The Structure and Musculature of Male Terminalia in the Tribes

Total Page:16

File Type:pdf, Size:1020Kb

The Structure and Musculature of Male Terminalia in the Tribes ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2014 Band/Volume: 037 Autor(en)/Author(s): Schmidt Olga Artikel/Article: The structure and musculature of male terminalia in the tribes Eupitheciini, Melanthiini, Perizomini and Rheumapterini: Gnathoi or Agnathoi, that is the question 267-281 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 37 2 267-281 München, Dezember 2014 ISSN 0341-8391 The structure and musculature of male terminalia in the tribes Eupitheciini, Melanthiini, Perizomini and Rheumapterini: Gnathoi or Agnathoi, that is the question (Lepidoptera, Geometridae, Larentiinae) Olga Schmidt Schmidt, O. 2014. The structure and musculature of male terminalia in the tribes Eupitheciini, Melanthiini, Perizomini and Rheumapterini: Gnathoi or Agnathoi, that is the question (Lepidoptera, Geometridae, Larentiinae). Spixiana 37 (2): 267- 281. The skeleton and musculature of the male terminalia were examined and de- picted in seven Palaearctic species from the tribes Eupitheciini Pierce, Melanthiini Duponchel, Perizomini Herbulot and Rheumapterini Herbulot (Lepidoptera, Geo- metridae, Larentiinae) characterized by the presence of the eupitheciine labides in the male genitalia. Nine genital muscles, typical of the subfamily, were identified: m1, m2(10), m3(2), m4, m5(7), m6(5), m7(6), m8(3) and m21. The places of attach- ment of the muscles m3(2), m4 and m5(7) to the genital sclerites afford useful characters for the higher classification of this group. A few principal genital char- acters which previously received little attention are discussed, including fusion of the transtilla with parts of the labides and presence of the gnathos in several laren- tiine tribes. Olga Schmidt, SNSB – Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 Munich, Germany; e-mail: [email protected] Introduction and Hausmann & Viidalepp (2012). However, the tribal placement of several genera differs in these The application of the characters based on the two studies. Also, modern molecular analyses did functional morphology of the male genitalia has not clarify the relationships within the group so far. provided a large amount of opportunities to solve the About a dozen of genera involved in the Eupitheciini phylogenetic problems in Lepidoptera, including the complex have been considered in numerous mo- geometrid moths (Kuznetzov & Stekolnikov 2001). lecular analyses provided phylogenies of the family Despite thorough taxonomic reviews of the genera Geometridae (Abraham et al. 2001, Snäll et al. 2007, assigned to the tribes Eupitheciini, Melanthiini, Yamamoto & Sota 2007, Strutzenberger et al. 2010, Perizomini and Rheumapterini (Pierce 1914, Prout Hausmann et al. 2011, Sihvonen et al. 2011, Regier et 1940, Forbes 1948, McGuffin 1958, Herbulot 1962, al. 2013). Unfortunately, the data concordance was Heitzman & Enns 1978, Ferguson 1983, Viidalepp not achieved concerning the subfamily Larentiinae. 1977, 1978, 1988, Bolte 1990, McQuillan & Edwards The morphological characters of the tribes are 1996, Holloway 1977, 1997, Scoble 1999, Xue & Zhu broadly presented by Mironov (2003), Viidalepp 1999, Holloway et al. 2000, Mironov 2000, 2003, (2011) and Hausmann & Viidalepp (2012), therefore Choi 2003, Hausmann & Parra 2009, Leraut 2009), the present paper deals mainly with the characters many questions are still not answered. Most recent which have received little attention so far. The pre- comprehensive taxonomic, faunistic and morpho- sent study continues the investigation of the male logical studies were completed by Viidalepp (2011) genital musculature of larentiine moths (see Ra- 267 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de zowskj & Wojtusiak 1981, Kuznetzov & Stekolnikov chols (1989) and Scoble (1995), with notes on the gnathos 2001, Beljaev 2008, Schmidt 2001, 2013, 2014) and is (see ‘Discussion’). The abbreviations for the sclerites are generally aimed to contribute to the discussion of as follows: the relationships among the larentiine moths that gna gnathos belong to a group of tribes, all of them characterized jux juxta lab labides by the presence of the eupitheciine labides in the soc socii male genitalia. The eupitheciine labides are defined teg tegumen as arising from the points of union of the transtilla tra transtilla with the costa valvae, having somewhat stalked unc uncus posterior labides arms partly fused apically, and anterior arms directed towards the lateral margins Notes on the nomenclature of the musculature are given of the juxta. The present study takes a step towards in Schmidt (2013). The abbreviations are as follows: m1 depressors of uncus clarifying the relationships within the eupitheciines