Getting Rid of the Ether Could Physics Have Achieved It Sooner, with Better Assistance from Philosophy?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalization of Lorentz-Poincare Ether Theory to Quantum Gravity
Abstract We present a quantum theory of gravity which is in agreement with observation in the relativistic domain. The theory is not rel- ativistic, but a Galilean invariant generalization of Lorentz-Poincare ether theory to quantum gravity. If we apply the methodological rule that the best available theory has to be preferred, we have to reject the relativistic paradigm and return to Galilean invariant ether theory. arXiv:gr-qc/9706055v1 18 Jun 1997 1 Generalization Of Lorentz-Poincare Ether Theory To Quantum Gravity Ilja Schmelzer∗ September 12, 2021 ... die bloße Berufung auf k¨unftig zu entdeckende Ableitungen bedeutet uns nichts. Karl Popper In quantum gravity, as we shall see, the space-time manifold ceases to exist as an objective physical reality; geometry becomes relational and contextual; and the foundational conceptual categories of prior science – among them, existence itself – become problematized and relativized. Alan Sokal Contents 1 The Problem Of Quantum Gravity 3 2 Introduction 4 3 Generalization Of Lorentz-Poincare Ether Theory To Gra- vity 6 3.1 Elementary Properties Of Post-Relativistic Gravity . 8 3.2 TheCosmologicalConstants . 9 3.2.1 The Observation Of The Cosmological Constants . 9 3.2.2 The Necessity Of Cosmological Constants . 10 3.3 TheGlobalUniverse ....................... 11 3.4 Gravitational Collapse . 12 ∗WIAS Berlin 2 3.5 A Post-Relativistic Lattice Theory . 13 3.6 BetterAtomicEtherTheories . 15 4 Canonical Quantization 16 5 Discussion 17 5.1 Conclusion............................. 18 1 The Problem Of Quantum Gravity We believe that there exists a unique physical theory which allows to describe the entire universe. That means, there exists a theory — quantum gravity — which allows to describe quantum effects as well as relativistic effects of strong gravitational fields. -
Interaction Energy of a Charged Medium and Its EM Field in a Curved Spacetime Mayeul Arminjon
Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime Mayeul Arminjon To cite this version: Mayeul Arminjon. Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime. Proceedings of the Twentieth International Conference on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Jun 2018, Varna, Bulgaria. pp.88-98. hal-01881100 HAL Id: hal-01881100 https://hal.archives-ouvertes.fr/hal-01881100 Submitted on 25 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime Mayeul Arminjon Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR lab., F-38000 Grenoble, France Abstract In the electrodynamics of special relativity (SR) or general relativ- ity (GR), the energy tensors of the charged medium and its EM field add to give the total energy tensor that obeys the dynamical equation without external force. In the investigated scalar theory of gravitation (\SET"), this assumption leads to charge non-conservation, hence an additional, \interaction" energy tensor T inter has to be postulated. The present work aims at constraining this tensor. -
Experiments in Topology Pdf Free Download
EXPERIMENTS IN TOPOLOGY PDF, EPUB, EBOOK Stephen Barr | 210 pages | 01 Jan 1990 | Dover Publications Inc. | 9780486259338 | English | New York, United States Experiments in Topology PDF Book In short, the book gives a competent introduction to the material and the flavor of a broad swath of the main subfields of topology though Barr does not use the academic disciplinary names preferring an informal treatment. Given these and other early developments, the time is ripe for a meeting across communities to share ideas and look forward. The experiment played a role in the development of ethical guidelines for the use of human participants in psychology experiments. Outlining the Physics: What are the candidate physical drivers of quenching and do the processes vary as a function of galaxy type? Are there ways that these different theoretical mechanisms can be distinguished observationally? In the first part of the study, participants were asked to read about situations in which a conflict occurred and then were told two alternative ways of responding to the situation. In a one-dimensional absolute-judgment task, a person is presented with a number of stimuli that vary on one dimension such as 10 different tones varying only in pitch and responds to each stimulus with a corresponding response learned before. In November , the E. The study and the subsequent article organized by the Washington Post was part of a social experiment looking at perception, taste and the priorities of people. The students were randomly assigned to one of two groups, and each group was shown one of two different interviews with the same instructor who is a native French-speaking Belgian who spoke English with a fairly noticeable accent. -
Albert Einstein
