Geosparql Query Tool a Geospatial Semantic Web Visual Query Tool

Total Page:16

File Type:pdf, Size:1020Kb

Geosparql Query Tool a Geospatial Semantic Web Visual Query Tool GeoSPARQL Query Tool A Geospatial Semantic Web Visual Query Tool Ralph Grove1, James Wilson2, Dave Kolas3 and Nancy Wiegand4 1Department of Computer Science, James Madison University, Harrisonburg, Virginia, U.S.A. 2Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia, U.S.A. 3Raytheon BBN Technologies, Columbia, Maryland, U.S.A. 4Space Science and Engineering Center, University of Wisconsin, Madison, Wisconsin, U.S.A. Keywords: Semantic Web, Geographic Information Systems, GeoSPARQL, SPARQL, RDF. Abstract: As geospatial data are becoming more widely used through mobile devices and location sensitive applications, the potential value of linked open geospatial data in particular has grown, and a foundation is being developed for the Semantic Geospatial Web. Protocols such as GeoSPARQL and stSPARQL extend SPARQL in order to take advantage of spatial relationships inherent in geospatial data. This paper presents GeoQuery, a graphical geospatial query tool that is based on Semantic Web technologies. GeoQuery presents a map-based user interface to geospatial search functions and geospatial operators. Rather than using a proprietary geospatial database, GeoQuery enables queries against any GeoSPARQL endpoint by translating queries expressed via its graphical user interface into GeoSPARQL queries, allowing geographic information scientists and other Web users to query linked data without knowing GeoSPARQL syntax. 1 INTRODUCTION Tool (GeoQuery)1, a graphical geospatial query tool that is based on Semantic Web technologies. The Semantic Web has the potential to greatly GeoQuery translates queries expressed through its increase the usability of publicly available data by graphical user interface into GeoSPARQL queries, allowing access to open data sets in linked format which can then be executed against any over the Web. W3C standards such as RDF (Manola GeoSPARQL endpoint. With GeoQuery, geographic 2004) and SPARQL (Prud’hommeaux, 2008) enable information scientists can query linked data and see standard access to data stored in triple stores that are map output without knowing GeoSPARQL syntax. accessible over the Web at SPARQL endpoints. The Linked Open Data (Bizer, 2009) movement adds 1.1 Motivation best practices for publishing data in order to maximize availability and usability. The availability of linked open geospatial data and As geospatial data are becoming more widely the Semantic Web will offer the potential for used through mobile devices and location sensitive enhancing the value of geospatial data to the user in applications, the potential value of linked open several ways. geospatial data in particular has grown, and a Data Search and Discovery: Semantic Web foundation is being developed for the Semantic protocols could be used to dynamically discover Geospatial Web (Egenhofer, 2002). Protocols such and examine geospatial datasets over the Web, so as GeoSPARQL (Perry, 2010) and stSPARQL that newly created or revised datasets will be of (Kyzirakos, 2012) extend SPARQL, the standard immediate value. The geospatial features of RDF Semantic Web query language, in order to take GeoSPARQL could also allow spatial operations advantage of spatial relationships inherent in to be incorporated into queries over metadata geospatial data. contained in catalogs of available open data during In this paper we present the GeoSPARQL Query ___________________________________________________________________________________ 1 http://geoquery.cs.jmu.edu Grove R., Wilson J., Kolas D. and Wiegand N.. 33 GeoSPARQL Query Tool - A Geospatial Semantic Web Visual Query Tool. DOI: 10.5220/0004797800330040 In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 33-40 ISBN: 978-989-758-024-6 Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.) WEBIST2014-InternationalConferenceonWebInformationSystemsandTechnologies a search. provided web-based endpoint. However, SPARQL Integration of Data Sets: SPARQL provides the and GeoSPARQL queries are not easy to write ability to integrate data services within queries, so correctly without training. Prior attempts to that a user can perform logical queries of data from overcome the difficulty of learning SPARQL multiple servers without regard to the details of include, for example, a visual SPARQL editor accessing multiple datasets and their respective (Collustra, 