m2(10) retractors of anal tube and alias based on newly established morphological m3(2) tergal extensors of valvae characters. It is not aimed to provide a full coverage m4 tergal flexors of valvae of relationships within the Eupitheciini complex. In m5(7) flexors of valvae (intravalval muscles) the tribes Operophterini Packard and Phileremini m6(5) protractors of aedeagus Pierce the labides look similar but completely fused m7(6) retractors of aedeagus to a ‘head’ apically, whereas in the tribe Asthenini m8(3) sternal extensors of valvae the labides apices are free. These tribes are apparently m21 retractors of aedeagal vesica (not illustrated) closely related to the Eupitheciini and alias and will be discussed in a further publication (Schmidt, in prep.). The present study should be considered as Results part of an integrative approach involving morphol- ogy, DNA sequences, ecology and biology which Tribe Eupitheciini will contribute to resolve the phylogenetic relation- ships within the subfamily Larentiinae. In addition, Eupithecia tantillaria the emphasis is placed on the drawing attention to Figs 1-2 some principal characters, such as the presence of the gnathos in the male genitalia of the larentiine The uncus is small and broadened at the base. The moths. narrow ventral band-like sclerotized processes are attached to the base of the uncus laterally, forming a broken medially ring. The band-like processes are Material and methods apparently homologous to the gnathos arms (see ‘Discussion’). The proximal area of the anal tube, A total of seven species assigned to four tribes were including the base of the subscaphium, is connected examined. The material has been collected by O. Schmidt to the gnathos. The thin muscles m1 extend from in the following localities: Eupithecia tantillaria (Boisdu- the medio-lateral portions of the tegumen to the val, 1840) (Germany, Baden-Wuerttemberg, near Stutt- lateral lobes at the uncus base. The muscles m2(10) gart-Rohr, Glemswald, May 2002); Gagitodes sagittata are attached to the tegumen, very close to the proxi- (Fabricius, 1787) (Russia, Primorsky Region, Verkhny mal end of the muscles m1, and run parallel to the Pereval, July 1990); Horisme vitalbata (Denis & Schiffer- subscaphium to the inner surface of the anal tube müller, 1775) (Russia, Primorsky Region, Verkhnij Pere- distally. The basal process of the costa valvae is val, July 1990); Melanthia procellata (Denis & Schiffermül- ler, 1775) (Russia, Primorsky Region, Khasansky district, developed and the muscles m3(2) run to its ventral Kedrovaya Pad Nature Reserve, July 1988); Mesotype margin from the proximal portion of the tegumen. didymata (Linnaeus, 1758) (Russia, Leningradsky Regi- The labides arising from the base of the costa valvae on, 20 km NW of St. Petersburg, July 1989); Mesotype ventrally are present. They consist of thin posterior verberata (Scopoli, 1763) (Austria, Tirol, Fernau, Middle arms bearing setose papillae apically and rather short Station, July 2003); Rheumaptera subhastata (Nolcken, bent anterior arms with narrow finger-like setose 1870) (Germany, Bavaria, Bayerischer Wald NP, May ventral papillae curved towards the juxta laterally. 2007). The transtilla arising from the base of costa valvae The methods have been described in Schmidt (2013). dorsad of the labides is present as well. The muscles The images of adult moths are shown in several publi- m4, consisting of two almost inseparable bundles, cations including Xue & Zhu (1999), Ebert (2001), Miro- run from the proximal corner of the tegumen to the nov (2003) and Hausmann & Viidalepp (2012). Terminology for adult morphology and genitalia transtilla medially. The thin muscles m5(7) connect follows Pierce (1914), Forbes (1948), Klots (1970), Ni- the inner wall of the valva (close to the base of the 268 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de m2(10) m1 lab tra m4 gna m3(2) m5(7) m6(5) jux 1 m7(6) m8(3) 2 m7(6) m6(5) Figs 1-2. Eupithecia tantillaria, male genitalia and muscles: 1. Armature (proximal part of subscaphium and middle part of muscles m2(10) not shown). 2. Aedeagus. costa valvae) to the vinculum curve. The juxta is Tribe Melanthiini rather large, compound, broadest crosswise and placed between the sacculi of the valvae. The vo- Melanthia procellata luminous paired muscles m8(3) extend from the Figs 3-4 posterior margin of the saccus to the posterior area of the juxta. The aedeagus is large, broadest at the The uncus is much reduced, membranous and basis, with several long and short cornuti of different covered with setae. The gnathos arms are attached
Recommended publications
  • Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex­ Cluding Non-Crambine Pyralidae
    Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX­ CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species.
