Research Report KTC-97-1

DYNAMIC SITE PERIODS FOR THE JACKSON PURCHASE REGION OF WESTERN (KYSPR96-173)

by

Ron Street Associate Professor, Department of Geological Sciences

Zhenming Wang and Edward Woolery Research Assistants, Department of Geological Sciences

Issam E. Harik Professor of Civil Engineering and Head, Structures Section, Kentucky Transportation Center

David L. Allen Transportation Engineer V, Kentucky Transportation Center

and

Kevin G. Sutterer Assistant Professor, Department of Civil Engineering

Kentucky Transportation Center College of Engineering, University of Kentucky Lexington, Kentucky

in cooperation with

Kentucky Transportation Cabinet Commonwealth of Kentucky

and

The Federal Highway Administration U.S. Department of Transportation

The contents of this report reflect the views of the authms who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Cabinet, nor the Federal Highway Administration. This report does not constitute a standard, specification or regulation. The inclusion of manufacturer names or trade names are for identification purposes and are not to be considered an endorsement.

February 1997

Commonwealth of Kentucky Transportation Cabinet James C. Cadell, Ill Paul E. Patton Secretary of Transportation Frankfort, Kentucky 40622 Governor

T. Kevin Flanery Deputy Secretary June 16, 1997

Mr. Dennis Luhrs Acting Division Administrator Federal Highway Administration 330 WestBroadway Frankfort, Kentucky 40602

Dear Mr. Luhrs:

RE: IMPLEMENTATION STATEMENT KYSPR 96-173, "Evaluation and Analysis oflnnovative Concepts for Bridge Seismic Retrofit"

The above referenced research study is divided into three major tasks:

TASK A: Dynamic Site Periods for the Jackson Purchase region of Western Kentucky

TASKB: Seismic Stability of HighwayBridge Approach Embankments and Retaining Structures

TASKC: Seismic Assessment of Selected Truss Bridges Crossing the in Western Kentucky

TASK A has been completed, and the results of the work are presented in this report. The objectives of this task were defined as follows:

l. Determination of the depth to Paleozoic bedrock,

2. Determination of the shear-wave velocities of the overlying sediments, and

3. Determination of the predominant period at which seismically induced, vertically propagating, ground motions would be amplified in the Jackson Purchase region.

KENTUCKY TRANSPORTATION CABINET "PROVIDE A SAFE, F.FFICIENT, ENVIRONMENTALLY SOUND, AND FISCALLY RESPONSIBLE TRANSPORTATION SYSTEM WHICH PROMOTES ECONOMIC GROWTH AND ENHANCES THE QUALITY OF LIFE IN KENTUCKY� "AN EQUAL OPPORTUNITY EMPLOYER M/F/0' Mr. Dennis Luhrs June 16, 1997 Page Two

In order to assess these quantities, locations throughout the area were investigated using high­ resolution P-wave and S-wave seismic techniques. This data was used to generate dynamic site periods for the counties in WesternKentucky which compose the Jackson Purchase region.

Using the information contained in this report, engineers may design structures in such a way to withstand shaking from a moderate earthquake in the New Madrid or Wabash Valley Seismic as Zones. Ifthe structure is designed so that its natural period does not coincide with the dynamic site period, the chance of the structure surviving the seismic event and remaining "useful" will be greatly improved.

Sincerely,

J�Y� State High y Engineer c: David Smith Technical Report Documentation Page

Report No. Government Accession No. Recipient's Catalog No. 1. 2. 3. KTC-97-1

Title and Subtitle Report Date 4. 5. February 1997 DYNAMIC SITE PERIODS Performing Organization Code FOR THE JACKSON PURCHASE 6. REGION OF WESTERN KENTUCKY

Performing Organization Report 8. No. Author(s) R. Street, Z. Wang, E. Woolery, I.E. Harik, 7. D.L. Allen, and KG. Sutterer KTC-97-1

Performing Organization Name and Address Work Unit No. (TRAIS) 9. 10. Kentucky Transportation Center Contract or Grant No. College of Engineering 11. University of Kentucky KYSPR-96-173 Lexington, Kentucky 40506-0281 Type of Report and Period 13. Covered Sponsoring Agency Name and Address 12. Final Kentucky Transportation Cabinet Sponsoring Agency Code State Office Building 14. Frankfort, Kentucky 40622

Supplementary Notes 15. Prepared in cooperation with the Kentucky Transportation Cabinet and the U.S. Department of Transportation, Federal Highway Administration

Abstract 16. Bridges, overpasses, and other engineered structures in the Jackson Purchase region of Western Kentucky are, of necessity, built on a thick column of loose to semi-consolidated sediments. Because these sediments tend to amplify seismically induced ground motions at preferred periods, structures with natural periods close to the preferred periods of amplification of the ground motions are particularly vulnerable to damages during an earthquake because of in-phase resonance. For this report, conventional seismic refraction and reflection techniques were used to determine the shear- wave velocities of the more poorly consolidated, near-surface sediments for a matrix of sites in the region. Conventional seismic P-wave reflections along with existing drill hole and seismic reflection data in the region were then used to determine the depth to the top of the bedrock at tbe sites investigated. These data were used in SHAKE91 to calculate the fundamental period of the ground motion at the sites. This period, identified in the study as the dynamic site period, is the period at which ground motions in the sedimentary column are most apt to be ainplified as a result of a seismic shear wave propagating from the top of the bedrock to the surface. Based on the results in this report, it is recommended that bridges, overpasses, and other engineered structures built in the region be designed so that their natural periods do not coincide with the fundamental period of the sedimentary column, thereby avoiding damage during an earthquake as a result of in-phase resonance.

