<<

(19) TZZ _¥_T

(11) EP 2 174 963 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08F 210/00 (2006.01) C08F 4/642 (2006.01) 27.02.2013 Bulletin 2013/09 C07F 17/00 (2006.01) C08F 10/00 (2006.01) C08F 4/6592 (2006.01) (21) Application number: 09016141.5

(22) Date of filing: 08.09.1999

(54) catalysts for olefin polymerization and methog of polymerizing olefins using the metallocene catalysts Metallocenkatalysatoren zur Olefinpolymerisation und Verfahren zur Polymerisation von Olefinen unter Verwendung dieser Metallocenkatalysatoren Catalyseurs métallocènes pour la polymérisation d’oléfines et méthode de polymérisation d’oléfines, utilisant ces catalyseurs

(84) Designated Contracting States: • Yoon, Keun-Byoung CH DE FR GB IT LI SE Chungcheungnam-do 356-870 (KR) • Jung, Won-Cheol (30) Priority: 13.10.1998 KR 19980042729 Chungcheungnam-do 356-870 (KR)

(43) Date of publication of application: (74) Representative: Hering, Hartmut 14.04.2010 Bulletin 2010/15 Patentanwälte Berendt, Leyh & Hering (62) Document number(s) of the earlier application(s) in Innere Wiener Strasse 20 accordance with Art. 76 EPC: 81667 München (DE) 02028085.5 / 1 302 482 99117715.5 / 0 994 132 (56) References cited: • CHEMICAL ABSTRACTS, vol. 127, no. 12, 22 (73) Proprietor: Samsung General Chemicals Co., Ltd. September 1997 (1997-09-22), Columbus, Ohio, Seosan-shi, US; abstract no.: 162245, HINO, TAKAHIRO ET Chungcheongnam-do 356-870 (KR) AL: "Metallocene catalyst for olefin polymerization and production of polyolefins", (72) Inventors: XP002126590 & JP 9 176221 A (SUMITOMO •Lyu,Yi- Yeol CHEMICAL CO., LTD., JAPAN) 8 July 1997 Chungcheungnam-do 356-870 (KR) (1997-07-08) • Chang, Seok Chungcheungnam-do 356-870 (KR)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 174 963 B1

Printed by Jouve, 75001 PARIS (FR) EP 2 174 963 B1

Description

[0001] The present invention relates to new metallocene catalysts for use in preparation of olefin polymers or co-pol- ymers. More specifically, the present invention relates to methods of preparing the metallocene catalysts and methods 5 of preparing olefin polymers such as mono-polymers of ethylene or α-olefin, ethylene/α-olefin co-polymers, propylene/ α-olefin co-polymers, etc. using the metallocene catalysts. [0002] Metallocene catalysts have high activities and are capable of preparing resin with enhanced physical properties in comparison with the resin polymerized by using Ziegler-Natta catalysts. The metallocene catalysts are compounds of Group IV transition metals of the Periodic Table such as titanium, zirconium, hafnium, etc., and have a coordinated 10 structure with a metal compound and ligands composed of one or two groups of cyclopentadienyl, indenyl, fluorenyl or their derivatives. The metallocene catalysts are usually employed with a co- catalyst. And the co-catalyst is normally an

alkylaluminoxane such as methylaluminoxane prepared by reacting an alkylaluminium compound with H2O, unlike the co-catalyst employed with the Ziegler-Natta catalysts. [0003] U.S. Patent No. 3,740,384 discloses a process for polymerization of monoolefins by contacting the olefin with 15 a catalyst composition containing an organometallic zirconium complex selected from hydrocarbyl complexes of zirco- nium in which the valence or coordination requirements of the metal are satisfied by , alkenyl, or arylalkyl groups which may be partially replaced by other monovalent ligands, using the catalyst composition of 1,1,3,3-tetraphenylsi- loxane-1,3-diol. The organometallic zirconium compounds contain allyl, ethylbenzyl, methylene or naphthyl ligands. [0004] The JP 9 176 221 A discloses a method for providing olefin polymerisation catalysts and using the same. The 20 catalysts comprising a transition metal, cyclopentadienyl rings which are optionally bridged with dihydroxyphenylene, diaminolkylene and disulfidoalkylene as bridging groups. The O-, N- and S- containing bridging groups are selected from the elements to groups 15 and 16 of the periodic table of elements.

[0005] EP Publication No. 423 872 A2 discloses a reaction product (for example, Cp2ZrR2, R=alkyl or halogen) of a silicon of siloxane diol and a dicyclopentadienyl zirconium as a catalyst for ethylene polymerization. 25 [0006] The inventors of the present invention have discovered that the metallocene catalyst prepared by reacting a diol (or diamine, alkyl dimagnesium halide, aryl dimagnesium halide) compound with a cyclopentadienyl zirconium halide has a higher activity in preparation of olefin polymers than conventional catalysts, and that the metallocene catalysts are capable of using less amount of a co-catalyst such as an alkylaluminoxane than conventional catalysts when they are employed in preparation of olefin polymers. 30 [0007] Accordingly, the present inventors have developed new metallocene catalysts for use in preparation of olefin polymers, and methods of preparing the metallocene catalysts and methods of preparing olefin polymers such as mo- no-polymers of ethylene or α-olefin, ethylene/α-olefin co-polymers, propylene/α-olefin co-polymers, etc using the met- allocene catalysts. [0008] An object of the present invention is to provide metallocene catalysts having a high activity to prepare polyolefins 35 with enhanced physical properties in comparison with the polyolefins prepared by using Ziegler-Natta catalysts. Another object of the present invention is to provide metallocene catalysts which are capable of using less amount of a co- catalyst such as an alkylaluminoxane than conventional catalysts when they are employed in preparation of olefin polymers. [0009] A further object of the present invention is to provide a method of preparing the metallocene catalysts according to the present invention. 40 [0010] A further object of the present invention is to provide a method of preparing olefin polymers such as mono-pol- ymers of ethylene or α-olefin, ethylene/α-olefin co-polymers, propylene/α. -olefin co- polymers, etc using the metallocene catalysts. [0011] Other objects and advantages of this invention will be apparent from the ensuing disclosure and appended claims. 45 [0012] The new metallocene catalysts according to the present invention are prepared by reacting a metallocene compound with a compound having at least two functional groups. The metallocene compound is a transition metal compound, which is coordinated with a main ligand such as cyclopentadienyl group, and an ancillary ligand. The functional groups in the compound are selected from the group consisting of a hydroxyl group, an alkyl or aryl halide, a thiol group, a primary group, a secondary amine group, a primary phosphorous group, a secondary phosphorous 50 group. [0013] The metallocene catalysts of the present invention can be also prepared by reacting a metallocene compound with the dianion compound produced by reacting an compound with a compound having those functional groups. [0014] The metallocene catalysts according to the present invention have a structure in which an ancillary ligand of a 55 metallocene compound is bonded to the functional groups of a compound having at least two functional groups. A structure of the metallocene catalysts can be varied with the type of a metallocene compound and a compound having at least two functional groups, and the molar ratio of each reactant. [0015] The metallocene catalysts are employed with a co-catalyst for olefin polymerization. The co-catalyst is an

2 EP 2 174 963 B1

organometallic compound, or a mixture of non-coordinated Lewis acid and alkylaluminium as it is well known in the art. [0016] The metallocene catalysts according to the present invention are prepared by reacting a metallocene compound with a compound having at least two functional groups. The metallocene catalyst is a transition metal compound, which is coordinated with a main ligand such as cyclopentadienyl group and an ancillary ligand. The functional groups in the 5 compound having at least two functional groups are selected from the group consisting of a hydroxyl group, an alkyl or aryl magnesium halide, a thiol group, a primary amine group, a secondary amine group, a primary phosphorous group, a secondary phosphorous group. The metallocene catalysts of the present invention can be also prepared by reacting a metallocene compound with a dianion compound produced by reacting an alkali metal compound with a compound having those functional groups. 10 [0017] The metallocene catalysts according to the present invention have a structure in which an ancillary ligand of a metallocene compound is bonded to the functional groups of a compound having at least two functional groups. A structure of the metallocene catalysts can be varied with the type of a metallocene compound and a compound having at least two functional groups, and the molar ratio of each reactant. [0018] The metallocene catalysts are employed with a co-catalyst for olefin polymerization. The co-catalyst is an 15 organometallic compound, or a mixture of non-coordinated Lewis acid and alkylaluminium, which is well known in the art. The organometallic compound is usually an alkylaluminoxane, an inorganic compound supported alkylaluminoxane or an organoaluminium compound. [0019] A monomer such as olefin and/or α-olefin is polymerized by using the catalyst system consisting of the metal- locene catalysts of the present invention and a co-catalyst. The monomer is mono-polymerized or co-polymerized to 20 prepare olefin polymer or copolymer. [0020] The metallocene catalysts of the present invention are prepared by reacting the metallocene compound rep- resented by the following general formula (B) with the compound having at least two functional groups represented by the following general formula (D), and having a structure in which an ancillary ligand of the metallocene compound is bonded to the functional groups of the compound having at least two functional groups: 25 1 1 1 (CnR m)E(R m)J(R m)MX2 (B)

wherein M in the formula (B) represents a transition metal of Group IV, V or VI of the Periodic Table, preferably of Group IV such as titanium, zirconium, hafnium, etc; 30 1 (CnR m) is a substituted cyclopentadienyl group, a substituted indenyl group or a substituted fluorenyl group, wherein 1 n is an integer of 5, 9 or 13, R is a hydrogen atom, an alkyl group of C 1-20, a cycloalkyl group of C1-20, an alkoxy group of C1-20, an aryl group of C6-20, an alkylaryl group of C6-20, an arylalkyl group of C6-20, cycloalkyl group of C6-20, and m is an integer of 0 to 5; E is O, B, an alkyl group of C1-4, a silicon or a dialkylgernlanium; 35 J is S, an alkylphosphine or an alkylamine;