2013). It might also be possible to formats. One query, for example, might perform approach this problem through a natural language spatial operations on data obtained from an open interface to GeoSPARQL queries. However, natural map service, a public repository, and a corporate language processing remains a difficult, not data store. completely solved problem. Potential Applications of Semantic Web GeoQuery is a first step towards developing a Technologies: Beyond direct geospatial queries universal query tool for the Geospatial Semantic (e.g., show me what public buildings exist with the Web. GeoQuery demonstrates that it is feasible to bounds of this city), techniques associated with the execute geospatial queries based upon the Semantic Semantic Web such as ontological reasoning and Web infrastructure using a graphical user interface. machine intelligence offer the potential for smarter This ability is of value to geospatial professionals user interfaces that can anticipate queries and who need access to the data but are not trained in integrate geospatial reasoning into emerging Semantic Web technologies. Because GeoSPARQL technologies such as automated vehicles and queries are viewable in GeoQuery, users can also location aware phones. learn about the GeoSPARQL language. The last ten years have seen tremendous growth in the development and utilization of the Internet in Geographic Information Systems (GIS). This growth 2 RELATED WORK is taking place in standard desktop software that is able to access geospatial data, maps, and The Ordnance Survey in Great Britain pioneered geoprocessing services through the Internet, as well Semantic Web work for geospatial data, including as web-based frontends to these same Internet based the use of linked data (e.g., The Linked Data Web, resources. 2013) and the building of geospatial ontologies (e.g., Currently, geospatial data are just starting to be Denaux et al., 2011). The Ordnance Survey held the represented in RDF (e.g., Varanka, 2012, and work first Terra Cognita geospatial workshop at the 2006 by the Ordnance Survey), and the full potential of International Semantic Web Conference (ISWC) to geospatial data available over the Web has yet to be add spatial data to the Semantic Web. The Spatial realized. Open standards such as those developed by Ontology Community of Practice (SOCoP), along 2 the Open Geospatial Consortium (OGC) have with others, have continued the series with the fifth played an important role in facilitating these one (Terra Cognita, 2012) being held with ISWC developments. Most of these developments have 2012. been an evolution of existing GIS technologies, with In the United States, the Geological Survey only minor explorations into semantic technologies. (USGS) is doing work on linked data and ontologies The most successful developments have been in (Geospatial Semantics and Ontology, 2013), simplifying the access to distributed environments, including a recent workshop (Varanka, 2012). The allowing non-specialists to take advantage of USGS has translated some of The National Map data mapping on the Internet. The small forays into into RDF format. Transferring spatial data into RDF geospatial semantics on the Internet have mostly is a new area that the authors are also working on. been useable only by experts. Meanwhile, to handle nonspatial RDF data, leading Conventional GIS allow users to explore, via a database companies, such as Oracle and DB2, have graphical user interface, datasets that are stored in added RDF storage and processing to their relational proprietary or specialized data storage formats. database systems e.g., (Das et al., 2004, Ma et al., Now, with linked data in RDF, the data 2008). Because query processing of geospatial data representation format is open and standard. The in RDF is still new, Garbis et al. (2013) recently GeoSPARQL query language is a new standard with developed a benchmark to judge the performance of which anyone can pose queries to data over a several RDF stores for geospatial querying. The ___________________________________________________________________________________ database community is also interested in temporal 2 http://www.opengeospatial.org/ aspects of the Semantic Web, and a bibliography has 34 GeoSPARQLQueryTool-AGeospatialSemanticWebVisualQueryTool been compiled that also includes spatial references geospatial entities, and a set of query functions for (Grandi, 2012). processing relationships between the geospatial Koubarakis et al. (2012) delineate areas of entities. The ontology is derived from well-used and research for linked geospatial data, of which one well-understood concepts from the OGC and uses area is user interfaces. They pose questions as to much of the same terminology as other OGC whether user interfaces should be based on natural standards. The ontology is intentionally small so language or be graphical, what high level APIs that it can be easily understood and easily attached would ease rapid development, and whether to an appropriate domain ontology. interfaces could be built