    [Show full text]
  • A New Macrolepidopteran Moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican Amber
    ZooKeys 965: 73–84 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.965.54461 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber Weiting Zhang1,2, Chungkun Shih3,4, YuHong Shih5, Dong Ren3 1 Hebei GEO University, 136 Huaiandonglu, Shijiazhuang 050031, China 2 State Key Laboratory of Pal- aeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, China 3 College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisan- huanbeilu, Haidian District, Beijing 100048, China 4 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA 5 Laboratorio Dominicano De Ambar Y Gemas, Santo Domingo, Dominican Republic Corresponding author: Weiting Zhang ([email protected]) Academic editor: Gunnar Brehm | Received 19 May 2020 | Accepted 12 August 2020 | Published 3 September 2020 http://zoobank.org/05E273DB-B590-42D1-8234-864A787BE6A0 Citation: Zhang W, Shih C, Shih YH, Ren D (2020) A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber. ZooKeys 965: 73–84. https://doi.org/10.3897/zookeys.965.54461 Abstract A new genus and species of fossil moth, Miogeometrida chunjenshihi Zhang, Shih & Shih, gen. et sp. nov., assigned to Geometridae, is described from Miocene Dominican amber dating from 15–20 Mya. The new genus is characterized by the forewing without a fovea, R1 not anastomosing with Sc, no areole formed by veins R1 and Rs, R1 and Rs1 completely coincident, M2 arising midway between M1 and M3, anal veins 1A and 2A fused for their entire lengths; and the hind wing with Rs running close to Sc + R1 and M2 absent.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • County Genus Species Species Author Common
    County Genus Species Species Author Common Name Tribe Subfamily Family Superfamily Muscatine County Abagrotis alternata (Grote, 1864) Greater Red Dart Noctuini Noctuinae Noctuidae Noctuoidea Muscatine County Abrostola urentis Guenee, 1852 Variegated Brindle Moth Abrostolini Plusiinae Noctuidae Noctuoidea Muscatine County Acleris simpliciana (Walsingham, 1879) Tortricini Tortricinae Tortricidae Tortricoidea Muscatine County Acrolophus morus (Grote, 1881) None (None) (None) Acrolophidae Tineoidea Muscatine County Acrolophus plumifrontella (Clemens, 1859) None (None) (None) Acrolophidae Tineoidea Muscatine County Acrolophus popeanella (Clemens, 1859) None (None) (None) Acrolophidae Tineoidea Muscatine County Acronicta afflicta Grote, 1864 Afflicted Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Muscatine County Acronicta clarescens Guenee, 1852 Clear Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Muscatine County Acronicta exilis Grote, 1874 Exiled Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Muscatine County Acronicta funeralis Grote and Robinson, 1866 Funerary Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Muscatine County Acronicta haesitata (Grote, 1882) Hesitant Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Muscatine County Acronicta hasta Guenee, 1852 Speared Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Muscatine County Acronicta inclara J E Smith, 1900 Unclear Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Muscatine County Acronicta increta Morrison, 1974 Raspberry Bud Dagger Moth (None)
    [Show full text]
  • 2017 City of York Biodiversity Action Plan
    CITY OF YORK Local Biodiversity Action Plan 2017 City of York Local Biodiversity Action Plan - Executive Summary What is biodiversity and why is it important? Biodiversity is the variety of all species of plant and animal life on earth, and the places in which they live. Biodiversity has its own intrinsic value but is also provides us with a wide range of essential goods and services such as such as food, fresh water and clean air, natural flood and climate regulation and pollination of crops, but also less obvious services such as benefits to our health and wellbeing and providing a sense of place. We are experiencing global declines in biodiversity, and the goods and services which it provides are consistently undervalued. Efforts to protect and enhance biodiversity need to be significantly increased. The Biodiversity of the City of York The City of York area is a special place not only for its history, buildings and archaeology but also for its wildlife. York Minister is an 800 year old jewel in the historical crown of the city, but we also have our natural gems as well. York supports species and habitats which are of national, regional and local conservation importance including the endangered Tansy Beetle which until 2014 was known only to occur along stretches of the River Ouse around York and Selby; ancient flood meadows of which c.9-10% of the national resource occurs in York; populations of Otters and Water Voles on the River Ouse, River Foss and their tributaries; the country’s most northerly example of extensive lowland heath at Strensall Common; and internationally important populations of wetland birds in the Lower Derwent Valley.