X is a halogen, a hydrogen, an alkyl group of C 1-20, an alkoxy group of C 1-20, a branched alkyl group of C 1-20, a cycloalkyl group of C3-20, a substituted cycloalkyl group of C3-20; an aryl group of C6-40, an alkylaryl group of C6-40 or an arylalky group of C6-40; and

40

45 wherein T1, T2 and T3 in the formula (D) are a hydrogen atom or an alkali metal such as Na, Li and K; 1 2 1 2 1 2 Y, Y and Y are 0, S, - Nr or - Pr , wherein r and r are respectively a hydrogen atom, an alkyl group of C1-10, a cycloalkyl group of C1-10, an alkoxy group of C1-10, an aryl group of C6-20, an alkylaryl group of C6-20, or an arylalkyl group of C6-20; 50 1 2 R , and R respectively represent Ra, Rb-O-Rc, or

55

wherein Ra, Rb, Rc, Rd and R e are respectively a linear alkyl group of C 1-20, a branched alkyl group of C 1-20, a cycloalkyl

3 EP 2 174 963 B1

group of C3-20, a substituted cycloalkyl group of C3-20, an aryl group of C6-40, an alkylaryl group of C6-40, an arylalkyl 3 group of C6-40, and r is a hydrogen atom, an alkyl group of C 1-10, a cycloalkyl group of C1-10, an alkoxy group of C1-10, an aryl group of C6-20, an alkylaryl group of C6-20, or an arylalkyl group of C 6-20; 4 4 Q is N or -Cr wherein r is an alkyl group of C1-10, a cycloalkyl group of C1-10, an alkoxy group of C1-10, an aryl group 5 of C6-20, an alkylaryl group of C6-20 or an arylalkyl group of C6-20. [0021] The representative examples of the metallocene catalysts according to the present invention are represented by the following general formula (11):

10

15

20

25

30

wherein M, M1 and M 2 in the general formula (11) are respectively a transition metal of Group IV, V or VI of the Periodic 35 Table, preferably of Group IV such as titanium, zirconium, hafnium; Cp, Cp1and Cp2 are the same or different and are each a cyclopentadienyl group, an indenyl group, a fluorenyl group or derivatives thereof, which forms a η5-boned with the transition metal of M, M 1 or M2. 1 2 3 X , X and X are respectively a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group of C 1-20, a cycloalkyl group of C1-20, an alkoxy group of C 1-20, an aryl group of C 6-20, an alkylaryl group of C 6-20 or an arylalkyl group of C 6-20; 40 1 2 R and R respectively represent Ra, Rb-O-Rc or

45

wherein Ra, Rb, Rc, Rd and Re are respectively a linear alkylene group of C 1-2O, a branched alkylene group of C 1-2O, a divalent cycloalkyl group of C3-2O, a substituted divalent cycloalkyl group of C3-20, an arylene group of C6-40, an alky- 3 larylene group of C6-40, an arylalkylene group of C6-40, and r is a hydrogen atom, an alkyl group of C1-10, a cycloalkyl 50 group of C1-10, an alkoxy group of C 1-10, an aryl group of C 6-20, an alkylaryl group of C 6-20 or an arylalkyl group of C 6-20; 19 19 Q is N or -Cr (wherein r is an alkyl group of C I-1O, a cycloalkyl group of C 1-1O, an alkoxy group of C 1-1O, an aryl group of C6-2O, an alkylaryl group of C6-2O or arylalkyl group of C6-2O); 1 2 E, E , and E are O, B, an alkyl group of C1-4, Si or dialkylgennanium; and J, J1 and J2 are respectively S, alkylphosphine or alkyl amine. 55 I I I [0022] The metallocene catalyst of formula (11) is prepared by reacting (C nR m)E(R m)J(R m)MX2 (B) and the compound of formula (D) with an equivalent ratio of 3:1. [0023] A metallocene compound used for preparing the metallocene catalyst according to the present invention is commercially available. Also, the metallocene compound may be prepared according to a method which is conventionally

4 EP 2 174 963 B1

well known. The metallocene compound can be prepared by a method comprising the steps of preparing a salt-state ligand compound containing alkali metal by reacting a cyclopentadienyl ligand derivative with an alkali metal or an alkali metal compound, introducing a silicon or tin compound to the salt- state ligand compound, and reacting the above resultant compound with a Group IV transition metal compound. In case of substituting an ancillary ligand of a metallocene 5 compound to an alkoxy group, an alkyl group or any other groups, the metallocene compound is reacted with the desired equivalent of an alcohol or an alkali metal compound. The above-described method for preparing the metallocene compound may be easily performed by an ordinary skilled person in the art to which this technology pertains. Examples of the alkali metals are K, Na and thallium, and those of the alkali metal compounds are n- butyllithium, sec-butyllithium, methyllithium, sodium methoxide, sodium ethoxide, etc. The Group IV transition metal compounds of the Periodic Table 10 include titanium tetrachloride, zirconium tetrachloride and hafnium tetrachloride, etc. [0024] The representative examples of the metallocene compound which can be used in this invention include:

bis(cyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)zirconium methylchloride, 15 bis(cyclopentadienyl)zirconium dimethyl, bis(methylcyclopentadienyl)zirconium dichloride, bis(methylcyclopentadieny])zirconium methylchloride, bis(methylcyclopentadienyl)zirconium dimethyl, bis(ethylcyclopentadienyl)zirconium dichloride, 20 bis(ethylcyclopentadienyl)zirconium methylchlonde, bis(ethylcyclopentadienyl)zirconium dimethyl, bis(pentamethylcyclopentadienyl)zirconium dichloride, bis(pentamethylcyclopentadienyl) zirconium methylchloride, bis(pentamethylcyclopentadienyl)zirconium dimethyl , 25 bis(n-butyl-cyclopentadienyl)zirconium dichloride, bis(n-butyl-cyclopentadienyl)zirconium methylchloride, bis(n-butyl-cyclopentadienyl)zirconium dimethyl, bis(indenyl)zirconium dichloride, bis(indenyl)zirconium methylchloride, 30 bis(indenyl)zirconium dimethyl, bis(2-methyl-indenyl)zirconium dichloride, bis(2-methyl-indenyl)zirconium methylchloride, bis(2-methyl-indenyl)zirconium dimethyl, bis(2-phenyl-indenyl)zirconium dichloride, 35 bis(2 -phenyl -indenyl)zirconium methylchloride, bis(2-phenyl-indenyl)zirconium dimethyl, dimethylsilylbis(cyclopentadienyl)zirconium dichloride, dimethylsilylbis(cyclopentadienyl)zirconium methylchloride, dimethylsilylbis(cyclopentadienyl)zirconium dimethyl, 40 dimethylsilylbis(indenyl)zirconium dichloride, dimethylsilylbis(indenyl)zirconium methylchloride, dimethylsilylbis(indenyl)zirconium dimethyl, dimethylsilylbis(2-methyl-indenyl)zirconium dichloride, dimethylsilylbis(2-methyl-indenyl)zirconium methylchloride, 45 dimethylsilylbis(2-methyl-indenyl)zirconium dimethyl, dimethylsilyl(indenylcyclopentadienyl)zirconium dichloride, dimethylsilyl(indenylcyclopentadienyl)zirconium methylchloride, dimethylsilyl(indenylcyclopentadienyl)zirconium dimethyl, dimethylsilyl(fluorenylcyclopentadienyl)zirconium dichloride, 50 dimethylsilyl(fluorenylcyclopentadienyl)zirconium methylchloride, dimethylsilyl(fluorenylcyclopentadienyl)zirconium dimethyl, ethylenebis(cyclopentadienyl)zirconium dichloride, ethylenebis(cyclopentadienyl)zirconium methylchloride, ethylenebis(cyclopentadienyl)zirconium dimethyl, 55 ethylenebis(indenyl)zirconium dichloride, ethylenebis(indenyl)zirconium methylchloride, ethylenebis(indenyl)zirconium dimethyl, ethylenebis(2-methyl-indenyl)zirconium dichloride,

