallest value of n for which BB(n) is independent of Zermelo–Fraenkel set theory with the axiom of choice (ZFC). Is this n approximately 10, or closer to 1 000 000, or is it even larger? In this paper, we show that it is at most 7910 by present- ing an explicit description of a 7910-state Turing machine Z with one tape and a two-symbol alphabet that cannot be proved to run forever in ZFC (even though it presumably does), assuming ZFC is consistent. The machine is based on work of Harvey Friedman on independent statements involving order-invariant graphs. In doing so, we give the first known upper bound on the highest provable busy beaver number in ZFC. To create Z, we develop and use a higher-level language, La- conic, which is much more convenient than direct state manipulation. We also use Laconic to design two Turing machines, G and R, that halt if and only if there are counterexamples to Goldbach’s conjecture and the Riemann hypothesis, respectively. 1. Introduction 1.1 Background and Motivation Zermelo–Fraenkel set theory with the axiom of choice, more com- monly known as ZFC, is an axiomatic system invented in the twenti- eth century that has since been used as the foundation of most of mod- ern mathematics.
    [Show full text]
  • Use Style: Paper Title
    Volume 4, No. 10, September-October 2013 ISSN No. 0976-5697 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info Logical reconstruction of programming language paradigms Davor Lauc Faculty of Humanities and Social Sciences University of Zagreb Zagreb, Croatia [email protected] Abstract: The concept of programming language paradigms is a one of fundamental concepts of computing, but the present usage of the term is quite chaotic. Using method of logical reconstruction programming paradigms are modeled by original logical models of computation that are considered paradigms of programming language paradigms. The space of the programming languages is visualized as a prism, with edges of imperative, function and logical paradigms corresponding to basic models of computation, and depth axis as degree of modularity of languages. Actual programming languages are represented as occupying some space in such a model. Finally, the model is evaluated for completeness with regard to existing programming languages. Keywords: programming language paradigms, models of computations, logical reconstruction outnumbered by computational languages in the order of I. INTRODUCTION magnitude. Also, models of computation are much more elegant and basic than programming languages that evolved The concept of programming languages paradigm is one facing complex real-world problems. Hence, foundational of the most elusive concepts of computing. It was introduced concepts, styles and features of programming languages by Floyd [1] when there already were a large number of should be easier to discover in the models of computation programming languages and programming styles. The than in vast number of programming languages. number of programming languages has now increased manifold with new languages designed almost every day.
    [Show full text]