Recommended publications
  • Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC
    Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC Hao Ding , Richard Pascoe & Neville Churcher Department of Computer Science University of Canterbury. Christchurch, New Zealand Phone: +64 3 364-2362 Fax: +64 3 364-2569 Email: [email protected] , {richard, neville}@cosc.canterbury.ac.nz Presented at SIRC 2002 – The 14th Annual Colloquium of the Spatial Information Research Centre University of Otago, Dunedin, New Zealand th December 3-5 2002 ABSTRACT Java technologies are widely used in web application development. In this paper are described three approaches to developing Java-based web applications and our experiences with applying each to the development of client that interact with servers implementing the OGC (Open GIS Consortium) Web Map Service (WMS) specification. Also described is the installation and configuration of open source software that implements the WMS specification. The paper is concluded with some preliminary insights into when one of the three approaches to WMS client implementation is more suited to another. Keywords and phrases: WMS, JSP, JSTL, XMLC, map layer, web map server 1.0 INTRODUCTION Of the many technologies, such as Common Gateway Interface (CGI), Active Server Pages (ASP), JavaServer Pages (JSP), that are used to develop web applications, three are of particular interest to the research presented here. These three technologies or approaches to developing clients that utilise web services are JavaServer Pages (JSP), JSP with the use of tags from the JSP Standard Tag Library (JSTL), and the eXtensible Markup Language Compiler (XMLC). JSP is a more convenient way to write Java servlets, and allows the insertion of Java code directly into static HTML (Hypertext Markup Language) pages.
    [Show full text]
  • Data and Service Discovery in Linked SDI and Linked VGI
    Data and Service Discovery in Linked SDI and Linked VGI Virtual Workshop on Geospatial Semantic Architectures Todd Pehle May 7, 2013 Chief Engineer tpehle-at-orbistechnologies.com 1 Agenda • Introduce Example OGC Workflow • Describe Analogous Linked Data Workflow: • Geographic Feature Types in Linked SDI/VGI • Data Discovery with GeoVoID • Service Capabilities with GeoSPARQL Service Descriptions • SPARQL-based Feature Collections • Conclusion 2 Example OGC-based GIS Workflow 1. Discover OGC Catalog 2. Search Catalog by Feature Type/BBOX 3. Discover OGC WFS Service 4. GetCapabilities 5. GetFeature 6. DescribeFeatureType 7. Add WFS Layer(s) to Map 8. Get Feature By ID 3 Feature Types in LOD What constitutes a feature type in Linked Data? • Linked Data is described using RDFS and OWL ontologies giving data a formal semantics • Consensus on a “core” intensional semantics for geographic phenomena remains elusive • Option 1: Wait (a long time) for consensus • Option 2: Minimize ontological commitment and apply definitions driven by extensional alignment (i.e. – no core) 4 Common LOD Feature Type Definitions W3C Basic Geo (Linked VGI) OGC GeoSPARQL (Linked SDI) ? SpatialThing SpatialObject ? Feature Geometry Point ns:City Relations = rdfs:subClassOf 5 Dataset Discovery with VoID and DCAT • VoID Capabilities: • General metadata • Structural • Class/property partitions • Linksets • DCAT Capabilities: • Interoperability of Catalogs • Non-RDF Catalogs Source: http://docs.ckan.org/en/latest/geospatial.html • Often stored in data portal like CKAN • Offers BBOX dataset queries • Has extension support for CSW • Flexible discovery via centralized catalogs AND socialized links (VoID Repos, URI backlinks, etc.) 6 Geospatial Data Discovery with GeoVoID Goals: • Enable discovery of geographic feature data and services in LOD via: • Feature Type Discovery • Feature Type Spatial Extents • Dataset Spatial Extents • Thematic Attribution Schema Discovery (maybe) • GeoSPARQL Endpoint Discovery • Reuse and extend existing LOD vocabs vs.