5 EP 2 174 963 B1

ethylenebis(2 -methyl-indenyl)zirconium methylchloride, ethylenebis(2-methyl-indenyl)zirconium dimethyl, ethylene(indenylcyclopentadienyl)zirconium dichloride, ethylene(indenylcyclopentadienyl)zirconium methylchloride, 5 ethylene(indenylcyclopentadienyl)zirconium dimethyl, ethylene(fluorenylcyclopentadienyl)zirconium dichloride, ethylene(fluorenylcyclopentadienyl)zirconium methylchloride, ethylene(fluorenylcyclopentadienyl)zirconium dimethyl, isopropylbis(cyclopentadienyl)zirconium dichloride, 10 isopropylbis(cyclopentadienyl)zirconium methylchloride, isopropylbis(cyclopentadienyl)zirconium dimethyl, isopropylbis(indenyl)zirconium dichloride, isopropylbis(indenyl)zirconium methylchloride, isopropylbis(indenyl)zirconium dimethyl, 15 isopropylbis(2-methyl-indenyl)zirconium dichloride, isopropylbis(2-methyl-indenyl)zirconium methylchloride, isopropylbis(2-methyl-indenyl)zirconium dimethyl, isopropyl(indenylcyclopentadienyl)zirconium dichloride, isopropyl(indenylcyclopentadienyl)zirconium methylchloride, 20 isopropyl(indenylcyclopentadienyl)zirconium dimethyl, isopropyl(fluorenylcyclopentadienyl)zirconium dichloride, isopropyl(fluorenylcyclopentadienyl)zirconium methylchloride, and isopropyl(fluorenylcyclopentadienyl)zirconium dimethyl.

25 [0025] The representative examples of the compound having at least two functional groups, which reacts with the metallocene compound in this invention, include:

1,3- bis(diphenylphosphino)propane, ethyleneglycol, 1,3-propanediol, 1,2-propanediol, (s)-(+)-1,2-propanediol, 30 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2-ethyl-2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, (6)-1,3-butanediol, (R)-(-)-1,3-butanediol, 15 (S)-(+)-1,3-butanediol, (6)-1,2-butanediol, 2,3-butanediol, 35 meso-2,3-butanediol, (2R,3R)-(-)-2,3-butanediol, (2S,3S)-(+)-2,3-butanediol, 3,3-dimethyl-1,2-butanediol, pinacol, 1,5-pentanediol, 1,4-pentanediol, 1,2-pentanediol, 2,4-pentanediol, (2R,4R)-(-)-pentanediol, (2S,4S)-(+)-pentanediol, 2-methyl-2,4-pentanediol, (R)-(-)-2-methyl-2,4-pentanedlol, 40 2,4-dimethyl-2,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 1,6-hexanediol, 1,5-hexanediol, (6)-1,2-hexanediol, 2,5-hexanediol, 2-ethy-1-1,3-hexanediol, 2,5-dimethyl-2,5-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,2-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,2-decanediol, 1,12-dodecanediol, (6)-1,2-dodecanediol, 45 cis-1,2-cyclopentanediol, trans-1,2-cyclopentanediol, 1,3-cyclopentanediol, trans-1,2-cyclohexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 2,5-dimethylcyclohexane-1,4-diol, 2,5-isopropylcyclohexane-1,4-diol, cis-1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 50 (+)-cis-p-menthane-3,8-:diol, (-)-trans-p-menthane-3,8-diol, (6)-trans-1,2-cycloheptanediol, cis-1,2-cyclooctanediol, trans-1,2-cyclooctanediol, 1,4-cyclooctanediol, cis-1,5-cyclooctanediol, 4,8-bis(hydroxymethyl)tricyclo[5.2.1.02,6]-decane, (1 R,2R,3S,5R)-(-)-pinanediol, 1,5-decalindiol, 55 3-cyclohexane-1,1-dimethanol, (6)-trans-2-cyclohexane-1,4-diol, trans-p-ment-6-ene-2,8-diol, cis-3,5-cyclohexadiene-1,2-diol 5-norbonene-2,2-dimethanol, (6)-(2-endo,3-exo)-bicyclo[2.2.2]-oct-5-ene-2,3-dimethanol glycerol,

6 EP 2 174 963 B1

1,1,1-tris(hydroxymethyl)ethane, (R)-(+)-1,2,4-butanetriol, (S)-(-)-1,2,4-butanetriol, 2-ethyl-2-(hydroxymethyl)-1,3-propanediol, (6)-1,2,3-trihydroxyhexane, 1,2,6-trihydroxyhexane, ethanolamine, 2-hydroxyethylhydrazine, 3-amino-1-propanol, DL-1-amino-2-propanol, 5 4-amino-1-butanol, (6)-2-amino-1-butanol, 5-amino-1-pentanol, DL-2-amino-1-pentanol, 6-amino-1- hexanol, 2-(2-aminoethoxy )ethanol, 2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(propylamino)ethanol, diethanolamine, diisopropanolamine, 2-(butylamino)ethanethiol, N-methyldiethanolamine, N-ethyldiethanolamine, N-butyldiethanolamine, 10 triethanolamine, triisopropanolamine, 1-[N,N-bis(2-hydroxyethyl)amino]-2-propanol, catechol, 3-methylcatechol, 4-methylcatechol, 4-tert-butylcatechol, DL-3,4-dihydroxyphenylglycol, 3,5-diisopropylcatechol, 3,5-di-tert-butylcatechol, resorcinol, 2-methylresorcinol, 4-ethylresorcinol, 15 4-hexylresorcinol, 4-dodecylresorcinol, 5-pentylresorcinol, 5-pentadecylresorcinol, 2,5-dimethylresorcinol, hydroquinone, methylhydroquinone, tert-butylhydroquinone, 2,3-dimethylhydroquinone, 2,5-di-tert-butylhydroquinone, 2,5-bis(1,1,3,3-tetramethylbutyl)hydroquinone, trimethylhydroquinone, 20 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, bis(2-hydroxyphenyl)methane, (6)- hydrobenzoin, meso-hydrobenzoin, 25 (R,R)-(+)-hydrobenzoin, (S,S)-(-)-hydrobenzoin, benzopinacole, 1,4-benzenedimethanol, α,α,α’,α ’-tetramethyl-1,4-benzenedimethanol, 1,5-dihydroxy-1,2,3,4-tetrahydronaphthalene, 2,2’-biphenyldimethanol, 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-propanol, (6)-1-phenyl-1,2-ethanediol, (S)-(+)-1-phenyl-1,2-ethanediol, 30 (R)-(-)-1-phenyl-1,2-ethanediol, (R)-(+)-1,1,2-triphenyl-1,2-ethanediol, 2,2’-biphenol, 4,4’-biphenol, phenylhydroquinone, bis(4-hydroxyphenyl)methane, 4,4’-isopropylidenediphenol, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1,1-tri(4-hydroxyphenyl)ethane, meso-hexestrol, 1,2-ethanedithiol, 35 1,3-propanedithiol, 1,2-propanedithiol, 1,4-butanedithiol, 1,3-butanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 2-mercaptoethanol, 1-mercapto-2-propanol, 3-mercapto-2-butanol, 3-mercapto-1,2-propanediol, 2,3-dimercapto-1-propanol, dithiothreitol, dithioerythreitol, 2-mercaptoethylether, 1,4-dithiane-2,5-diol, 40 2,5-dimethyl-2,5-dihydroxy-1,4-dithiane, 1,5,9,13-tetrathiacyclohexadecane-3,11-diol, 1,5,9,13,17,21-hexathiacyclotetracosane-3,11,19-triol, ethylenediamine, 1,3-diaminopropane, 1,2-diaminopropane, 1,4-diaminobutane, 1,2-diamino-2-methylpropane, 1,6-hexanediamine, 1,7-diaminoheptane, 45 1,8-diaminooctane, 2,5-dimethyl-2,5-hexanediamine, 1,9-diaminononane, 1,10-diaminodecane, 1,12-diaminododecane, spermidine, 4,4’ -methylenebis(cyclohexylamine), 4,4’ -methylenebis(2-methylcyclohexylamine), 1,4-diaminocyclohexane, 1,3-cyclohexanebis(methylamine), 1,8-diamino-p-methane, 50 4,4’ -trimethylenedipiperidine, 2-piperidinethanol, 3-piperidinethanol, 4-hydroxypiperidine, 4,4’-trimethylenebis(1-piperidinethanol), 2,2,6,6-tetramethyl-4-piperidinol, piperazine, 2,6-dimethylpiperazine, 1,4-bis(2-hydroxyethyl)piperazine, homopiperazine, 1,4,7-triazacyclononane, 1,5,9-triazacyclododecane, cyclene, 55 1,4,8,11-tetraazacyclotetradecane, 1,4,8,12-tetraazacyclotetradecane, 2-anilinoethanol, N-phenyldiethanolamine, 3-aminophenol, 3-aminothiophenol, 4,4’-ethylenedianiline, 3,3’-methylenedianiline, 4,4’-methylenedianiline, 4-aminophenyl ether, 4-aminophenol,

7 EP 2 174 963 B1

4-aminophenethyl alcohol, 4,4’-methylenebis(2,6-dimethylaniline), 4,4’-methylenebis(2,6-diethylaniline), 4,4’-methylenebis(2,6-diisopropylaniline), 3,3’,5,5’-tetramethylbenzidine, 1,4-phenylenediamine, N,N’-diphenyl-1,4-phenylenediamine, 5 2,7-diaminofluorene, N,N’-dibenzylethylenediamine, (6)-syneprine and 4-hydroxy-4-phenylpiperidine.