Key Words Distribution Statement 17. 18. P-wave shear-wave seismicity vibration Unlimited with approval of dynamic site period Kentucky Transportation Cabinet

Security Classif. (of this report) Security Classif. (of this page) No. of Pages Price 19. 20. 21. 22. Unclassified Unclassified 123

FormDOT 1700.7 (8-72) Reproduction of Completed Page Authorized TABLE OF CONTENTS

LIST OF TABLES ...... m

LIST OF FIGURES ...... iv

EXECUTIVE SUMMARY ...... v

ACKNOWLEDGMENT ...... vi

1.0 INTRODUCTION ...... 1

2.0 BACKGROUND ...... 1

3.0 SITE INVESTIGATIONS ...... 3

4.0 DYNAMIC SITE PERIODS ...... 4

5.0 RECOMMENDATIONS ...... 6

REFERENCES CITED ...... 7

APPENDIX A ...... 41

11 LIST OF TABLES

Table 1. Geographic locations of sites investigated in the Jackson Purchase Region ...... 9

Table 2. Soil column thickness, shear-wave velocities, and dynamic site periods for sites investigated ...... 14

Table 3. Type and source of data used to estimate the depth to bedrock in the study area ...... 31

111 LIST OF FIGURES

Figure 1. Map of the Jackson Purchase Region showing county lines ...... 34

Figure 2. Map showing the geographic locations of the New Madrid and Wabash Valley Seismic Zones ...... 35

Figure 3. Map showing locations of sites investigated for study...... 36

Figure 4. Typical Equipment Used on Site Investigations: Seismograph, Geophones, and Sledgehammer...... 37

Figure 5. SH-wave walkaway seismic section obtained at site K82...... 38

Figure 6. Contour map of the depths (m) to bedrock in the Jackson Purchase Region ...... 39

Figure 7. Contour map of the dynamic site periods for the Jackson Purchase Region ...... 40

lV EXECUTIVE SUMMARY

Bridges, overpasses, and other structures built in the Jackson Purchase Region of Western Kentucky (i.e., Ballard, Calloway, Carlisle, Fulton, Graves, Hickman, McCracken, and Marshall Counties) will be subjected to severe motion in the event of a severe earthquake in the New Madrid or Wabash Valley Seismic Zones. The motion will be a consequence of the structure's proximity to the seismic zones and the thick layer of loose and poorly consolidated sediments upon which they are, of necessity, built. The modifying effects on earthquake waves propagating from bedrock to the surface through a thick layer of sediments are routinely modeled using one­ dimensional nonlinear response analyses. To calculate the effects of the sediments on a propagating earthquake wave, the shear-wave velocities, damping ratios, and thicknesses of the sediments at a site need to be known.

High-resolution shear-wave data at sites throughout the Jackson Purchase Region were acquired to determine the depth to bedrock as well as shear-wave velocities and thicknesses of the sediments. These data have been incorporated into the computer program SHAKE91, and used to calculate the fundamental period at which the maximum amplification of earthquake waves occurs. The fundamental periods have then been mapped.

v ACKNOWLEDGMENT

The financial support for this project was provided by the Kentucky Transportation Cabinet and the Federal Highway Administration. The authors would like to acknowledge the cooperation, suggestions, and advise of the members of the Study Advisory Committee: Donald Herd (Committee Chair), Glenn Givan, Ray Greer, David Moses, Ted Noe, N.B. Shah, and David Steele.

Thanks are also expressed to Jeff Griffin for his help in preparing this report.

Vl 1.0 INTRODUCTION

Transportation facilities in the Jackson Purchase Region of Western Kentucky (Fig. 1) are, of necessity, built on a thick layer of loose to semi-consolidated sediment that occurs throughout the Upper Mississippi Embayment. Recent earthquakes in North America and elsewhere have clearly demonstrated the correlation between damage and the depth of the soils at a specific site; this is particularly true for sites underlain by thick layers of Holocene soils. The shear-wave velocities and thicknesses of the soil layers at a site can dramatically alter earthquake-induced ground motions at that site through the mechanisms of amplification, deamplification, frequency modulation, and increased duration. Amplification is due to energy being conserved across impedance boundaries. Deamplification is primarily caused by damping. Frequency modulation is the result of selective filtering (including resonance). Finally, increased duration is caused by such mechanisms as resonance and basin-generated surface waves resulting from the conversion of S-waves to surface waves (Frankel, 1994; Street et al., 1995). Together, these mechanisms are referred to as site effects.

The objectives of this study were to determine: (1) the depth to the Paleozoic bedrock, (2) the shear-wave velocities of the overlying sediments, and (3) the predominant period at which seismically induced, vertically propagating, ground motions would be amplified in the Jackson Purchase Region. To determine these parameters, a matrix of sites throughout the area was investigated using high­ resolution P- and S-wave seismic techniques.

2.0 BACKGROUND

As noted by Reiter (1990), site effects, under certain conditions, may have a more profound effect on the level of earthquake shaking than the magnitude of the earthquake itself. In the October 19, 1989, Lorna Prieta, California, earthquake, approximately two-thirds of the $5.9 billion in property damage was caused by enhanced ground shaking resulting from site effects, while only 2 percent ($131 million) of the property losses were attributed to ground failure phenomena such as liquefaction, landslides, and tectonic ground failure (Holzer, 1994). Similar, although less quantitatively stated, observations have been made concerning the damages in Mexico City, Mexico; Northridge, California; and Kobe, Japan, as a result of the September 19, 1985, Michoacan; the January 17, 1994, California; and the January 17, 1995, Hyogo-ken Nambu, Japan, earthquakes, respectively.

The seismic risk in Western Kentucky is caused by its proximity to the New

1 Madrid and Wabash Valley Seismic Zones (Fig. 2). The most severe earthquakes experienced in Western Kentucky were the four great earthquakes that occurred during the winter of 1811-1812 (Nuttli, 1973; Street, 1982). In the winter of 1811- 1812, Western Kentucky, a frontier area, was sparsely inhabited and had no infrastructure. If the 1811-1812 earthquakes were to repeat themselves today, Western Kentucky, as well as large parts oflndiana, Illinois, Missouri, Arkansas, and , would suffer catastrophic levels of damages. Fortunately, most studies predict (e.g., Johnston and Nava, 1985) that the recurrence of a great earthquake in the New Madrid Seismic Zone is highly unlikely in the foreseeable future. Most seismologists believe that a far more likely scenario is the occurrence of a 6.0 to 6.5 magnitude event by the year 2035. A more complete discussion of the seismic risk to Western Kentucky by earthquakes in the New Madrid and Wabash Valley Seismic Zones is presented elsewhere (Street et al., 1996).