    [Show full text]
  • A Survey of Geospatial Semantic Web for Cultural Heritage
    heritage Review A Survey of Geospatial Semantic Web for Cultural Heritage Ikrom Nishanbaev 1,* , Erik Champion 1 and David A. McMeekin 2 1 School of Media, Creative Arts, and Social Inquiry, Curtin University, Perth, WA 6845, Australia; [email protected] 2 School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia; [email protected] * Correspondence: [email protected] Received: 23 April 2019; Accepted: 16 May 2019; Published: 20 May 2019 Abstract: The amount of digital cultural heritage data produced by cultural heritage institutions is growing rapidly. Digital cultural heritage repositories have therefore become an efficient and effective way to disseminate and exploit digital cultural heritage data. However, many digital cultural heritage repositories worldwide share technical challenges such as data integration and interoperability among national and regional digital cultural heritage repositories. The result is dispersed and poorly-linked cultured heritage data, backed by non-standardized search interfaces, which thwart users’ attempts to contextualize information from distributed repositories. A recently introduced geospatial semantic web is being adopted by a great many new and existing digital cultural heritage repositories to overcome these challenges. However, no one has yet conducted a conceptual survey of the geospatial semantic web concepts for a cultural heritage audience. A conceptual survey of these concepts pertinent to the cultural heritage field is, therefore, needed. Such a survey equips cultural heritage professionals and practitioners with an overview of all the necessary tools, and free and open source semantic web and geospatial semantic web platforms that can be used to implement geospatial semantic web-based cultural heritage repositories.
    [Show full text]
  • Developing Geosparql Applications with Oracle Spatial and Graph
    Developing GeoSPARQL Applications with Oracle Spatial and Graph Matthew Perry, Ana Estrada, Souripriya Das, Jayanta Banerjee Oracle, One Oracle Drive, Nashua, NH 03062, USA Abstract. Oracle Spatial and Graph – RDF Semantic Graph, an option for Ora- cle Database 12c, is the only mainstream commercial RDF triplestore that sup- ports the OGC GeoSPARQL standard for spatial data on the Semantic Web. This demonstration will give an overview of the GeoSPARQL implementation in Oracle Spatial and Graph and will show how to load, index and query spatial RDF data. In addition, this demonstration will discuss complimentary tools such as Oracle Map Viewer. 1 Introduction The Open Geospatial Consortium (OGC) published the GeoSPARQL standard in 2012 [1]. This standard defines, among other things, a vocabulary for representing geospatial data in RDF and an extension of the W3C SPARQL query language [4] that allows spatial processing. Oracle Database has provided support for RDF data with the Spatial and Graph op- tion since 2005. GeoSPARQL has been supported since 2013, beginning with version 12c Release 1 [2]. Oracle Spatial and Graph is the only mainstream commercial RDF triplestore that supports significant components of the OGC GeoSPARQL standard. A demonstration of Oracle’s technology will give an overview of the current state-of- the-art for managing linked geospatial data. The remainder of this paper describes major components of OGC GeoSPARQL and then discusses the architecture of Oracle Spatial and Graph. This is followed by a description of key features of Oracle Spatial and Graph that will be demonstrated. 2 The OGC GeoSPARQL Standard The OGC GeoSPARQL standard defines a number of components ranging from top-level OWL classes to a set of rules for query transformations.
    [Show full text]
  • Geosparql: Enabling a Geospatial Semantic Web
    Undefined 0 (0) 1 1 IOS Press GeoSPARQL: Enabling a Geospatial Semantic Web Robert Battle, Dave Kolas Knowledge Engineering Group, Raytheon BBN Technologies 1300 N 17th Street, Suite 400, Arlington, VA 22209, USA E-mail: {rbattle,dkolas}@bbn.com Abstract. As the amount of Linked Open Data on the web increases, so does the amount of data with an inherent spatial context. Without spatial reasoning, however, the value of this spatial context is limited. Over the past decade there have been several vocabularies and query languages that attempt to exploit this knowledge and enable spatial reasoning. These attempts provide varying levels of support for fundamental geospatial concepts. In this paper, we look at the overall state of geospatial data in the Semantic Web, with a focus on the upcoming OGC standard GeoSPARQL. GeoSPARQL attempts to unify data access for the geospatial Semantic Web. We first describe the motivation for GeoSPARQL, then the current state of the art in industry and research, followed by an example use case, and the implementation of GeoSPARQL in the Parliament triple store. Keywords: GeoSPARQL, SPARQL, RDF, geospatial, geospatial data, query language, geospatial query language, geospatial index 1. Introduction In this paper, we discuss an emerging standard, Geo- SPARQL [24] from the Open Geospatial Consortium Geospatial data is increasingly being made avail- (OGC)1. This standard aims to address the issues of able on the Web in the form of datasets described us- geospatial data representation and access. It provides ing the Resource Description Framework (RDF). The a common representation of geospatial data described principles of Linked Open Data, detailed in [5], en- using RDF, and the ability to query and filter on the courage a set of best practices for publishing and con- relationships between geospatial entities.