[0026] The dihalogenalkyl compound used in Grignard reaction is dibromoethane, dibromopropane, dibromobutane, dibromopentane, dibromohexane, dibromoheptane, dibromooctane, dibromodecane, dibromododecane, dibromohexa- 10 decane, dibromooctadecane, dichloroethane, dichloropropane, dichlorobutane, ichloropentane, dichlorohexane, dichlo- roheptane, dichlorooctane, dichlorodecane, dichlorohexadecane, or dichlorooctadecane. [0027] In case of preparing the metallocene catalysts by reacting a metallocene compound with the compound having at least two functional groups in an organic solvent, the molar ratio of a transition metal in the metallocene compound to the functional groups of the compound having at least two functional groups is in the range from 1:1 to10, 1: the 15 reaction temperature being in the range tram -100 °C to 150 °C, and the reaction time being in the range tram 0.1 to 120 hours. [0028] The metallocene catalysts according to the present invention are employed with a co-catalyst in order to prepare a polyolefin. The co-catalyst is an organometallic compound or a mixture of a non-coordinated Lewis acid and an alkylaluminium. Examples of the organometallic compound are an alkylaluminoxane and an organoaluminium compound. 20 Examples of the alkylaluminoxane are a methylaluminoxane (MAO) and a modified methylaluminoxane (MMAO). [0029] The organoaluminium compound is an aluminoxane having the structural unit represented by the general formula (G). There are two types of aluminoxanes. One is an aluminoxane having a chain structure represented by the general formula (H), the other is an aluminoxane having a cyclic structure represented by the general formula (I):

25

30

35

40

45

1 wherein R is an alkyl group of C 1-8 and q is an integer of 2 to 100. [0030] The component ratio of the new metallocene catalyst to the co-catalyst is determined with the molar ratio of a 50 transition metal of Group IV in the metallocene catalyst to the aluminium in the organometallic compound. Preferably, the molar ratio of the transition metal to aluminium is in the range from 1:1 to 1: 20000 and more preferably in the range tram 1:5 to 1:3000. [0031] Examples of the non-coordinated Lewis acid used as co-catalyst in the present invention include N,N’- dimeth- ylanilinium tetrakis(pentafluorophenyl)borate, triphenylcarbeniumtetrakis(pentafluorophenyl)borate, ferroceriumtet- 55 rakis-(pentafluorophenyl)borate and tris(pentafluorophenyl)borate. [0032] Examples of the alkylaluminium compound used as co-catalyst in the present invention include ethylaluminium, triethylaluminium, diethylaluminium chloride, ethylaluminium dichloride, triisobutylaluminium, diisobutylaluminium hy- dride, diisobutylaluminium chloride, tri(n-butyl)aluminium, tri(n-hexyl)aluminium, tri(n-octyl)aluminium and ethylalumini-

8 EP 2 174 963 B1

um sesquichloride. [0033] The molar ratio of the non-coordinated Lewis acid to a transition metal in the catalyst system according to the present invention is preferably in the range tram 0.1:1 to 20: 1. The molar ratio of the alkylaluminum to a transition metal in the catalyst system is preferably in the range from 1: 1 to 1000:1. 5 [0034] The reaction temperature for olefin polymerization using the catalyst system according to the present invention is preferably in the range from 0 to 200°C and the reaction time is preferably in the range from 30 to 240 minutes. [0035] Unsaturated olefin monomers are polymerized with the catalyst system according to the present invention. In the process of polymerization, the co-catalyst is added to a polymerization reactor first, the metallocene catalyst prepared in accordance with the present invention is added to the reactor, and olefin monomers are added to the reactor, con- 10 secutively or both the metallocene compound and the compound having at least two functional groups may be reacted in a polymerization reactor to prepare a metallocene catalyst, and then the co- catalyst and monomers may be added to the polymerization reactor, consecutively. [0036] Copolymers can be prepared using the metallocene catalyst according to the present invention. For copolym- erization, at least two monomers are selected from the group consisting of an unsaturated α-olefin, a cycloolefin, a diene, 15 a vinylketone, an acrolein, an acrylonitrile, an acrylamide, a vinylacetate and a styrene. This copolymerization may be carried out by adding a co- catalyst, a comonomer, a metallocene catalyst and a monomer to the polymerization reactor, consecutively. Alternatively, the coploymerization may be carried out by reacting the metallocene compound and the compound having at least two functional groups in a polymerization reactor to prepare a metallocene catalyst, and adding a co-catalyst and monomers to the polymerization reactor. 20 [0037] The unsaturated α-olefin being contacted with the catalyst system according to the present invention is repre- sented by the general formula (19):

25

30 wherein E1, E2, E3 and E4 are respectively a hydrogen atom; a halogen atom; and a group containing at least one atom selected tram the group consisting of C, O, Si, P, S, Se and Sn. [0038] The illustrative examples of the olefin monomer represented by the formula (19) are α-olefin, cyclic olefin, diene, vinylketone, acrolein, acrylonitrile, acrylamide, acrylic acid, and vinylacetate. 35 [0039] Examples of α-olefin include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-hex- adecene and 1-octadecene. [0040] Examples of cyclic olefin include cyclobutene, cyclopentene, cyclohexene, 3-methylcyclopentene, 3-methylcy- clohexene, norbonene, phenylnorbonene and dimethylnorbonene. [0041] Examples of diene include 1,3-butadiene, isoprene, 1-ethoxy1,3- butadiene, chloroprene, 4-methyl-1,3- penta- 40 diene, 7-methyl-1,6-octadiene, 1,5-hexadiene, 1,7-octadiene, and 1,9-decadiene. [0042] Examples of vinylketone include methylvinylketone, phenylvinylketone, ethylvinylketone, and n-propylvinylke- tone. [0043] Examples of acrolein include acrolein and metacrolein. [0044] Examples of acrylonitrile include vinylidenecyanide, methoxyacrylonitrile, and phenylacrylonitrile. 45 [0045] Examples of acrylamide include N-methylacrylamide, N-ethylacrylamide, and N-isopropylacrylamide. [0046] Examples of acrylic acid include aryl acrylate, isopropyl acrylate, ethyl acrylate, acrylic acid chloride, and undecenoic acid. [0047] Examples of vinyl acetate include vinyl acetate and vinylthioacetate. [0048] The present invention may be better understood by reference to the following examples which are intended for 50 purposes of illustration and are not to be confined as in any way limiting the scope of the present invention. [0049] All examples are reference examples.

Examples 1-18: Synthesis of catalyst

55 Example 1: catalyst 1

[0050] Toluene of 150 ml was added to a round-bottomed flask containing 0.1 mmol (0.29 g) of Cp 2ZrCl2 (biscyclopen- tadienyl zirconium dichloride), and the solution was put into a reactor. The temperature of the reactor was kept at -78

9 EP 2 174 963 B1

°C. Bisphenol-A of 0.05 mmol (0.23 g) was added to a second flask, toluene of 50 ml was added, and 0.2 mmol (0.2 ml) of triethylamine was added with syringe to the second flask. The solution of the second flask was slowly added to the reactor. After adding, the temperature of the reactor was slowly increased up to room temperature. After reaction in the reactor for 12 hours, the resulting solution was filtered to obtain a light yellowish solution. The light yellowish solution 5 was evaporated under vacuum to remove toluene. Bimetallic compound (catalyst 1) bridged with bisphenol-A was obtained as yield of 85%.

Example 2: catalyst 2

10 [0051] Toluene of 50 ml was added to a round-bottomed flask containing 0.1 mmol (0.29 g) of 2CpZrCl2, and the solution was put into a reactor. The temperature of the reactor was kept at -78 °C. Bisphenol-A dianion 15 of 0.05 mmol (0.23 g) was added to a second flask, toluene of 50 ml was added, and 0.2 mmol (0.2 ml) of triethylamine was added with syringe to the second flask. The solution of the second flask was slowly added to the reactor. After adding, the temperature of the reactor was slowly increased up to room temperature. After reaction in the reactor for 12 hours, the 15 resulting solution was filtered to obtain a light yellowish solution. The light yellowish solution was evaporated under vacuum to remove toluene. Bimetallic compound (catalyst 2) bridged with bisphenol-A was obtained as yield of 75%.

Example 3: catalyst 3

20 [0052] Catalyst 3 was prepared in the same method as in Example 1 except that Cp* 2ZrCl2 (bispentamethylcyclopen- tadienyl zirconium dichloride) was used instead of Cp 2ZrCl2.

Example 4: catalyst 4

25 [0053] Catalyst 4 was prepared in the same method as in Example 1 except that (n-BuCp) 2ZrCl2 (bis(n-butylcyclopen- tadienyl) zirconium dichloride) was used instead of Cp 2ZrCl2.

Example 5: catalyst 5

30 [0054] Catalyst 5 was prepared in the same method as in Example 1 except that 0.1 mmol (0.46 g) of bisphenol- A and 0.4 mmol (0.4 ml) of triethylamine were used. Catalyst 5 has two bridges connected with bisphenol- A.