Ground motions from a magnitude 6.0 to 6.5 earthquake in the New Madrid Seismic Zone will be greatly enhanced at selected periods by the thick layer of soils in the Jackson Purchase Region of Western Kentucky. However, they will most likely be of insufficient amplitude to cause catastrophic ground failure, such as liquefaction, in the soils. If the natural period of an engineered structure, such as an overpass, unfortunately coincides with the natural period of the underlying sediments, the likelihood of damages to the structure increases dramatically, since natural periods of the incoming enhanced ground motions and structure are in-phase. In fact, the structure may well be damaged beyond repair even if it was designed to withstand a much larger magnitude earthquake.

A realistic goal in the design and construction of most structures in Western Kentucky is to build them in such a way as to withstand shaking from a moderate (6.0 to 6.5 magnitude) earthquake in the New Madrid or Wabash Valley Seismic Zones, without incurring any damage that would affect the usefulness of the structure. One way to achieve this goal in an economical manner is to determine the predominant periods of the enhanced ground shaking at sites throughout the Jackson Purchase Region, and then design structures so that their natural periods do not coincide with the predominant period at the site where the structures are to be built. If this process is done correctly, the chance of the structure surviving the seismic event would be greatly improved, regardless of the location or magnitude of the earthquake.

For the design of a structure situated on a thick soil column, the predominant period of greatest interest is the dynamic site period. As indicated in Section 1.0, vertically propagating seismic waves traversing from bedrock through a horizontally stratified soil column to the surface are affected by a number of mechanisms that can modify their amplitudes. One mechanism that can lead to both an increase in amplitude and duration of motion is resonance. In the simplest case, the maximum ground motion occurs for waves whose wavelengths are four times the thickness of the

2 soil column layer in which the seismic waves are trapped. In other words, for shear waves the period that is amplified the most is equal to 4HN" where His the thickness of the soil layer and V, is its shear-wave velocity (Reiter, 1990). The period at which the fundamental mode of resonance occurs at a site is defined as the dynamic site period (DSP).

3.0 SITE INVESTIGATIONS

Figure 3 illustrates the geographic distribution of sites investigated in this study to determine dynamic site period (DSP). Table 1 gives the geographic coordinates and elevation (with respect to sea level) of the sites, as well as the type of data collected at the site. The numbering of the sites listed in Table 1 corresponds with those shown in Figure 3. All of the seismic data for the study were collected using an instantaneous floating-point engineering seismograph and were processed on a PC using the software package VISTA (Seismic Image Software Ltd., 1995). The shear-wave data were recorded using an in-line spread of 12 30-Hz horizontal geophones at spacings of 6.1-m (20-ft). The shear-wave energy source was a section of steel !-beam that was struck horizontally with a 4.5-kg (10-lb) sledgehammer in a direction perpendicular to the geophone spread, which generated horizontally polarized shear (SH) waves. The testing devices used to collect such data are pictured in Figure 4.

The hold-down weight of the !-beam was approximately 70 to 80-kg, and consisted of the weight of the person swinging the hammer and the steel !-beam section. The source (i.e., !-beam and hammer operator) was stepped out from the end of the geophone spread at offsets of 6.1-m (20-ft), 61-m (200-ft), 122-m (400-ft), 183-m (600-ft), and 244-m (800-ft). The individual offset panels were then combined to form shear-wave seismic sections that covered the entire range of source-receiver offsets. Because of the limited amount of shear-wave energy that could be generated using a seismic hammer, we were typically unable to obtain data for determining shear-wave velocities in the soil column for depths in excess of 100 to 150-m (328 to 492-ft).

In addition to the shear-wave investigations, seismic P-wave reflection data were also obtained at several sites to determine the depth to the Paleozoic bedrock. The P-wave data were gathered in much the same way that the SH-wave data were collected. That is, data were obtained from an in-line spread of 12 vertical geophones operating at 40-Hz. Records from 6.1-m (20-ft) intervals with stepouts of 6.1-m (20-ft), 61-m (200-ft), 122-m (400-ft), etc., were combined to form a single seismic section. The energy source used for the P-wave investigation was a trailer-mounted, vacuum­ assisted weight drop that drives a 45-kg steel slug into an aluminum platen. The hold­ down weight of the platen is imposed by jacking the trailer up so that most of the

3 weight of the trailer is translated to the platen.

The composite SH- and P-wave seismic sections were interpreted using conventional techniques. Seismic velocities and depths to interfaces were interpreted from the refraction data by the intercept method. Stacking velocities and depths to interfaces were interpreted from the available reflection data by conventional X2-T2 analysis and computer displays by interactively fitting a hyperbolic curve to arrivals having moveouts that could be interpreted as reflected waves. Figure 5 illustrates the SH-wave composite section obtained at site K82 (Table 1), near Cayce, Ky. Superimposed on the figure are dashed lines indicating the choice of refractors and reflections in the section.

Appendix A illustrates the SH-wave seismic sections obtained and used in this study. Not shown in the appendix are the seismic sections not used in the study because of the poor quality of the data. In addition to making composites of the individual offset panels as described above, typical processing steps were filtered and an automatic gain control (AGC) was applied to the data. The AGC is a moving "window" designed to measure the average signal level over a short time interval; it is used to adjust the gain to keep the output more or less constant regardless of the input level (Telford et al., 1976).

Filtering was done in the frequency domain using the Ormsby filtermodule built into VISTA (Seismic Image Software Ltd., 1995). The amplitudes of the data are unaffected in the frequency band defined by the low-cut and high-cut frequencies (10 to 45 Hz), are linearly attenuated between the low-truncation and low-cut frequencies (5 to 10 Hz), and linearly attenuated between the high-cut and high-truncation frequencies (45 to 50 Hz). The AGC window used in processing the SH-wave sections was uniformly taken to be 300 ms in length.

Table 2 gives the shear-wave velocities and thicknesses of the velocity layers as interpreted from the walkaway SH-wave sections shown in Appendix A. Site numbers listed in Appendix A correspond to those shown in Figure 3 and listed in Table 1.