    [Show full text]
  • Proceedings of the Tenth Forum Herbulot 2018. Integrative Taxonomy, a Multidisciplinary Approach to Answer Compli- Cated Taxonomic Questions
    SPIXIANA 42 2 291-320 München, Dezember 2019 ISSN 0341-8391 Proceedings of the tenth FORUM HERBULOT 2018. Integrative taxonomy, a multidisciplinary approach to answer compli- cated taxonomic questions (Stuttgart, Germany, 11-16 June 2018) Axel Hausmann & Hossein Rajaei (eds) Hausmann, A. & Rajaei, H. (eds) 2019. Proceedings of the tenth FORUM HERBULOT 2018. Integrative taxonomy, a multidisciplinary approach to answer complicated taxonomic questions (Stuttgart, Germany, 11-16 June 2018). Spixiana 42 (2): 291- 320. The tenth International Congress of FORUM HERBULOT on “Integrative taxonomy, a multidisciplinary approach to answer complicated taxonomic questions” took place in the Staatliches Museum für Naturkunde Stuttgart (SMNS), from 11.- 16.06.2018, with 77 participants and 52 scientific presentations. The proceedings provide short information on the meeting and the abstracts of the oral presenta- tions. Axel Hausmann (corresponding author), SNSB – ZSM, Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 Munich, Germany; e-mail: [email protected] Short report and results Axel Hausmann & Hossein Rajaei Hausmann, A. & Rajaei, H. 2019. Short report and results. Pp. 291-292 in: Hausmann, A. & Rajaei, H. (eds). Proceedings of the tenth FORUM HERBULOT 2018. Integrative taxonomy, a multidisciplinary approach to answer complicated taxonomic questions (Stuttgart, Germany, 11-16 June 2018). Spixiana 42 (2). Axel Hausmann (corresponding author), SNSB – ZSM, Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 Mu- nich, Germany; e-mail: [email protected] The meeting was organized by an organization The conference started with a lecture on the ground- team of the ‘Staatliches Museum für Naturkunde breaking effects of “Willi Hennig and the synthesis of Stuttgart’ (SMNS).
    [Show full text]
  • Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO
    Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area August 2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 (970) 491-7331 Report Prepared for: United States Air Force Academy Department of Natural Resources Recommended Citation: Smith, P., S. S. Panjabi, and J. Handwerk. 2015. Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: Documenting weeds at the US Air Force Academy. Photos courtesy of the Colorado Natural Heritage Program © Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area El Paso County, CO Pam Smith, Susan Spackman Panjabi, and Jill Handwerk Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 August 2015 EXECUTIVE SUMMARY Various federal, state, and local laws, ordinances, orders, and policies require land managers to control noxious weeds. The purpose of this plan is to provide a guide to manage, in the most efficient and effective manner, the noxious weeds on the US Air Force Academy (Academy) and Farish Recreation Area (Farish) over the next 10 years (through 2025), in accordance with their respective integrated natural resources management plans. This plan pertains to the “natural” portions of the Academy and excludes highly developed areas, such as around buildings, recreation fields, and lawns.
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • Herbivores on a Dominant Understory Shrub Increase Local Plant Diversity in Rain Forest Communities
    Ecology, 91(12), 2010, pp. 3707–3718 Ó 2010 by the Ecological Society of America Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities 1,4 2 1 3 LEE A. DYER, DEBORAH K. LETOURNEAU, GERARDO VEGA CHAVARRIA, AND DIEGO SALAZAR AMORETTI 1Department of Biology, University of Nevada, Reno, Nevada 89557 USA 2Department of Environmental Studies, University of California, Santa Cruz, California 95064 USA 3Department of Biology, University of Missouri, St. Louis, Missouri 63121 USA Abstract. Indirect effects of trophic interactions on biodiversity can be large and common, even in complex communities. Previous experiments with dominant understory Piper shrubs in a Costa Rican rain forest revealed that increases in herbivore densities on these shrubs caused widespread seedling mortality as a result of herbivores moving from Piper to seedlings of many different plant genera. We tested components of the Janzen-Connell hypothesis by conducting focused studies on the effects of specialist and generalist Piper herbivores on local seedling diversity. Whereas specialist herbivores are predicted to increase mortality to neighboring seedlings that are closely related to the source plant, true generalists moving from source plants may cause density-dependent mortality of many species, and possibly increase richness if new species replace abundant species that have been thinned by herbivores. Therefore, we hypothesized that seedling richness would be greater in understory control plots created in patches of Piper that had normal densities of generalist herbivores compared to plots from which we removed generalist herbivores manually from all Piper shrubs. After 15 months, generalist-herbivore-removal plots had .40% fewer seedlings, .40% fewer species, and 40% greater seedling evenness, on average, than control plots with generalist herbivores intact.