    [Show full text]
  • Bringing Location Analysis to the Semantic Web with the OGC Geosparql Standard
    ® ® Bringing Location Analysis to the Semantic Web with the OGC GeoSPARQL Standard Matthew Perry Xavier Lopez Agenda • About the GeoSPARQL SWG • Use Cases & Requirements • From SPARQL to GeoSPARQL • GeoSPARQL Technical Details • Implementation Considerations • Live Demo ® OGC 2 Group Members • Open Geospatial Consortium standards working group – 13 voting members, 36 observers – Editors: Matthew Perry and John Herring – Chairs: John Herring and Dave Kolas • Submitting Organizations Traverse Technologies, Inc. ® OGC 3 Standardization Process OAB vote Process on comments Publish candidate and update standard Form SWG standard document (May (June 2010) (June 2011) (Feb. 2012) 2012) Release 30-day TC/PC candidate public vote standard comment (March 22, (May 2011) period 2012) (July 2011) ® OGC 4 Linked Geo Data • Many LOD datasets have geospatial components LinkedSensorData • Barriers to integration What DBPedia Historic – Vendor-specific geometry support Buildings are within walking distance? – Different vocabularies • W3C Basic Geo, GML XMLLiteral, What OpenStreetMap Dog Vendor-specific Parks are inside Ordnance – Different spatial reference systems Survey Southampton • WGS84 Lat-Long, British National Grid Administrative District? ® OGC 5 Gazetteers and Linked Open Data Services • Provide common terms (place names) to link across existing spatial data resources • Enable consolidated view across the map layers • Reconcile differences in data semantics so that they can all “talk”and interoperate • Resolving semantic discrepancies across databases gazetteers and applications • Integrate full breath of enterprise content continuum (structured, spatial, email, documents, web services) OGC ® Semantic GIS • GIS applications with semantically complex thematic aspects – Logical reasoning to classify features • land cover type, suitable farm land, etc. – Complex Geometries • Polygons and Multi-Polygons with 1000’s of points – Complex Spatial Operations • Union, Intersection, Buffers, etc.
    [Show full text]
  • OGC WMS 1.1.0 Implementation Specification
    Open GIS Consortium Inc. Date: 2001-06-21 Reference number of this OpenGIS® project document: OGC 01-047r2 Version: 1.1.0 Category: OpenGIS® Implementation Specification Status: Adopted Specification Editor: Jeff de La Beaujardière Web Map Service Implementation Specification Document type: OpenGIS® Publicly Available Standard Document stage: Adopted Specification Document language: English WARNING: The Open GIS Consortium (OGC) releases this specification to the public without warranty. It is subject to change without notice. This specification is currently under active revision by the OGC Technical Committee Requests for clarification and/or revision can be made by contacting the OGC at [email protected]. Copyright 1999, 2000, 2001 BBN Technologies Copyright 1999, 2000, 2001 Cadcorp Ltd. Copyright 1999, 2000, 2001 CubeWerx Inc. Copyright 1999, 2000, 2001 IONIC Software s.a. Copyright 1999, 2000, 2001 Laser-Scan Limited Copyright 1999, 2000, 2001 SICAD Geomatics GmbH & Co. oHG Copyright 1999, 2000, 2001 Social Change Online Pty Ltd Copyright 1999, 2000, 2001 US Army Engineer Research and Development Center The companies listed above have granted the Open GIS Consortium, Inc. (OGC) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. This document does not represent a commitment to implement any portion of this specification in any company’s products. OGC’s Legal, IPR and Copyright Statements are found at http://www.opengis.org/legal/ipr.htm NOTICE Permission to use, copy, and distribute this document in any medium for any purpose and without fee or royalty is hereby granted, provided that you include the above list of copyright holders and the entire text of this NOTICE.