4.0 DYNAMIC SITE PERIODS

As indicated above, the DSP at a site for vertically propagating seismic waves in a soil layer are a function of the shear-wave velocities, damping, and thicknesses of the soil layers in the soil column that overlies the bedrock, as well as the depth to the top of the bedrock. Eighty-three sites were investigated in this study for either SH­ wave or P-wave velocities, or both SH- and P-wave velocities. The SH-wave data were

4 used to estimate the shear-wave velocities, thicknesses of the soil layers, and, where possible, the depth to bedrock. At sites where the depth to the bedrock was greater than several tens of meters, however, we were unable to generate sufficient shear-wave energy to determine the depth to bedrock. Near some of these sites, drill hole data were available and were used to estimate the depth to the top of the bedrock. At other sites, proprietary P-wave seismic reflection data were obtained and used to determine the depth to the top of the bedrock. If the shear-wave data were inadequate for estimating the depth to the top of the bedrock, and there were no existing drill hole or P-wave seismic reflection data, a P-wave walkaway investigation, as discussed above, was done to derive an estimate for the depth to the top of the bedrock. Bedrock in this study is defined as Paleozoic rock.

Table 3 gives the source and type of data used to estimate the depth to the top of the bedrock, as well as the location of the site investigated. Information from Table 3 was then used to derive the depth to the top of the bedrock in the Jackson Purchase Region as shown in Figure 6. The depths in the figure are given with respect to sea level; hence, a negative depth means that the top of the Paleozoic bedrock is below sea level at that location.

The shear-wave velocities, thicknesses of the soil layers, and depth to the top of the Paleozoic bedrock were used in the software program SHAKE91 (Idriss and Sun, 1992) to calculate the DSP at sites in the study area that were successfully investigated using SH-waves. Other information needed for input into SHAKE91 was the velocity of the Paleozoic bedrock and the damping ratio (D) for each soil layer.

Based on a limited number of observations, a shear-wave velocity of 1,158 m/s (3,800 ft/s) was used for the Paleozoic bedrock throughout the study area. This velocity is not well documented, but for the purposes of calculating the DSP, a more precise value is unimportant to the calculations.

Damping of the soil layers in the input models for SHAKE91 was estimated from the shear-wave velocities using the shear-wave quality factor (Q,) and the relationship

D = (2 QJ' which is frequently used for small strains (i.e., 10·5 percent) when the stress-strain behavior of the soil is approximately linear (Mok et al., 1988). Wang et al. (1994) found that for unconsolidated soils in the Mississippi embayment, Q, could be related to the shear-wave velocity (11,) of the soils by the relationship Q, = 0.08 V, + 6.99 12.10. ±

Small strains were assumed in the analysis since, as indicated in Section 2.0, the most likely scenario for a damaging earthquake in the New Madrid Seismic Zone is a 6.0 to 6.5 magnitude event occurring within the foreseeable future. In the event of such an earthquake, it is highly unlikely that nonlinear conditions will occur anywhere in the soils of the Jackson Purchase Region, with the possible exception of

5 areas in the floodplain of the (i.e., the western edge of Fulton, Hickman, and Carlisle Counties).

The dynamic site periods for the sites investigated in this study are listed in the right column of Table 2. The range ofDSP values given per site in Table 2 (low, mean, and high) are meant to give the range of dynamic site periods at the location, assuming some error in the interpretation of the seismic data. The column of values under the headings "Low" and "High" were obtained by assuming a 10 percent error in the depth to bedrock and shear-wave velocities of the soils. For the DSP values in the column marked "Low, " the depth to the top of the bedrock was assumed to be 10 percent greater than that estimated in this study, and the shear-wave velocities of the soils were assumed to be 10 percent less than those interpreted from the SH-wave data in this study. For the DSP values under the column marked "High," the shear-wave velocities were increased by 10 percent, and the depth to the top of the Paleozoic bedrock was decreased by 10 percent. These estimates are believed to represent a reasonable upper and lower estimate of DSP values at the sites investigated in this study.

Figure 7 illustrates the best (i.e., "mean") estimates of the DSP values at the sites investigated in this study. TheDSP values have been contoured and, in general, increase from east to west and north to south; which more or less corresponds to the depth to the top of the bedrock shown in Figure 6.

5.0 RECOMMENDATIONS

The term "dynamic site period," as used in this study, represents the fundamental period at which the soils overlying bedrock in the Jackson Purchase Region will resonate in the event of a damaging earthquake in the New Madrid or Wabash Valley Seismic Zones. To significantly lessen the likelihood of damage to engineered structures in the area, such as bridges, overpasses, schools, hospitals, etc., such structures need to be deigned so that their natural periods do not coincide with theDSP values shown in Figure 7. Furthermore, since the depth to bedrock and shear­ wave velocities of the sediments can and sometimes do vary appreciably even over short distances, we recommend that site-specific studies be undertaken to verify or modify the suggested DSP values shown in Figure 7 for particularly sensitive structures, such as major bridges over the Ohio or Mississippi Rivers.

6 REFERENCES CITED

1. Ali-Yazdi, A.A. (1994). Paleozoic Bedrock Depth Investigation in the Jackson Purchase Region of Western Kentucky Using P-Wave Seismic Reflection Technique for the Purpose of Regionall-D Site Effects Estimation, M.S. thesis, University of Kentucky, Lexington, 109 pp.

2. Dart, R.L. (1992). Catalog of the Pre-Cretaceous geologic drill-hole data from the Upper Mississippi Embayment: A revision and update of Open-File Report 90-260, U.S. Geological Survey Open-File Report 92-685, 253 pp.

3. Frankel, A. (1994). Dense array recordings in the San Bernardino Valley of Landers-Big Bear aftershocks; basin surface waves, moho reflections, and three-dimensional simulations, Bulletin of the Seismological Society of America, 84, 613-624.

4. Holzer, T.L. (1994). LornaPrieta damage largely attributed to enhanced ground shaking, EOS, Transactions of the American Geophysical Union, 75, 299-301.

5. Idriss, I.M., and Sun, J.I. (1992). User's Manual for SHAKE91, A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, Calif., 13 pp., and 2 Appendices.

6. Johnston, A. C., and Nava, S.J. (1985). Recurrence rates and probability estimates for the New Madrid Seismic Zone, Journal of Geophysical Research, 90, 6737-6753.