Example 6: catalyst 6

35 [0055] Catalyst 6 was prepared in the same method as in Example 5 except that (n-Bucp) 2ZrCl2 was used instead of Cp2ZrCl2.

Example 7: catalyst 7

40 [0056] Catalyst 7 was prepared in the same method as in Example 1 except that 0.05 mmol of hydroquinone was used instead of bisphenol-A. Catalyst 7 was bridged with hydroquinone.

Example 8: catalyst 8

45 [0057] Catalyst 8 was prepared in the same method as in Example 7 except that 0.1 mmol of hydroquinone was used. Catalyst 8 has two bridges connected with hydroquinone.

Example 9: catalyst 9

50 [0058] Catalyst 9 was prepared in the same method as in Example 7 except that (n-BuCp)2ZrCl2 was used instead of Cp2ZrCl2.

Example 10: catalyst 10

55 [0059] Catalyst 10 was prepared in the same method as in Example 8 except that (n-BuCp)2ZrCl2 was used instead of Cp2ZrCl2.

10 EP 2 174 963 B1

Example 11: catalyst 11

[0060] Catalyst 11 was prepared in the same method as in Example 1 except that Et(Ind)2ZrCl2 (ethylenebisindenyl zirconium dichloride) was used instead of Cp2ZrCp2. 5 Example 12: catalyst 12

[0061] Catalyst 12 was prepared in the same method as in Example 1 except that Me2Si(Ind)2ZrCl2 (dimethylsilyl- bisindenyl zirconium dichloride) was used instead of Cp 2ZrCl2. 10 Example 13: catalyst 13

[0062] Catalyst 13 was prepared in the same method as in Example 1 except 4 thatCpSiMe Me2(t-Bu)TiCl2 (tert-butylamidodimethyltetramethylcyclopentadienyl)silane titanium dichloride) was used instead of Cp 2ZrCl2. 15 Example 14: catalyst 14

[0063] Catalyst 14 was prepared in the same method as in Example 1 except that Me2SiCp2ZrCl2 (dimethylsilylbis- cyclopentadienyl zirconium dichloride) instead of Cp2ZrCl2. 20 Example 15: catalyst 15

[0064] Catalyst 15 was prepared in the same method as in Example 5 except that Me2SiCp2ZrCl2 was used instead of Cp2ZrCl2. 25 Example 16: catalyst 16

[0065] Ether of 50 ml was added to a round-bottomed fllask controlling 0.1 mmol (0.29 g) of Cp2ZrCl2 (biscyclopen- tadienyl zirconium dichloride), and 5 the solution was put into a reactor. The temperature of the reactor was kept at -78 30 °C. BrMg(CH2)10MgBr of 0.1 mmol (0.23 g) was added to a second flask, and ether of 50 ml was added to the second flask. The solution of the second flask was slowly added to the reactor. After adding, the temperature of the reactor was slowly increased up to room temperature. After reaction in the reactor for 12 hours, the resulting solution was filtered. The filtered solution was evaporated under vacuum to remove ether. Bimetallic compound (catalyst 16) bridged with an alkyl was obtained. 35 Example 17: catalyst 17

[0066] Catalyst 17 was prepared in the same method as in Example 7 except that Cp2HfCl2 (biscyclopentadienyl halfnium dichloride) was used instead of Cp2ZrCl2. 40 Example 18: catalyst 18

[0067] Toluene of 50 ml was added to a round-bottomed flask containing 0.3 mmol of (n-BuCp) 2ZrCl2 (bis(n-butylcy- clopentadienyl) zirconium dichloride), and the solution was put into a reactor. The temperature of the reactor was kept 45 at -78 °C Triol (α,α,α-tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene) of 0.1 mmol was added to a second flask, toluene of 50 ml was added, and 0.4 mmol (0.4 ml) of triethylamine was added with syringe to the second flask. The solution of the second flask was slowly added to the reactor. After adding, the temperature of the reactor was slowly increased up to room temperature. After reaction in the reactor for 12 hours, the resulting solution was filtered to obtain a white solution . The white solution was evaporated under vacuum to remove toluene. Bimetallic compound (catalyst 18) bridged with a 50 triol was obtained as yield of 88%.

Example 19: ethylene polymerization

[0068] Ethylene polymerization was performed by using the new metallocene catalysts prepared in the Examples. 55 The results are shown in Table 1.

11 EP 2 174 963 B1

Table 1 Catalyst [Al]/[M] Temperature (°C) Reaction time (hr) Yield (g) Activity (kgPE/mol-M) Catalyst 4 25 80 1 32 16.0 5 Catalyst 4 50 80 1 64 32.0 Catalyst 4 75 80 1 74 37.0 Catalyst 9 25 80 1 49 24.5 Catalyst 9 50 80 1 73 36.5 Catalyst 16 50 80 1 28 14.0 10 Catalyst 16 75 80 1 32 16.0 Catalyst 18 75 80 1 20 10.0 Catalyst 18 50 80 1 51 25.5 Catalyst 18 75 80 1 65 32.5 15 *polymerization condition: hexane (1 L), ethylene (115psi)

Example 20: ethylene/1-hexene co-polymerization

20 [0069] Copolymerization of ethylene and 1-hexene was performed by using the new metallocene catalysts in the Examples. The results are shown in Table 2.

Table 2 Catalyst (Al]/[M] Temperature (°C) Reaction time (hr) Yield (g) Activity (kgPE/mol-M) 25 Catalyst 4 50 80 1 72 36.0 Catalyst 4 75 80 1 89 44.5 *polymerization condition: hexane (1 L), 1-hexene (25 ml), ethylene (115psi)

30 Claims

1. A method for the preparation of a metallocene catalyst for olefin polymerization having the general formula (11)

35

40

45

50

55

12 EP 2 174 963 B1

5

10

15

20

25

wherein M, M1 and M2 in the general formula (11) are respectively a transition metal of Group IV, V or VI of the Periodic Table, preferably of Group IV such as titanium, zirconium, hafnium, etc; Cp, Cp1and Cp2 are the same or different and are each a cyclopentadienyl group, an indenyl group, a fluorenyl 30 group or derivatives thereof, which forms a η5-bond with the transition metal of M, M1 or M2; 1 2 3 X , X and X are respectively a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group of1-20 C, a cycloalkyl group of C1-20, an alkoxy group of C1-20, an aryl group of C 6-20, an alkylaryl group of C6-20 or an arylalkyl group of C6-20; 1 2 R and R respectively represent Ra, Rb-O-Rc or 35

40

wherein Ra, Rb, Rc, Rd and Re are respectively a linear alkyl group of C1-20, a branched alkyl group of C1-20, a divalent cycloalkyl group of C 3-20, a substituted divalent cycloalkyl group of C 3-20, an aryl group of C 6-40, an alkylaryl 3 group of C6-40, an arylalkyl group of C6-40; and r is a hydrogen atom, an alkyl group of C 1-10, a cycloalkyl group of C1-10, an alkoxy group of C 1-10. an aryl group of C6-20, an alkylaryl group of C6-20 or an arylalkyl group of C 6-20; 45 19 19 Q is N or -Cr (wherein r is an alkyl group of C 1-10, a cycloalkyl group of C1-10, an alkoxy group of C1-10, an aryl group of C6-20, an alkylaryl group of C6-20, or arylalkyl group of C6-20); 1 2 E, E , and E are O, B, an alkyl group of C 1-4, Si or dialkylgennanium; and J, J1 and J2 are respectively S, alkylphosphine or alkyl amine; which is prepared by reacting: 50 a metallocene compound represented by the general formula (B)

1 1 1 (CnR m)2E(R m)J(R m)MX2 (B)

55 wherein M in the formula (B) is a transition metal of Group IV, V or VI of the Periodic Table; 1 (CnR m) is a substituted cyclopentadienyl group, a substituted indenyl group or a substituted fluorenyl group, 1 wherein n is an integer of 5, 9 or 13, R is a hydrogen atom, an alkyl group of C 1-20, a cycloalkyl group of C 1-20, an alkoxy group of C 1-20, an aryl group of C 6-20, an alkylaryl group of C 6-20, an arylalkyl group of C 6-20, cycloalkyl

13 EP 2 174 963 B1

group of C6-20, m is an integer of 0 to 5; E is O, B, an alkyl group of C1-4, silicone or a dialkylgermanium: J is S, an alkylphosphine or an alkylamine; and X is a halogen, a hydrogen, an alkyl group of C 1-20, an alkoxy group of C1-20, a branched alkyl group of C 1-20, 5 a cycloalkyl group of C3-20, a substituted cycloalkyl group of C 3-20, an aryl group of C6-40, an alkylaryl group of C6-40, or ; an arylalkyl group of C 6-40; with a compound having at least two functional groups represented by the general formula (D):

10

15 wherein T1, T2 and T3 in the formula (D) are a hydrogen atom or an alkali metal; 1 2 1 2 1 2 Y, Y and Y are 0, S, - Nr or - Pr , wherein r and r are a hydrogen atom, an alkyl group of C 1-10, a cycloalkyl group of C 1-10, an alkoxy group of C 1-10, an aryl group of C 6-20, an alkylaryl group of C 6-20, or an arylalkyl group of C6-20; 20 1 2 3 R , R and R respectively represent Ra, Rb-O-Rc or

25

wherein Ra, Rb, Rc, Rd and Re are a linear alkyl group of C1-20, a branched alkyl group of C1-20, a cycloalkyl group of C3-20, a substituted cycloalkyl group of C3-20, an aryl group of C6-40, an alkylaryl group of C6-40, an 3 arylalkyl group of C 6-40, and r is a hydrogen atom, an alkyl group of C 1-10, a cycloalkyl group of C 1-10, an alkoxy 30 group of C1-10, an aryl group of C6-20, an alkylaryl group of C6-20, or an arylalkyl group of C6-20; and 4 4 Q is N or -Cr wherein r is an alkyl group of C1-10, a cycloalkyl group of C1-10, an alkoxy group of C 1-10, an aryl group of C 6-20, an alkyl aryl group of C 6-20 or an aryl alkyl group of C 6-20.