THE COLLECTED PAPERS OF Albert Einstein VOLUME 15 THE BERLIN YEARS: WRITINGS & CORRESPONDENCE JUNE 1925–MAY 1927 Diana Kormos Buchwald, József Illy, A. J. Kox, Dennis Lehmkuhl, Ze’ev Rosenkranz, and Jennifer Nollar James EDITORS Anthony Duncan, Marco Giovanelli, Michel Janssen, Daniel J. Kennefick, and Issachar Unna ASSOCIATE & CONTRIBUTING EDITORS Emily de Araújo, Rudy Hirschmann, Nurit Lifshitz, and Barbara Wolff ASSISTANT EDITORS Princeton University Press 2018 Copyright © 2018 by The Hebrew University of Jerusalem Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA (Revised for volume 15) Einstein, Albert, 1879–1955. The collected papers of Albert Einstein. German, English, and French. Includes bibliographies and indexes. Contents: v. 1. The early years, 1879–1902 / John Stachel, editor — v. 2. The Swiss years, writings, 1900–1909 — — v. 15. The Berlin years, writings and correspondence, June 1925–May 1927 / Diana Kormos Buchwald... [et al.], editors. QC16.E5A2 1987 530 86-43132 ISBN 0-691-08407-6 (v.1) ISBN 978-0-691-17881-3 (v. 15) This book has been composed in Times. The publisher would like to acknowledge the editors of this volume for providing the camera-ready copy from which this book was printed. Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed in the United States of America 13579108642 INTRODUCTION TO VOLUME 15 The present volume covers a thrilling two-year period in twentieth-century physics, for during this time matrix mechanics—developed by Werner Heisenberg, Max Born, and Pascual Jordan—and wave mechanics, developed by Erwin Schrödinger, supplanted the earlier quantum theory. -
Popular Arguments for Einstein's Special Theory of Relativity1
1 Popular Arguments for Einstein’s Special Theory of Relativity1 Patrick Mackenzie University of Saskatchewan Introduction In this paper I shall argue in Section II that two of the standard arguments that have been put forth in support of Einstein’s Special Theory of Relativity do not support that theory and are quite compatible with what might be called an updated and perhaps even an enlightened Newtonian view of the Universe. This view will be presented in Section I. I shall call it the neo-Newtonian Theory, though I hasten to add there are a number of things in it that Newton would not accept, though perhaps Galileo might have. Now there may be other arguments and/or pieces of empirical evidence which support the Special Theory of Relativity and cast doubt upon the neo-Newtonian view. Nevertheless, the two that I am going to examine are usually considered important. It might also be claimed that the two arguments that I am going to examine have only heuristic value. Perhaps this is so but they are usually put forward as supporting the Special Theory and refuting the neo-Newtonian Theory. Again I must stress that it is not my aim to cast any doubt on the Special Theory of Relativity nor on Einstein. His Special Theory and his General Theory stand at the zenith of human achievement. My only aim is to cast doubt on the assumption that the two arguments I examine support the Special Theory. Section I Let us begin by outlining the neo-Newtonian Theory. According to it the following tenets are true: 1. -
Einstein and Gravitational Waves
Einstein and gravitational waves By Alfonso León Guillén Gómez Independent scientific researcher Bogotá Colombia March 2021 [email protected] In memory of Blanquita Guillén Gómez September 7, 1929 - March 21, 2021 Abstract The author presents the history of gravitational waves according to Einstein, linking it to his biography and his time in order to understand it in his connection with the history of the Semites, the personality of Einstein in the handling of his conflict-generating circumstances in his relationships competition with his colleagues and in the formulation of the so-called general theory of relativity. We will fall back on the vicissitudes that Einstein experienced in the transition from his scientific work to normal science as a pillar of theoretical physics. We will deal with how Einstein introduced the relativistic ether, conferring an "odor of materiality" to his geometric explanation of gravity, where undoubtedly it does not fit, but that he had to give in to the pressure that was justified by his most renowned colleagues, led by Lorentz. Einstein had to do it to stay in the queue that would lead him to the Nobel. It was thus, as developing the relativistic ether thread, in June 1916, he introduced the gravitational waves of which, in an act of personal liberation and scientific honesty, when he could, in 1938, he demonstrated how they could not exist, within the scenario of his relativity, to immediately also put an end to the relativistic ether. Introduction Between December 1969 and February 1970, the author formulated -