7. Mok, Y.J., I. Sanchez-Salinero, K.H. Stoke, and J.M. Rosset (1988). In situ damping measurements by crosshole seismic methods, Earthquake Engineering and Soil Dynamics If-Recent Advances in Ground-Motion Evaluation, Proc. of the ASCE Specialty Conference, June 27-30, Park City, Utah, 103-155.

8. Nuttli, O.W. (1973). The Mississippi Valley earthquakes of 1811-1812: Intensities, ground motion, and magnitudes, Bulletin of the Seismological Society of America, 63, 227-248.

7 9. Reiter, L. (1990). Earthquake Hazard Analysis: Issues and Insights, Columbia University Press, New York, 254 pp.

10. Seismic Image Software Ltd., 1995, VISTA 6.61 Notes, 477 pp.

11. Street, R. (1982). A contribution to the documentation of the 1811-1812 Mississippi Valley earthquake sequence, Earthquake Notes, 53, 39-52.

12. Street, R., Wang, Z., Harik, I. and Allen, D. (1996). Source zones, recurrence rates, and time histories, for earthquakes affecting Kentucky, Kentucky Transportation Center Report KTC-96-4, 187 pp.

13. Street, R., Woolery, E., Wang, Z., and Harris, J. (1995). A short note on shear-wave velocities and other site conditions at selected strong-motion stations in the New Madrid Seismic Zone, Seismological Research Letters, 66(1), 56-63.

14. Telford, W.M., Geldart, L.P., Sheriff, R.E., and Keys, D.A. (1976). Applied Geophysics, Cambridge University Press, New York, 860 pp.

15. Wang, Z., Street, R., Harris, J., and Woolery, E. (1994). Q, estimation for unconsolidated sediments using first-arrival SH-refractions, Journal of Geophysical Research, 99 B4, 13,543-13551.