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • Phylogenetic Relationships of the Tribe Operophterini (Lepidoptera, Geometridae): a Case Study of the Evolution of Female flightlessness
    Biological Journal of the Linnean Society, 2007, 92, 241–252. With 1 figure Phylogenetic relationships of the tribe Operophterini (Lepidoptera, Geometridae): a case study of the evolution of female flightlessness NIINA SNÄLL1,2, TOOMAS TAMMARU4*, NIKLAS WAHLBERG1,5, JAAN VIIDALEPP6, KAI RUOHOMÄKI2, MARJA-LIISA SAVONTAUS1 and KIRSI HUOPONEN3 1Laboratory of Genetics, Department of Biology, 2Section of Ecology, Department of Biology, and 3Department of Medical Genetics, University of Turku, FIN-20014 Turku, Finland 4Institute of Zoology and Hydrobiology, University of Tartu, Vanemuise 46, EE-51014 Tartu, Estonia 5Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden 6Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 64, EE-51014 Tartu, Estonia Received 24 April 2006; accepted for publication 20 November 2006 A molecular phylogenetic analysis was conducted in order to reconstruct the evolution of female flightlessness in the geometrid tribe Operophterini (Lepidoptera, Geometridae, Larentiinae). DNA variation in four nuclear gene regions, segments D1 and D2 of 28S rRNA, elongation factor 1a, and wingless, was examined from 22 species representing seven tribes of Larentiinae and six outgroup species. Direct optimization was used to infer a phylogenetic hypothesis from the combined sequence data set. The results obtained confirmed that Operophterini (including Malacodea) is a monophyletic group, and Perizomini is its sister group. Within Operophterini, the genus Malacodea is the sister group to the genera Operophtera and Epirrita, which form a monophyletic group. This relationship is also supported by morphological data. The results suggest that female flightlessness has evolved independently twice: first in the lineage of Malacodea and, for the second time, in the lineage of Operophtera after its separation from the lineage of Epirrita.
    [Show full text]
  • ABHANDLUNGEN Aus Dem Westfälischen Museum Für Naturkunde - Landschaftsverband Westfalen-Lippe
    ISS N 0023 - 7906 ABHANDLUNGEN aus dem Westfälischen Museum für Naturkunde - Landschaftsverband Westfalen-Lippe - herausgegeben von P r o f. D r. L. F R A N Z I S K E T Direktor des Westfälischen Museums für Naturkunde, Münster 44. JAHRGANG 1982, HEFT 1 Lepidoptera Westfalica HANS-JOACHIM WEIGT, Unna Westfälische Ve r eindruckerei 4 4 00 Münster Die Abhandlungen aus dem Westfälischen Museum für Naturkunde bringen wi ssenschaftliche Beiträge zur Erforschung des Naturraumes Westfalen. Die Autoren werden gebeten, die Manuskripte in Maschinenschrift (1 112 Zeilen Abstand) druckfertig einzusenden an: Westfälisches Museum für Naturkunde Schriftleitung Abhandlungen, Dr. Brunhild Gries Sentruper Straße 285, 4400 MÜNSTER Lateinische Art- und Rassennamen sind fü r den Kursivdruck mit einer Wellen­ linie zu unterschlängeln; Wörter, di e in Sperrdruck hervorgehoben werden sollen, sind m it Bleistift mit ei ner unterbrochenen Linie zu unterstreichen. Autorennamen sind in Großbuchstaben zu schreiben. Abschnitte, die in Kl eindruck gebracht wer­ den kö nnen, sind am linken Rand mit „petit" zu bezeichnen. Abbildungen (Karten, Zeichnungen, Fotos) sollen ni cht direkt, sondern auf einem transparenten mit einem Falz angeklebten Deckblatt beschriftet werden. Unsere Grafikerin über• trägt Ihre Vorlage in das Original. Abbildungen werden nur aufgenommen, wenn sie bei Verkleinerung auf Satzspiegelbreite (12 ,5 cm) noch gut lesbar sind. Die Herstellung größerer Abbildungen kann wegen der Kosten nur in solchen Fällen erfolgen, in denen grafische Darstellungen einen entscheidenden Beitrag der Arbeit ausmachen. Das Literaturverzeichnis ist nach folgendem Muster anzufertigen: BUDDE, H. & W. BROCKHAUS (1954): Die Vegetation des westfälischen Berglandes. - Decheniana 102, 47-275. KRAMER, H. (1962): Zum Vorkom men des Fischreihers in der Bundesrepublik Deutschland.
    [Show full text]