Chasing the Light Einsteinʼs Most Famous Thought Experiment 1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive November 14, 17, 2010; May 7, 2011 Chasing the Light Einsteinʼs Most Famous Thought Experiment John D. Norton Department of History and Philosophy of Science Center for Philosophy of Science University of Pittsburgh http://www.pitt.edu/~jdnorton Prepared for Thought Experiments in Philosophy, Science and the Arts, eds., James Robert Brown, Mélanie Frappier and Letitia Meynell, Routledge. At the age of sixteen, Einstein imagined chasing after a beam of light. He later recalled that the thought experiment had played a memorable role in his development of special relativity. Famous as it is, it has proven difficult to understand just how the thought experiment delivers its results. It fails to generate problems for an ether-based electrodynamics. I propose that Einstein’s canonical statement of the thought experiment from his 1946 “Autobiographical Notes,” makes most sense not as an argument against ether-based electrodynamics, but as an argument against “emission” theories of light. 1. Introduction How could we be anything but charmed by the delightful story Einstein tells in his “Autobiographical Notes” of a striking thought he had at the age of sixteen? While recounting the efforts that led to the special theory of relativity, he recalled (Einstein, 1949, pp. 52-53/ pp. 49-50): 1 ...a paradox upon which I had already hit at the age of sixteen: If I pursue a beam of light with the velocity c (velocity of light in a vacuum), I should observe such a beam of light as an electromagnetic field at rest though spatially oscillating. -
In Defence of Classical Physics Abstract Classical Physics Seeks To
In defence of classical physics Abstract Classical physics seeks to find the laws of nature. I am of the opinion that classical Newtonian physics is “real” physics. This is in the sense that it relates to mechanical physics. I suggest that if physics is ever to succeed in determining a theory of everything it needs to introduce a more satisfactory invariant medium in order to do this. This is describing the laws of nature and retain the elementary foundational conditions of universal symmetry. [email protected] Quote: “Classical physics describes an inertial frame of reference within which bodies (objects) whose net force acting upon them is zero. These objects are not accelerated. They are either at rest or they move at a constant velocity in a straight line” [1] This means that classical physics is a model that describes time and space homogeneously. Classical physics seeks to find the laws of nature. Experiments and testing have traditionally found it difficult to isolate the conditions, influences and effects to achieve this objective. If scientists could do this they would discover the laws of nature and be able to describe these laws. Today I will discuss the relationship between classical Newtonian physics and Einstein’s Special Relativity model. I will share ideas as to why some scientists suggests there may be shortcomings in Einstein’s Special Relativity theory that might be able to successfully addressed, using my interpretation of both of these theories. The properties of the laws of nature are the most important invariants [2] of the universe and universal reality. -
Dersica NOTAS DE FÍSICA É Uma Pré-Publicaçso De Trabalhos Em Física Do CBPF
CBPF deRsica NOTAS DE FÍSICA é uma pré-publicaçSo de trabalhos em Física do CBPF NOTAS DE FÍSICA is a series of preprints from CBPF Pedidos de copies desta publicação devem ser enviados aos autores ou à: Requests for free copies of these reports should be addressed to: Drvbèo de Publicações do CBPF-CNPq Av. Wenceslau Braz, 71 - Fundos 22.290 - Rio de Janeiro - RJ. Brasil CBPF-NF-38/82 ON EXPERIMENTS TO DETECT POSSIBLE FAILURES OF RELATIVITY THEORY by U. A. Rodrigues1 and J. Tioano Ctntro BratiitirO dê Ptsquisas Físicas - CBPF/CNPq Rua XavUr Sigaud, ISO 22290 - Rfo dt Jantiro, RJ. - BRASIL * Instituto dt MatMitica IMECC - ONICAMP Caixa Postal 61SS 13100 - Canpinas, SP. - BRASIL ABSTRACT: condition* under which 41 may expect failure of Einstein's Relativity, ^^also give a comple te analysis of a recently proposed experiment by Kolen— Torr showing that it must give a negative result, ta 1. INTRODUCTION A number of experiments have been proposed or reported which supposedly would detect the motion of the laboratory relative to a preferential frame SQ (the ether), thus provinding an experi- mental distinction between the so called "Lorentz" Ether Theory and Einstein Theory of Relativity. Much of the confusion on the subject, as correctly identified (2) by Tyapkin . (where references until 1973 can be found) is pos- 3 nesiblw possibility due to Miller*y to tes* twh expexrifipentallo 4# 1957 startey relativityd a discussio. nH eo f asuggeste seeminglyd comparing the Doppler shift of two-maser beams whose atoms move in opposite directions. His calculation of the Doppler shift on the basis of pre-relativistic physics/ gave rise to the appearance of a term linearly dependent upon the velocity v of the labora- tory sytem moving with respect to the ether. -
A Rhetorical Analysis of Sir Isaac Newton's Principia A