8 TABLE 1

GEOGRAPHIC LOCATIONS OF SITES INVESTIGATED IN THE JACKSON PURCHASE REGION

Site Elevation Location Wave Quadrangle No. (m) ON ow SH- P-

K01 Joppa 107 37.164 88.852 y y

K02 Bandana 113 37.146 88.901 y y

K03 Bandana 116 37.139 88.977 y

K04 Bandana 99 37.200 88.988 y

K05 Olmsted 101 37.164 89.027 y

K06 Calvert City 105 37.019 88.317 y

K07 Calvert City 122 37.004 88.297 y

K08 Paducah West 117 37.024 88.703 y

K09 Heath 149 37.005 88.853 y

K10 LaCe nter 113 37.068 88.925 y y

K11 La Center 125 37.014 88. 972 y

K12 Barlow 140 37.042 89.000 y

K13 Barlow 101 37.111 89.022 y y

K14 Barlow 104 37.093 89.069 y y

K15 Birmingham Point 116 36.984 88.225 y y

K16 Briensburg 146 36.891 88.315 y y

K17 Briensburg 105 36.965 88.316 y y

K18 Briensburg 143 36.956 88.365 y y

K19 Elva 137 36.967 88.419 y y

9 TABLE 1 (CONTINUED)

GEOGRAPHIC LOCATIONS OF SITES INVESTIGATED IN THE JACKSON PURCHASE REGION

Site Elevation Location Wave Quadrangle No. (m) ON ow SH- P-

K20 Elva 119 36.907 88.448 y y

K21 Symsonia 104 36.899 88.538 y

K22 Symsonia 105 36.953 88.552 y

K23 Symsonia 110 36.941 88.606 y

K24 Melber 116 36.971 88.644 y

K25 Melber 137 36.893 88.733 y

K26 Lovelaceville 110 36. 950 88.758 y

K27 Lovelaceville 116 36.919 88. 794 y

K28 Lovelaceville 107 36.961 88.849 y y

K29 Blandville 102 36.930 88.906 y

K30 Blandville 116 36.970 88.926 y

K31 Blandville 143 36.993 88.943 y

K32 Wickliffe 107 36.906 89.005 y

K33 Wickliffe 93 36.998 89.114 y y

K34 Hardin 117 36.810 88.284 y

K35 Hardin 162 36.784 88.351 y

K36 Oak Level 149 36.805 88.413 y

K37 Oak Level 140 36.840 88.453 y

K38 Oak Level 117 36.796 88.458 y

10 TABLE 1 (CONTINUED)

GEOGRAPHIC LOCATIONS OF SITES INVESTIGATED IN THE JACKSON PURCHASE REGION

Site Elevation Location Wave Quadrangle No. (m) ON ow SH- P-

K39 West Plains 108 36.841 88.525 y

K40 West Plains 131 36.823 88.621 y

K41 Hickory 133 36.779 88.730 y

K42 Hickory 131 36.841 88.797 y

K43 Fancy Farm 131 36.767 88.764 y

K44 Milburn llO 36.842 88.897 y

K45 Milburn 130 36.868 88.898 y

K46 Milburn 107 36.858 88.927 y

K47 Milburn 122 36.821 88.982 y

K48 Arlington 107 36.867 89.023 y

K49 Arlington ll1 36.804 89.023 y

K50 Hico 162 36.684 88.178 y

K51 Hico 165 36.628 88.226 y y

K52 Hico 165 36.656 88.237 y

K53 Dexter 131 36.690 88.271 y

K54 Dexter 162 36.708 88.338 y

K55 Kirksey 165 36.713 88.375 y

K56 Kirksey 134 36.693 88.469 y

K57 Farmington 168 36.684 88.538 y

11 TABLE 1 (CONTINUED)

GEOGRAPHIC LOCATIONS OF SITES INVESTIGATED IN THE JACKSON PURCHASE REGION

Site Elevation Location Wave Quadrangle No. (m) ON ow SH- P-

K58 Farmington 142 36.681 88.597 y

K59 Mayfield 128 36.662 88.695 y

K60 Dublin 117 36.690 88.789 y

K61 Dublin 116 36.674 88.838 y

K62 Clinton 113 36.726 88.900 y

K63 Clinton 120 36.654 88.941 y

K64 Oakton 101 36.740 89.045 y y

K65 Oakton 93 36.650 89.104 y y

K66 New Concord 162 36.570 89.136 y

K67 New Concord 123 36.533 88.183 y y

K68 New Concord 165 36.556 88.231 y

K69 Murray 165 36.615 88.255 y

K70 Murray 166 36.559 88.285 y y

K71 Murray 155 36.556 88.356 y

K72 Lynn Grove 165 36.573 88.406 y

K73 Lynnville 174 36.604 88.502 y

K74 Lynnville 168 36.564 88.607 y

K75 Cuba 142 36.604 88.672 y

K76 Cuba 155 36.556 88.706 y

12 TABLE 1 (CONTINUED)

GEOGRAPHIC LOCATIONS OF SITES INVESTIGATED IN THE JACKSON PURCHASE REGION

Site Elevation Location Wave Quadrangle No. (m) O N ow SH- P-

K77 Water Valley 119 36.567 88.800 y

K78 Water Valley 140 36.520 88.835 y

K79 Crutchfield 125 36.520 88.901 y

K80 Crutchfield 105 36.597 88.909 y

K81 Crutchfield 101 36.536 88.962 y

K82 Cayce 94 36.574 89.017 y y

K83 Cayce 107 36.524 89.073 y

13 TABLE 2

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm/m3) Ratio (m) Low Mean High

K01 12.8 196.3 1.95 0.022 0.73 0.89 1.00

23.2 500.3 2.00 0.011

113.4 697.3 2.20 0.008

1158.5 2.50 0.005

K02 3.7 204.9 1.95 0.021 0.23 0.28 0.33

14.3 409.5 2.00 0.013

13.7 595.1 2.10 0.009

10.4 740.5 2.20 0.008

1158.5 2.50 0.005

K03 5.2 168.0 1.90 0.024 0.73 0.89 1.14

43.3 338.4 2.00 0.015

38.4 399.4 2.10 0.013

1158.5 2.50 0.005

K05 2.7 177.1 1.90 0.024 0.40 0.50 0.62

37.8 531.7 2.10 0.010

34.5 630.5 2.20 0.009

1158.5 2.50 0.005

K06 5.5 249.1 1.95 0.019 0.62 0.73 0.89

23.5 393.9 2.00 0.013

82.0 580.2 2.20 0.009

. 1158.5 2.50 0.005

14 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (mls) (gmlm3) Ratio (m) Low Mean High

K07 1.2 98.5 1.85 0.034 0.57 0.67 0.89

2.7 305.8 2.00 0.016

89.9 542.7 2.10 0.010

1158.5 2.50 0.005

K08 2.1 156.1 1.90 0.026 0.73 0.89 1.00

14.3 272.9 2.00 0.017

61.6 531.4 2.10 0.010

57.0 672.0 2.20 0.008

1158.5 2.50 0.005

K09 1.8 98.2 1.90 0.034 1.33 1.60 2.00

8.8 220.1 1.95 0.020

27.7 369.8 2.00 0.014

57.6 617.4 2.10 0.009

222.6 731.7 2.20 0.008

1158.5 2.50 0.005

K10 12.8 175.6 1.90 0.024 0.89 1.14 1.33

34.5 254.0 2.00 0.018

30.2 425.6 2.10 0.012

67.7 609.8 2.20 0.009

1158.5 2.50 0.005

15 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (mls) (gm/m3) Ratio (m) Low Mean High

K12 8.5 193.6 1.95 0.022 0.67 0.80 1.00

55.5 417.1 2.00 0.012

49.1 638.4 2.20 0.009

1158.5 2.50 0.005

K14 7.3 132.9 1.90 0.028 0.50 0.62 0.80

40.2 579.6 2.00 0.009

62.5 708.8 2.20 0.008

1158.5 2.50 0.005

K15 10.1 158.8 1.90 0.025 2.00 2.67 4.00

39.0 328.7 2.00 0.015

41.2 487.5 2.10 0.011

406.7 731.7 2.20 0.008

1158.5 2.50 0.005

K16 10.1 141.8 1.90 0.027 2.00 2.67 4.00

13.7 250.0 2.00 0.019

33.8 451.5 2.10 0.012

437.8 731.7 2.20 0.008

1158.5 2.50 0.005

16 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (mls) (gm/m3) Ratio (m) Low Mean High

K17 3.0 132.9 1.90 0.028 2.00 2.67 4.00

6.1 250.3 1.95 0.019

47.3 433.8 2.00 0.012

449.7 731.7 2.20 0.008

1158.5 2.50 0.005

K18 1.8 96.6 1.85 0.034 2.00 2.67 2.67

11.0 350.0 2.00 0.014

32.9 472.6 2.10 0.011

399.4 731.7 2.20 0.008

1158.5 2.50 0.005

K19 1.2 152.1 1.90 0.026 1.60 2.00 2.67

7.9 341.5 1.95 0.015

27.7 379.9 2.00 0.013

51.2 554.3 2.10 0.010

256.4 731.7 2.20 0.008

1158.5 2.50 0.005

K20 0.9 212.5 1.95 0.021 1.33 1.60 2.00

11.0 327.1 2.00 0.015

47.6 435.7 2.10 0.012

251.5 751.2 2.20 0.007

1158.5 2.50 0.005

.

17 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm/m3) Ratio (m) Low Mean High

K21 1.8 132.9 1.90 0.028 1.14 1.33 1.60

29.3 447.9 2.00 0.012

42.1 559.5 2.10 0.010

195.1 774.4 2.20 0.007

1158.5 2.50 0.005

K22 2.4 236.3 1.95 0.019 0.73 0.89 1.14

22.3 548.2 2.10 0.010

155.2 784.5 2.20 0.007

1158.5 2.50 0.005

K24 7.6 145.1 1.90 0.027 0.73 0.89 1.14

40.9 344.5 2.00 0.014

94.5 650.9 2.20 0.008

1158.5 2.50 0.005

K28 6.1 182.3 1.95 0.023 0.67 0.89 1.00

58.2 487.8 2.00 0.011

60.4 618.9 2.10 0.009

1158.5 2.50 0.005

18 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm/m3) Ratio (m) Low Mean High