    [Show full text]
  • 0.1 Semantic GIS
    0.1 Semantic GIS 0.1 Semantic GIS 0.1.1 GIS Background GIS Background • Current GIS systems work mostly with 2-dimensional coordinates, but can be 2.5- D, or fully 3-D. • Traditionally, the most widely used storages are relational databases (Oracle Spa- tial, ESRI ArcSDE, MS SQL, PostgreSQL PostGIS). – Upon which complex server and desktop systems operate (ESRI ArcGIS, In- tegraph Geomedia), performing processing, analyses, and map outputs, and providing services. • The data stored there are usually not publicly available (only the map outputs), and have custom structure. • Because of the different structures and different technologies, it is not easy to integrate and search the data. Catalogues • Catalogue Service (CSW), standard by OGC (Open Geospatial Consortium, http: //www.opengeospatial.org/). • Interface to discover, browse, and query metadata about GIS data and services. • Uses Dublin Core (small vocabulary to describe web resources, see lecture 9 – Linked Data). • Searching by metadata – keywords, author, date, ... • E.g. at CˇUZK´ (Czech Office for Surveying, Mapping and Cadastre): http:// geoportal.cuzk.cz/SDIProCSW/service.svc/get?REQUEST=GetCapabilities& SERVICE=CSW. INSPIRE • Infrastructure for Spatial Information in the European Community. • European directive, in the Czech Republic is the responsible authority CENIA (Cesk´ainformaˇcn´ıagenturaˇ ˇzivotn´ıhoprostˇred´ı). • To make geographical information more accessible and interoperable. • Topic categories (19), spatial data service types (6), classification of spatial data services (70). • Keywords from GEMET (general environmental multilingual thesaurus, see lecture 5 – KOS). 1 Basic GIS objects • a point • a linestring • a polygon , • a multi-point • a multi-linestring • a multi-polygon , 2 0.1 Semantic GIS Images from http://en.wikipedia.org/wiki/Well-known_text and http://www.opengeospatial.
    [Show full text]
  • Exploring the Use of the Semantic Web for Discovering, Retrieving and Processing Data from Sensor Observation Services Ivo De Liefde June 2016
    MSc thesis in Geomatics Exploring the use of the semantic web for discovering, retrieving and processing data from Sensor Observation Services Ivo de Liefde June 2016 EXPLORINGTHEUSEOFTHESEMANTICWEBFOR DISCOVERING,RETRIEVINGANDPROCESSINGDATAFROM SENSOROBSERVATIONSERVICES A thesis submitted to the Delft University of Technology in partial fulfillment of the requirements for the degree of Master of Science in Geomatics by Ivo de Liefde June 2016 Ivo de Liefde: Exploring the use of the semantic web for discovering, retrieving and processing data from Sensor Observation Services (2016) cb This work is licensed under a Creative Commons Attribution 4.0 Inter- national License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The work in this thesis was made in the: Department of GIS Technology OTB Research Institute for the Built Environment Faculty of Architecture & the Built Environment Delft University of Technology Supervisors: Drs. M.E. de Vries Dr.ir. B.M. Meijers Co-reader: Dr. Dipl.-Ing. S. Zlatanova ABSTRACTDevelopments such as smart cities, the Internet of Things (IoT) and the Infras- tructure for Spatial Information in Europe (INSPIRE) are causing a growing amount of observation data to be produced. The Open Geospatial Con- sortium (OGC) has developed Sensor Web Enablement (SWE) standards for modelling and publishing this data online. However, their use is currently limited to geo information specialists, who have knowledge about which data services are available and how to access them. With the use of the semantic web, online processes can automatically find and understand ob- servation metadata. This opens up the SWE services to a large user audience.