2. The method of claim 1 wherein said compound having at least two functional groups is selected from the group 35 consisting of 1,6-hexanediol, 1,8-octanediol, 1-[N-bis(2-hydroxyethyl)amino]-2-propanol, hydroquinone, 1,5-dihy- droxynaphthalene, 4,4’ -isopropylidenediphenol, 2,2-bis(4- hydroxy-3-methylphenyl)propane, 1,6-hexanedithiol, 1,6-hexanediamine, spermidine, 4,4’-methylenebis(cyclohexylamine), 4-hydroxypiperidine, 4,4’-methylenebis(2,6- diethylaniline), 4,4’-methylenebis(2,6-diisopropylaniline), and 1,3-bis(diphenylphosphino)propane.

40 3. A catalyst system for olefin polymerization comprising the metallocene catalyst according claim 1 and a co- catalyst.

4. The catalyst system of claim 3 wherein said co-catalyst is an organometallic compound.

5. The catalyst system of claim 3 wherein said organometallic compound is selected from the group consisting of 45 alkylaluminoxane, organoaluminium compound, and a mixture thereof.

6. The catalyst system of claim 5 wherein said aluminoxane is selected from the group consisting of methylaluminoxane, modified methylaluminoxane, silica-supported aluminoxane, magnesium compound-supported aluminoxane, alu- mina-supported aluminoxane and polymer-supported aluminoxane. 50 7. The catalyst system of claim 6 wherein said aluminoxane has a chain structure and a cyclic structure respectively represented by the general formulae (H) or (I), having a structural unit represented by the general formula (G):

55

14 EP 2 174 963 B1

5

10

15

20

25 wherein R1 is an alkyl group of C 1-8 and q is an integer of 2 to 100.

8. The catalyst system of claim 7 wherein the molar ratio of transition meta! of said metallocene compound to aluminium of said organometallic compound is in the range from 1:1 to 1:20000.

30 9. The catalyst system of claim 8 wherein said molar ratio is in the range from 1:5 to 1:3000.

10. The catalyst system of claim 3 wherein said co-catalyst is a mixture of a non-coordinated Lewis acid and alkylalu- minium.

35 11. The catalyst system of claim 10 wherein said non-coordinated Lewis acid is selected from the group consisting of N,N-dimethylaniliniumtetrakis(pentafluorophenyl)borate, triphenylcarbeniumtetrakis(pentafluorophenyl)borate, fer- roceriumtetrakis(pentafluorophenyl)borate and tris(pentafluorophenyl)borate.

12. The catalyst system of claim 10 or 11 wherein the molar ratio of transition metal of said catalyst to said non- coordinated 40 Lewis acid is in the range tram 1:0.1 to 1:20.

13. The catalyst system of claim 12 wherein said alkyl aluminium is selected from the group consisting of ethylaluminium, triethylaluminium, diethylaluminium chloride, ethylaluminium dichloride, triisobutylaluminium, diisobutylaluminium hydride, diisobutylaluminium chloride, tri(n-butyl)aluminium, tri(n-hexyl)aluminium, tri(n-octyl)aluminium and ethyl- 45 aluminium sesquichloride.

14. The catalyst system of claim 13 wherein the molar ratio of said transition meta! of said catalyst to said alkylaluminium is in the range from 1:1 to 1:1000.

50 15. The catalyst system of claim 14 wherein said molar ratio is in the range from 1: 50 to 1:500.

16. A method of olefin polymerization comprising contacting a unsaturated olefin with the catalyst system according to claim 3.

55 17. The method of claim 16 wherein said contacting step is performed at the temperature of 0 - 200°C for 30-240 minutes.

18. A method of co-polymerization comprising contacting at least two monomers selected from the group consisting of unsaturated α-olefin, cycloolefin, diene, vinylketone, acrolein, acrylonitrile, acrylamide, vinylacetate and styrene with

15 EP 2 174 963 B1

the catalyst system of claim 3.

19. The method of claim 18 wherein said contacting step is performed at the temperature of 0-200°C for 30-240 minutes.

5 Patentansprüche

1. Verfahren zur Herstellung eines Metallocenkatalysators zur Polymerisation von Olefinen, der die folgende allgemeine Formel (11) aufweist: 10

15

20

25

30

35

wobei M, M1 und M2 in der allgemeinen Formel (11) jeweils ein Übergangsmetall der Gruppe IV, V oder VI des Periodensystems, vorzugsweise der Gruppe IV, wie Titan, Zirconium, Hafnium, etc sind; 40 Cp, Cp1und Cp2 sind gleich oder verschieden und jedes ist eine Cyclopentadienylgruppe, eine Indenylgruppe, eine Fluorenylgruppe oder deren Derivate, die eine η5-Bindung mit dem Übergangsmetall M, M 1 oder M2 bilden; 1 2 3 X , X und X sind jeweils ein Wasserstoffatom, eine Hydroxylgruppe, ein Halogenatom, eine C1-20-Alkylgruppe, eine C1-20-Cycloalkylgruppe, eine C 1-20-Alkoxygruppe, eine C 6-20-Arylgruppe, eine C6-20-Alkylarylgruppe oder eine C6-20-Arylalkylgruppe; 45 1 2 R und R stellen jeweils Ra, Rb-O-Rc oder

50

dar, wobei Ra, Rb, Rc, Rd und Re jeweils eine lineare C1-20-Alkylgruppe, eine verzeigte C1-20-Alkylgruppe, eine zweiwertige C3-20-Cycloalkylgruppe, eine substituierte zweiwertige C3-20-Cycloalkylgruppe, eine C6-40-Arylgruppe, 3 eine C6-40-Alkylarylgruppe, eine C6-40-Arylalkylgruppe sind, und r ein Wasserstoffatom, eine C1-10-Alkylgruppe, 55 eine C1-10-Cycloalkylgruppe, eine C 1-10-Alkoxygruppe, eine C 6-20-Arylgruppe, eine C 6-20-Alkylarylgruppe, oder eine C6-20-Arylalkylgruppe ist; 19 19 Q ist N oder -Cr (wobei r eine C1-10-Alkylgruppe, eine C1-10-Cycloalkylgruppe, eine C1-10-Alkoxygruppe, eine C6-20-Arylgruppe, eine C6-20-Alkylarylgruppe, oder eine C6-20-Arylalkylgruppe ist);

16 EP 2 174 963 B1

1 2 E, E , und E sind O, B, eine C1-4-Alkylgruppe, Si oder Dialkylgermanium; und J, J1 und J2 sind jeweils S, Alkylphosphin oder Alkylamin; der hergestellt wird durch Umsetzung:

5 einer Metallocenverbindung dargestellt durch die allgemeine Formel (B)

1 1 1 (CnR m)2E(R m)J(R m)MX2 (B)

wobei M in der Formel (B) ein Übergangsmetall der Gruppe IV, V oder VI des Periodensystems ist; 10 1 (CnR m) ist eine substituierte Cyclopentadienylgruppe, eine substituierte Indenylgruppe, eine substituierte Fluo- 1 renylgruppe, wobei n eine ganze Zahl 5, 9 oder 13 ist, R ist ein Wasserstoffatom, eine C 1-20-Alkylgruppe, eine C1-20-Cycloalkylgruppe, eine C1-20-Alkoxygruppe, eine C6-20-Arylgruppe, eine C6-20-Alkylarylgruppe oder eine C6-20-Arylalkylgruppe, eine C6-20-Cycloalkylgruppe, m ist eine ganze Zahl von 0 bis 5; E ist O, B, eine C1-4-Alkylgruppe, Silikon oder ein Dialkylgermanium; 15 J ist S, ein Alkylphosphin oder ein Alkylamin; und X ist ein Halogen, ein Wasserstoff, eine C 1-20-Alkylgruppe, eine C 1-20-Alkoxygrouppe, eine verzweigte C 1-20-Al- kylgruppe, eine C3-20-Cycloalkylgruppe, eine substituierte C 3-20-Cycloalkylgruppe, eine C6-40-Arylgruppe, eine C6-40-Alkylarylgruppe oder eine C6-40-Arylalkylgruppe; mit einer Verbindung mit wenigstens zwei funktionellen Gruppen dargestellt durch die allgemeine Formel (D): 20