K31 1.5 163.7 1.90 0.025 2.00 2.67 2.67

11.0 183.2 1.95 0.23

16.2 289.0 2.00 0.017

43.9 326.8 2.10 0.015

375.6 736.6 2.20 0.008

1158.5 2.50 0.005

K32 2.7 88.7 1.80 0.035 2.00 2.67 2.67

12.5 165.9 1.90 0.025

42.4 336.3 2.00 0.015

18.6 571.6 2.10 0.009

378.0 731.7 2.20 0.008

1158.5 2.50 0.005

K34 7.0 151.8 1.90 0.026 0.44 0.53 0.67

12.8 455.2 2.10 0.012

57.3 580.5 2.20 0.009

1158.5 2.50 0.005

K35 2.4 250.3 1.95 0.019 0.53 0.67 0.80

9.8 376.5 2.00 0.013

64.9 555.5 2.10 0.010

24.1 759.8 2.20 0.007

1158.5 2.50 0.005

19 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm/m3) Ratio (m) Low Mean High

K36 3.0 118.3 1.90 0.030 0.73 0.89 1.14

95.1 523.5 2.10 0.010

46.0 744.8 2.20 0.008

1158.5 2.50 0.005

K37 1.5 131.1 1.90 0.029 0.62 0.73 0.89

30.2 429.3 2.10 0.012

105.2 731.4 2.20 0.008

1158.5 2.50 0.005

K38 8.5 106.4 1.90 0.032 0.57 0.73 0.89

8.2 531.4 2.10 0.010

101.2 660.1 2.20 0.008

1158.5 2.50 0.005

K40 2.7 163.7 1.90 0.025 0.80 1.00 1.14

21.0 285.4 2.00 0.017

28.0 481.7 2.10 0.011

87.2 593.3 2.20 0.009

1158.5 2.50 0.005

K41 3.4 136.9 1.90 0.028 0.67 0.80 1.00

27.4 304.0 1.95 0.016

36.0 339.9 2.00 0.015

1158.5 2.50 0.005

20 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm/m3) Ratio (m) Low Mean High

K42 2.4 152.4 1.90 0.026 0.33 0.40 0.50

32.3 531.7 2.10 0.010

36.9 744.8 2.20 0.008

1158.5 2.50 0.005

K43 2.1 152.4 1.90 0.026 0.57 0.73 0.89

13.4 359.1 2.00 0.010

115.2 731.7 2.20 0.008

1158.5 2.50 0.005

K44 9.5 214.0 1.95 0.021 0.80 1.00 1.14

11.3 322.6 2.00 0.015

68.0 441.2 2.10 0.012

33.2 620.4 2.20 0.009

1158.5 2.50 0.005

K46 5.5 164.6 1.90 0.025 0.89 1.00 1.33

9.1 376.5 2.00 0.013

76.8 426.8 2.10 0.012

65.9 732.3 2.20 0.008

1158.5 2.50 0.005

21 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm!m') Ratio (m) Low Mean High

K47 2.4 131.1 1.90 0.029 1.00 1.33 1.60

26.2 505.5 2.10 0.011

176.5 657.3 2.20 0.008

1158.5 2.50 0.005

K48 1.8 177.1 1.90 0.024 1.33 1.60 2.00

10.1 336.3 2.00 0.015

52.1 434.5 2.05 0.012

70.4 683.5 2.10 0.008

143.0 731.7 2.20 0.008

1158.5 2.50 0.005

K49 2.7 163.4 1.90 0.025 1.14 1.60 2.00

71.6 425.6 2.00 0.012

70.7 683.5 2.10 0.008

117.1 731.7 2.20 0.008

1158.5 2.50 0.005

K50 3.0 224.7 1.95 0.020 1.33 1.60 2.00

31.1 371.3 2.00 0.014

39.0 514.9 2.10 0.010

79.3 670.7 2.15 0.008

135.7 731.7 2.20 0.008

1158.5 2.50 0.005

22 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (rnls) (grn!m') Ratio (m) Low Mean High

K51 2.1 125.3 1.90 0.029 1.60 2.00 2.67

43.6 480.2 2.00 0.011

61.0 688.7 2.10 0.008

274.4 731.7 2.20 0.008

1158.5 2.50 0.005

K52 5.5 120.4 1.90 0.030 1.33 1.60 2.00

12.8 236.9 1.95 0.019

18.3 335.4 2.00 0.015

36.6 554.3 2.10 0.010

98.2 612.2 2.15 0.009

731.7 2.20 0.008

K53 6.1 168.0 1.95 0.024 1.60 2.00 2.00

35.7 368.9 2.00 0.014

77.4 637.5 2.10 0.009

211.9 731.7 2.20 0.008

1158.5 2.50 0.005

23 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm/m3) Ratio (m) Low Mean High

K54 3.4 193.3 1.90 0.022 0.89 1.14 1.33

19.5 398.8 2.00 0.013

97.0 519.8 2.10 0.010

32.6 590.9 2.20 0.009

1158.5 2.50 0.005

K55 7.3 274.4 2.00 0.017 0.80 1.00 1.33

69.8 791.2 2.10 0.011

75.0 625.6 2.20 0.009

1158.5 2.50 0.005

K57 4.0 141.8 1.90 0.027 1.33 1.60 2.00

10.7 277.1 2.00 0.017

31.1 415.9 2.10 0.012

25.9 668.6 2.15 0.008

242.4 731.7 2.20 0.008

1158.5 2.50 0.005

K58 7.3 146.3 1.90 0.027 0.80 1.00 1.14

41.5 625.0 2.10 0.009

127.7 733.8 2.20 0.008

1158.5 2.50 0.005

24 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm/m3) Ratio (m) Low Mean High

K59 1.8 255.8 1.95 0.018 0.62 0.73 0.89

5.2 384.5 2.00 0.013

77.1 858.4 2.10 0.009

44.8 759.8 2.20 0.007

1158.5 2.50 0.005

K60 10.7 129.0 1.90 0.029 1.60 2.00 2.00

25.3 551.2 2.10 0.010

306.1 762.2 2.20 0.007

1158.5 2.50 0.005

K61 6.7 187.5 1.95 0.023 1.60 2.00 2.00

36.9 414.6 2.00 0.012

30.5 632.3 2.10 0.009

267.4 751.2 2.20 0.007

1158.5 2.50 0.005

K62 7.3 120.4 1.90 0.030 1.33 1.60 2.00

27.4 475.6 2.00 0.011

36.9 532.0 2.10 0.010

300.3 866.2 2.20 0.007

1158.5 2.50 0.005

25 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (rnls) (grn/m3) Ratio (m) Low Mean High