A RHETORICAL ANALYSIS OF SIR ISAAC NEWTON’S PRINCIPIA A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN THE GRADUATE SCHOOL OF THE TEXAS WOMAN’S UNIVERSITY DEPARTMENT OF ENGLISH, SPEECH, AND FOREIGN LANGUAGES COLLEGE OF ARTS AND SCIENCES BY GIRIBALA JOSHI, B.S., M.S. DENTON, TEXAS AUGUST 2018 Copyright © 2018 by Giribala Joshi DEDICATION Nature and Nature’s Laws lay hid in Night: God said, “Let Newton be!” and all was light. ~ Alexander Pope Dedicated to all the wonderful eighteenth-century Enlightenment thinkers and philosophers! ii ACKNOWLEDGMENTS I would like to acknowledge the continuous support and encouragement that I received from the Department of English, Speech and Foreign Languages. I especially want to thank my thesis committee member Dr. Ashley Bender, and my committee chair Dr. Brian Fehler, for their guidance and feedback while writing this thesis. iii ABSTRACT GIRIBALA JOSHI A RHETORICAL ANALYSIS OF SIR ISAAC NEWTON’S PRINCIPIA AUGUST 2018 In this thesis, I analyze Isaac Newton's Philosophiae Naturalis Principia Mathematica in the framework of Aristotle’s theories of rhetoric. Despite the long-held view that science only deals with brute facts and does not require rhetoric, we learn that science has its own special topics. This study highlights the rhetorical situation of the Principia and Newton’s rhetorical strategies, emphasizing the belief that scientific facts and theories are also rhetorical constructions. This analysis shows that the credibility of the author and the text, the emotional debates before and after the publication of the text, the construction of logical arguments, and the presentation style makes the book the epitome of scientific writing. -
The Controversy on the Conceptual Foundation of Space-Time Geometry
한국수학사학회지 제22권 제3호(2009년 8월), 273 - 292 The Controversy on the Conceptual Foundation of Space-Time Geometry Yonsei University Yang, Kyoung-Eun [email protected] According to historical commentators such as Newton and Einstein, bodily behaviors are causally explained by the geometrical structure of space-time whose existence analogous to that of material substance. This essay challenges this conventional wisdom of interpreting space-time geometry within both Newtonian and Einsteinian physics. By tracing recent historical studies on the interpretation of space-time geometry, I defends that space-time structure is a by-product of a more fundamental fact, the laws of motion. From this perspective, I will argue that the causal properties of space-time cannot provide an adequate account of the theory-change from Newtoninan to Einsteinian physics. key words: Space-Time Geometry, Substantivalism, Curved Space-Time, The Theory-Change from Newtonian Physics to Einsteinian Physics 1. Introduction The theory-change from Newtonian to Einsteinian physics is viewed by philosophers of science, historians and even physicists as an eloquent example of scientific revolution. According to the physicist Max Born, it signifies the ‘Einsteinian revolution,’ (Born 1965, 2) while the philosopher Karl Popper is of the view that Einstein ‘revolutionised physics.’ (Withrow 1967, 25) Thomas Kuhn, on his part, holds in his Structure of Scientific Revolutions, that the theory-change from Newtonian to Einsteinian physics provides a strong case for the occurrence of a revolution with obvious ‘paradigm changes.’ (Kuhn 1962): One [set of scientists] is embedded in a flat, the other in a curved, matrix of space. Practicing in different worlds, the two groups of - 273 - The Controversy on the Conceptual Foundation of Space-Time Geometry scientists see different things when they look from the same point in the same direction. -
Newton: 'Opticks'
University of Dayton eCommons Imprints and Impressions: Milestones in Human Commentaries on the Exhibit’s Works Progress November 2014 Newton: ‘Opticks’ Follow this and additional works at: http://ecommons.udayton.edu/rosebk_commentary Recommended Citation "Newton: ‘Opticks’" (2014). Commentaries on the Exhibit’s Works. 30. http://ecommons.udayton.edu/rosebk_commentary/30 This Article is brought to you for free and open access by the Imprints and Impressions: Milestones in Human Progress at eCommons. It has been accepted for inclusion in Commentaries on the Exhibit’s Works by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Reflections on the various works in the exhibit Imprints and Impressions: Milestones in Human Progress Highlights from the Rose Rare Book Collection, Sept. 29-Nov. 9, 2014 Roesch Library, University of Dayton Isaac Newton Opticks: Or, a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light London, 1704 First edition Reflection 1 Perhaps the key point of Newton’s observations was that white light is made up ow is a rainbow formed? Why of a superposition of many different “rays” do I see colors like magenta, of light with different colors. Furthermore, H yellow, and turquoise blue on an each individual color of light, in a oily puddle or when my kids blow soap continuous spectrum, has its own property bubbles? Why does a prism project the of “refrangibility,” or refraction. When a ray colors of the rainbow on the wall? And why of red light (such as a laser pointer) hits a are all the really big telescopes based on glass surface at an angle, it will be bent as it mirrors and not lenses, which was the passes into the new medium.