25

wobei T1, T2 und T3 in der Formel (D) ein Wasserstoffatom oder ein Alkalimetall sind; 1 2 1 2 1 2 Y und Y sind 0, S, -Nr oder -Pr , wobei r und r ein Wasserstoffatom, eine C 1-10-Alkylgruppe, eine C 1-10-Cy- 30 cloalkylgruppe, eine 1-10 C -Alkoxygruppe, eine 6-20 C -Arylgruppe, eine 6-20 C -Alkylarylgruppe oder eine C6-20-Arylalkylgruppe, eine C6-20-Cycloalkylgruppe; 1 2 3 R , R und R stellen jeweils Ra, Rb-O-Rc oder

35

dar, wobei R a, R b, R c, Rd und R e eine lineare C 1-20-Alkylgruppe, eine verzeigte C 1-20-Alkylgruppe, eine C 3-20-Cy- 40 cloalkylgruppe, eine substituierte C3-20-Cycloalkylgruppe, eine C6-40-Arylgruppe, eine C6-40-Alkylarylgruppe, 3 eine C6-40-Arylalkylgruppe sind, und r ein Wasserstoffatom, eine C 1-10-Alkylgruppe, eine C 1-10-Cycloalkylgrup- pe, eine C 1-10-Alkoxygruppe, eine C 6-20-Arylgruppe, eine C 6-20-Alkylarylgruppe, oder eine C 6-20-Arylalkylgruppe ist; und 4 4 Q ist N oder -Cr , wobei r eine C1-10-Alkylgruppe, eine C1-10-Cycloalkylgruppe, eine C1-10-Alkoxygruppe, eine 45 C6-20-Arylgruppe, eine C6-20-Alkylarylgruppe, oder eine C6-20-Arylalkylgruppe ist.

2. Verfahren nach Anspruch 1, wobei die Verbindung mit den wengistens zwei funktionellen Gruppen ausgewählt wird aus der Gruppe bestehend aus 1,6- Hexandiol, 1,8-Oktandiol, 1-[N,N-Bis(2-hydroxyethyl)amino]-2-propanol, Hydro- quinon, 1,5-Dihydroxynaphthalin, 4,4’-Isopropyliden-diphenol, 2,2-Bis(4-hydroxy-3-methylphenyl)propan, 1,6-Hex- 50 andithiol, 1,6-Hexandiamin, Spermidin, 4,4’-Methylen-bis(cyclohexylamin), 4-Hydroxypiperidin, 4,4’-Methylen-bis (2,6-diethylanilin), 4,4’-Methylen-Bis(2,6-diisopropylanilin), und 1,3-Bis(diphenylphosphino)propan.

3. Katalysatorsystem zur Polymerisation von Olefinen umfassend den Metallocenkatalysator nach Anspruch 1 und eine Cokatalysator. 55 4. Katalysatorsystem nach Anspruch 3, wobei der Cokatalysator eine organometallische Verbindung ist.

5. Katalysatorsystem nach Anspruch 3, wobei die organometallische Verbindung ausgewählt wird aus der Gruppe

17 EP 2 174 963 B1

bestehend aus Alkylaluminoxan, Organoaluminiumverbindung und einer Mischung daraus.

6. Katalysatorsystem nach Anspruch 5, wobie das Aluminoxan ausgewählt wird aus der Gruppe bestehend aus Me- thylaluminoxan, modifiziertem Methylaluminoxan, Silizium-unterstütztem Aluminoxan, Magnesiumverbindung-un- 5 terstütztem Aluminoxane, Aluminiumunterstütztem Aluminoxane und Polymer-unterstütztem Aluminoxan.

7. Katalysatorsystem nach Anspruch 6, wobei das Aluminoxan eine Kettenstruktur und eine zyklische Struktur hat, die jeweils druch die allgemeine Formel (H) oder (I) dargestellt ist, die eine strukturelle Einheit, dargestellt durch die allgemeine Formel (G) aufweist: 10

15

20

25

30

35

wobei R’ eine C1-8-Alkylgruppe ist und q eine ganze Zahl von 2 bis 100 ist.

8. Katalysatorsystem nach Anspruch 7, wobei das molare Verhältnis des Übergangsmetalls der Metallocenverbindung zu dem Aluminium der organometallischen Verbindung im Bereich von 1:1 to 1:20000 liegt. 40 9. Katalysatorsystem nach Anspruch 8, wobei das molare Verhältnis im Bereich von 1: 5 bis 1:3000 liegt.

10. Katalysatorsystem nach Anspruch 3, wobei der Co- Katalysator eine Mischung aus einer nicht- koordinierten Lewis- Säure und Alkylaluminium ist. 45 11. Katalysatorsystem nach Anspruch 10, wobei die nicht-kooridinierte Lewis-Säure ausgewählt wird aus der Gruppe bestehend aus N,N-Dimethylaniliniumtetrakis(pentafluorophenyl)borat, Triphenylcarbeniumtetrakis(pentafluoro- phenyl)borat, Ferroceriumtetrakis(pentafluorophenyl)borat und Tris(pentafluorophenyl)borat.

50 12. Katalysatorsystem nach Anspruch 10 oder 11, wobei das molare Verhältnis des Übergangsmetalls des Katalysators zu der nicht-koordinierten Lewis-Säure im Bereich von 1:0.1 bis 1:20 liegt.

13. Katalysatorsystem nach Anspruch 12, wobei das Alkylaluminium ausgewählt wird aus der Gruppe bestehend aus Ethylaluminium, Triethylaluminium, Diethylaluminiumchlorid, Ethylaluminiumdichlorid, Triisobutylaluminium, Diiso- 55 butylaluminiumhydrid, Diisobutylaluminiumchlorid, Tri(n-butyl)aluminium, Tri(n-hexyl)aluminium, Tri(n-octyl)alumi- nium und Ethylaluminiumsesquichlorid.

14. Katalysatorsystem nach Anspruch 13, wobei das molare Verhältnis des Übergangsmetalls des Katalysators zu dem

18 EP 2 174 963 B1

Alkylaluminium im Bereich von 1:1 bis 1:1000 liegt.

15. Katalysatorsystem nach Anspruch 14, wobei das molare Verhältnis im Bereich von 1:50 bis 1:500 liegt.

5 16. Verfahren zur Polymerisation von Olefinen umfassend Umsetzen eines ungesättigten Olefins mit dem Katalysator- system nach Anspruch 3.

17. Verfahren nach Anspruch 16, wobei der Umsetzungsschritt bei einer Temperatur von 0-200°C für 30-240 Minuten durchgeführt wird. 10 18. Verfahren zur Co-Polymerisierung umfassend Umsetzen von wenigstens zwei Monomeren ausgewählt aus der Gruppe bestehend aus ungesättigtemα -Olefin, Cycloolefin, Dien, Vinylketon, Acrolein, Acrylonitril, Acrylamid, Vinylacetat und Styrol mit dem Katalysatorsystem nach Anspruch 3.

15 19. Verfahren nach Anspruch 18, wobei der Umsetzungsschritt bei einer Temperatur von 0-200°C für 30-240 Minuten durchgeführt wird.

Revendications 20 1. Procédé de préparation d’un catalyseur de type métallocène pour polymérisation d’oléfine (s), de formule générale (11) :

25

30

35

40

45 dans laquelle formule générale (11)

- M, M 1 et M 2 représentent chacun un atome de métal de transition du Groupe IV, V ou VI du Tableau Périodique, et de préférence du Groupe IV, tels les titane, zirconium et hafnium, etc. ; 50 - Cp, Cp1 et Cp2 représentent des entités identiques ou différentes et représentent chacun un groupe cyclo- pentadiényle, un groupe indényle ou un groupe fluorényle, ou un groupe dérivé de l’un de ceux-ci, qui forme une liaison de type η5 avec l’atome de métal de transition représenté par M, M 1 ou M2 ; - X1, X2 et X3 représentent chacun un atome d’hydrogène ou d’halogène ou un groupe hydroxyle, alkyle en C1-20, cycloalkyle en C1-20, alcoxy en C1-20, aryle en C6-20, alkyl-aryle en C6-20 ou aryl-alkyle en C6-20 ; 55 - R1 et R2 représentent chacun une entité symbolisée par Ra, Rb-O-Rc ou