    [Show full text]
  • MASTERARBEIT Archiving Digital Maps with Geopackage and Vector
    MASTERARBEIT Archiving Digital Maps with GeoPackage and Vector-tile Dissemination Ausgeführt am Department für Geodäsie und Geoinformation der Technischen Universität Wien unter der Anleitung von Univ.Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner, TU Wien und Dipl.-Ing. Dr. Markus Jobst, Bundesamt für Eich- und Vermessungswesen Dr.-Ing. Christian Murphy, TU München durch Yunnan Chen Schulwinkel 4, Stuttgart 28.03.2019 Unterschrift (Student) i MASTER’S THESIS Archiving Digital Maps with GeoPackage and Vector-tile Dissemination Conducted at the Department of Geodesy and Geoinformation Technical University Vienna Under the supervision of Univ.Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner, TU Vienna and Dipl.-Ing. Dr. Markus Jobst, Federal Office of Metrology and Surveying Dr.-Ing. Christian Murphy, TU Munich by Yunnan Chen Schulwinkel 4, Stuttgart 28.03.2019 Signature (Student) ii Statement of Authorship Herewith I declare that I am the sole author of the submitted Master’s thesis entitled: “Archiving Digital Maps with GeoPackage and Vector-tile Dissemination” I have fully referenced the ideas and work of others, whether published or unpublished. Literal or analogous citations are clearly marked as such. Vienna, 28.03.2019 Yunnan Chen iii Acknowledgements The last two years in the International Cartography M.Sc. programme have been such a special journey. This master’s thesis could not be accomplished without the supports of many people. First, I would like to express my sincere gratitude and appreciation to my first supervisor and the deputy head of Information Management Department at Austrian Federal Office for Metrology and Surveying, Dr. Markus Jobst, who has been providing marvelous guidance, ideas, support, and suggestions in the last few months.
    [Show full text]
  • RMDCN Developments
    OGC Standards EGOWS 2010 ECWMF, Reading, 2010/06/1-4 Chris Little [email protected] +44 1392 886278 OGC Co-Chair Meteorology & Oceanography Domain Working Group © Crown copyright 2007 Apologies & Disclaimers I speak too fast No pictures I was involved in international standards • ISO • WMO View of the OGC ‘landscape’ • ‘Valleys & hills’ • NOT ‘Turn 3rd left after pub’ © Crown copyright 2007 Structure of Talk • Some Background • Why OGC? • Standards • Issues for Meteorology © Crown copyright 2007 OGC Standards Some Background © Crown copyright 2007 OGC Met Ocean DWG 2007: ECMWF 11th Workshop on Meteorological Operational Systems - recommended: 2008: ECMWF-OGC Workshop on Use of GIS/OGC Standards in Meteorology - recommended: - Establish OGC Met Domain WG - Establish WMO-OGC Memorandum of Understanding - Develop WMS meteorological profile - Develop core models and registries - Interoperability test beds for met. data & visualization OGC web services © Crown copyright 2007 OGC Who? • Open Geospatial Consortium http://opengeospatial.org • Non-profit making • Standards setting http://opengeospatial.org/standards • Global • >400 members http://opengeospatial.org/members • Industry • Government bodies • Academia • Individuals © Crown copyright 2007 OGC How? TC - Technical Conference, 4 days every 3 months - Darmstadt Sept 2009 EUMETSAT - Mountainview Dec 2009 Google - Frascati Mar 2010 ESA SWG - Standards Working Groups, ~24, - Fast track to ISO, short lived, ‘vertical’ DWG - Domain Working Groups, ~27 - Cross-cutting, longer lived,
    [Show full text]
  • Web Coverage Service Developer Guide Cloud Services | August 2013
    Web Coverage Service Developer Guide Cloud Services | August 2013 Web Coverage Service Developer Guide | 2 Table of Contents List of Figures .................................................................................................................................. 3 List of Tables ................................................................................................................................... 4 1 Introduction ................................................................................................................................ 5 1.1 About This Document ............................................................................................................ 5 1.2 Targeted Audience ................................................................................................................ 5 1.3 What is WCS? ....................................................................................................................... 5 1.4 References ............................................................................................................................ 5 2 Open Geospatial Consortium (OGC) ......................................................................................... 6 2.1 About OGC ............................................................................................................................ 6 2.2 The OGC Process ................................................................................................................. 6 2.3 OGC Standards and Specification
    [Show full text]