19 EP 2 174 963 B1

5

où Ra, Rb, Rc, Rd et Re représentent chacun un groupe alkyle en C 1-20, alkyle ramifié en C1-20, cycloalkyle en C3-20 divalent, cycloalkyle en C3-20 divalent à substituant(s), aryle en C6-40, alkyl-aryle en C6-40 ou aryl-alkyle 3 en C6-40, et r représente un atome d’hydrogène ou un groupe alkyle en C 1-10, cycloalkyle en C1-10, alcoxy en C1-10, aryle en C6-20, alkyl-aryle en C6-20 ou aryl-alkyle en C6-20 ; 10 19 19 - Q représente un atome d’azote ou un groupe symbolisé par -Cr où r représente un groupe alkyle en C 1-10, cycloalkyle en C1-10, alcoxy en C1-10, aryle en C6-20, alkyl-aryle en C6-20 ou aryl-alkyle en C6-20 ; 1 2 - E, E et E représentent chacun un atome d’oxygène ou de bore, un groupe alkyle en 1-4C , un atome de silicium, ou un groupe dialkyl-germanyle, - et J, J1 et J2 représentent chacun un atome de soufre ou un groupe alkyl- phosphino ou alkyl-amino ; 15 lequel catalyseur est préparé par réaction :

d’un composé de type métallocène, représenté par la formule générale (B) :

20 1 1 1 (CnR m)2E(R m)J(R m)MX2 (B)

dans laquelle formule (B)

25 - M représente un atome d’un métal de transition du Groupe IV, V ou VI du Tableau Périodique ; 1 - (CnR m) représente un groupe cyclopentadiényle à substituant(s), un groupe indényle à substituant(s) ou un groupe fluorényle à substituant(s), où l’indice n est un nombre entier valant 5, 9 ou 13, R 1 représente un atome d’hydrogène ou un groupe alkyle en C 1-20, cycloalkyle en C1-20, alcoxy en C1-20, aryle en C6-20, alkyl-aryle en C6-20, aryl-alkyle en C6-20 ou cycloalkyle en C6-20, et l’indice m est un nombre entier valant de 0 à 5 ; 30 - E représente un atome d’oxygène ou de bore, un groupe alkyle en C1-4, un atome de silicium, ou un groupe dialkyl-germanyle, - J représente un atome de soufre ou un groupe alkyl- phosphino ou alkyl-amino ; - et X représente un atome d’hydrogène ou d’halogène ou un groupe alkyle en C1-20, alcoxy en C1-20, alkyle ramifié en C1-20, cycloalkyle en C3-20, cycloalkyle en C3-20 à substituant(s), aryle en C6-40, alkyl-aryle en C6-40 35 ou aryl-alkyle en C6-40 ;

avec un composé doté d’au moins deux groupes fonctionnels, représenté par la formule générale (D) :

40

45 dans laquelle formule (D)

- T1, T2 et T3 représentent chacun un atome d’hydrogène ou de métal alcalin ; - Y, Y1 et Y2 représentent chacun un chaînon symbolisé par -O-, -S-, -Nr1- ou -Pr2-, où r1 et r2 représentent chacun un atome d’hydrogène ou un groupe alkyle en C1-10, cycloalkyle en C1-10, alcoxy en C1-10, aryle en 50 C6-20, alkyl-aryle en C6-20 ou aryl-alkyle en C6-20 : - R1, R2 et R3 représentent chacun une entité symbolisée par Ra, Rb-O-Rc ou

55

20 EP 2 174 963 B1

où Ra, Rb, Rc, R d et R e représentent chacun un groupe alkyle linéaire en C 1-20, alkyle ramifié en C 1-20, cycloalkyle 3 en C3-20, cycloalkyle en C3-20 à substituant(s), aryle en C6-40, alkyl-aryle en C6-40 ou aryl-alkyle en C6-40, et r représente un atome d’hydrogène ou un groupe alkyle en C 1-10, cycloalkyle en C 1-10, alcoxy en C1-10, aryle en C6-20, alkyl-aryle en C6-20 ou aryl-alkyle en C6-20 ; 5 4 4 - et Q représente un atome d’azote ou un groupe symbolisé par -Cr où r représente un groupe alkyle en C 1-10, cycloalkyle en C1-10, alcoxy en C1-10, aryle en C6-20, alkyl-aryle en C6-20 ou aryl-alkyle en C6-20.

2. Procédé conforme à la revendication 1, pour lequel ledit composé doté d’au moins deux groupes fonctionnels est choisi dans l’ensemble constitué par les suivants : hexane- 1,6-diol,octane- 1,8-diol,1-[N, N-bis(2-hydroxy-éthyl)-ami- 10 no]-propane-2-ol, hydroquinone, 1,5-di-hydroxy-naphtalène, 4,4’-isopropylidène-bisphénol, 2,2-bis(4-hydroxy-3- méthyl-phényl)-propane, hexane-1,6-dithiol, hexane-1,6-diamine, spermidine, 4,4’-méthylène-bis(cyclohexyl-ami- ne), 4-hydroxy-pipéridine, 4,4’-méthylène-bis(2,b-diéthyl-aniline), 4,4’-méthylène-bis(2,6-diisopropyl-aniline) et 1,3- bis(diphényl-phosphino)-propane.

15 3. Système de catalyseur pour polymérisation d’oléfine(s), comprenant un catalyseur de type métailocène, tel que défini dans la revendication 1, et un co-catalyseur.

4. Système de catalyseur conforme à la revendication 3, dans lequel ledit co-catalyseur est un composé organomé- tallique. 20 5. Système de catalyseur conforme à la revendication 4, pour lequel ledit composé organométa llique est choisi dans l’ensemble constitué par les alkyl-aluminoxanes, les composés organo-aluminiques et les mélanges de tels com- posés.

25 6. Système de catalyseur conforme à la revendication 5, pour lequel ledit aluminoxàne est choisi dans l’ensemble constitué par les suivants : méthyl-aluminoxane, méthyl-aluminoxane modifié, aluminoxane supporté sur silice, aluminoxane supporté sur composé de magnésium, aluminoxane supporté sur alumine, et aluminoxane supporté sur polymère.

30 7. Système de catalyseur conforme à la revendication 6, dans lequel ledit aluminoxane présente une structure en chaîne ou une structure cyclique, respectivement représentée par la formule générale (H) ou (I), et dotée d’un motif structural unitaire représenté par la formule générale (G) :

35

40

45

50

55 dans lesquelles formules R’ représente un groupe alkyle en C 1-8 et l’indice q est un nombre entier valant de 2 à 100.

8. Système de catalyseur conforme à la revendication 7, dans lequel le rapport molaire du métal de transition dudit composé de type métallocène à l’aluminium dudit composé organométallique se situe dans l’intervalle allant de 1/1

21 EP 2 174 963 B1

à 1/20000.

9. Système de catalyseur conforme à la revendication 8, dans lequel ledit rapport molaire se situe dans l’intervalle allant de 1/5 à 1/3000. 5 10. Système de catalyseur conforme à la revendication 3, dans lequel ledit co-catalyseur est un mélange d’un acide de Lewis non-coordinant et d’un alkyl-aluminium.

11. Système de catalyseur conforme à la revendication 10, pour lequel ledit acide de Lewis non-coordinant est choisi 10 dans l’ensemble formé par les suivants :

tétrakis(pentafluorophényl)borate de N,N-diméthyl-anilinium, tétrakis(pentafluorophényl)borate de triphényl-carbénium, tétrakis(pentafluorophényl)borate de ferrocénium, 15 et tris(pentafluorophényl)borane.

12. Système de catalyseur conforme à la revendication 10 ou 11, dans lequel le rapport molaire du métal de transition dudit catalyseur audit acide de Lewis non-coordinant se situe dans l’intervalle allant de 1/0,1 à 1/20.

20 13. Système de catalyseur conforme à la revendication 12, pour lequel ledit alkyl- aluminium est choisi parmi les suivants : éthyl-aluminium, triéthyl-aluminium, chlorure de diéthyl-aluminium, dichlorure d’éthyl-aluminium, triisobutyl-alumi- nium, hydrure de diisobutyl-aluminium, chlorure de diisobutyl-aluminium, tri(n-butyl)-aluminium, tri-(n-hexyl)-alumi- nium, tri(n-octyl)-aluminium et sesquichlorure d’éthyl-aluminium.

25 14. Système de catalyseur conforme à la revendication 13, dans lequel le rapport molaire dudit métal de transition dudit catalyseur audit alkyl-aluminium se situe dans l’intervalle allant de 1/1 à 1/1000.

15. Système de catalyseur conforme à la revendication 14, dans lequel ledit rapport molaire se situe dans l’intervalle allant de 1/50 à 1/500. 30 16. Procédé de polymérisation d’oléfine, comprenant le fait de mettre une oléfine insaturée en contact avec un système de catalyseur conforme à la revendication 3.

17. Procédé conforme à la revendication 16, dans lequel ladite étape de mise en contact est réalisée à une température 35 de 0 à 200 °C et dure de 30 à 240 minutes.

18. Procédé de copolymérisation, comprenant le fait de mettre au moins deux monomères, choisis dans l’ensemble constitué par les alpha-oléfines insaturées, cyclooléfines, diènes et vinyl-cétones et les acroléine, acrylonitrile, acrylamide, acétate de vinyle et styrène, en contact avec un système de catalyseur conforme à la revendication 3. 40 19. Procédé conforme à la revendication 18, dans lequel ladite étape de mise en contact est réalisée à une température de 0 à 200 °C et dure de 30 à 240 minutes.

45

50

55

22 EP 2 174 963 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 3740384 A [0003] • EP 423872 A2 [0005] • JP 9176221 A [0004]

23