K64 0.9 212.5 1.95 0.021 2.00 2.00 2.67

14.3 255.2 2.00 0.018

27.7 491.2 2.10 0.011

45.1 591.2 2.15 0.009

320.4 731.7 2.20 0.008

1158.5 2.50 0.005

K65 3.7 118.3 1.85 0.030 1.60 2.00 2.67

15.9 172.3 1.95 0.024

4.0 455.8 2.05 0.012

49.1 532.0 2.10 0.010

282.6 731.7 2.20 0.008

1158.5 2.50 0.005

K66 5.2 182.3 1.95 0.023 1.33 1.60 2.00

32.0 317.1 2.00 0.015

29.6 579.9 2.10 0.009

254.6 731.7 2.20 0.008

1158.5 2.50 0.005

26 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm/m3) Ratio (m) Low Mean High

K67 6.1 118.3 1.85 0.030 2.00 2.67 2.67

25.3 268.3 1.95 0.018

36.6 439.3 2.00 0.012

32.9 533.5 2.05 0.010

168.6 632.3 2.10 0.009

189.3 731.7 2.20 0.008

1158.5 2.50 0.005

K68 5.8 182.9 1.90 0.023 1.60 2.00 2.67

58.8 341.5 2.00 0.015

97.6 531.4 2.10 0.010

218.9 731.7 2.20 0.008

1158.5 2.50 0.005

K69 4.3 202.4 1.90 0.022 1.14 1.33 1.60

38.4 384.1 2.00 0.013

55.8 531.7 2.10 0.010

154.6 731.7 2.20 0.008

1158.5 2.50 0.005

27 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm/m3) Ratio (m) Low Mean High

K70 3.0 193.6 1.95 0.022 0.73 0.89 1.14

85.7 486.3 2.10 0.011

60.7 773.2 2.20 0.007

1158.5 2.50 0.005

K71 2.7 192.7 1.95 0.022 0.89 1.14 1.33

29.0 300.3 2.00 0.016

73.2 439.9 2.10 0.012

51.5 709.1 2.20 0.008

1158.5 2.50 0.005

K72 6.7 176.8 1.90 0.024 0.53 0.67 0.80

104.3 827.1 2.20 0.007

32.3 884.1 2.30 0.006

1158.5 2.50 0.005

K73 4.0 235.4 1.95 0.019 0.62 0.80 1.00

20.7 432.9 2.10 0.012

104.9 665.2 2.20 0.008

1158.5 2.50 0.005

28 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m/s) (gm/m3) Ratio (m) Low Mean High

K74 2.1 121.6 1.90 0.030 0.50 0.62 0.73

10.1 414.9 2.10 0.012

109.8 786.3 2.20 0.007

1158.5 2.50 0.005

K78 4.9 216.2 1.95 0.021 0.67 0.80 1.00

150.6 759.8 2.20 0.007

1158.5 2.50 0.005

K79 10.7 158.5 1.90 0.025 2.00 2.67 2.67

9.1 293.3 1.95 0.016

20.1 360.4 2.00 0.014

91.5 497.6 2.10 0.011

339.6 731.7 2.20 0.008

1158.5 2.50 0.005

K80 4.3 122.0 1.85 0.030 1.33 1.60 2.00

28.4 316.8 1.95 0.015

85.4 354.6 2.00 0.014

55.8 476.2 2.10 0.011

1158.5 2.50 0.005

29 TABLE 2 (CONTINUED)

SOIL COLUMN THICKNESSES, SHEAR-WAVE VELOCITIES, AND DYNAMIC SITE PERIODS FOR SITES INVESTIGATED

Site Layer Velocity Density Damping Period (sec) Thickness (m!s) (gm/m3) Ratio (m) Low Mean High

K81 12.5 170.7 1.90 0.024 0.62 0.80 1.00

37.8 451.2 2.00 0.012

58.5 580.2 2.20 0.009

1158.5 2.50 0.005

K82 4.3 92.4 1.85 0.035 0.67 0.80 1.00

36.9 360.1 2.00 0.014

75.0 609.8 2.20 0.009

1158.5 2.50 0.005

K83 7.0 121.6 1.85 0.030 0.73 0.89 1.14

7.9 278.0 1.95 0.017

62.5 377.4 2.00 0.013

31.4 719.2 2.20 0.008

1158.5 2.50 0.005

K84 8.8 182.6 1.90 0.023 1.00 1.14 1.60

30.2 330.2 2.00 0.015

36.3 356.7 2.10 0.014

42.4 404.6 2.20 0.013

1158.5 2.50 0.005

30 TABLE 3

TYPE AND SOURCE OF DATA USED TO ESTIMATE THE DEPTH TO BEDROCK IN THE STUDY AREA

1. Depths to bedrock based on drill hole logs in the Jackson Purchase Region, as summarized in Dart (1992):

Latitude Longitude Elevation With Respect County (ON) ("W) to Sea Level (m) Fulton 36.5208 89.3238 -518

Fulton 36.5316 89.3374 -508

Fulton 36.5478 89.2818 -491

Fulton 36.5455 88.8886 -381

Ballard 37.0704 88.9747 -2

Ballard 37.0844 89.1160 -7

Calloway 36.5737 88.2155 41

Calloway 36.6490 88.3729 -36

Calloway 36.5646 88.1632 61

Calloway 36.5616 88.1680 4

Carlisle 36.8250 89.0916 -253

Carlisle 36.9052 88.8843 -124

Graves 36.6866 88.5007 -127

Graves 36.7826 88.8072 -251

Graves 36.9174 88.6815 -73

McCracken 36.9800 88.5000 2

McCracken 37.0338 88.6270 -15

McCracken 37.0219 88.5587 -6

31 TABLE 3 (CONTINUED)

TYPE AND SOURCE OF DATA USED TO ESTIMATE THE DEPTH TO BEDROCK IN THE STUDY AREA

1. Depths to bedrock based on drill hole logs in the Jackson Purchase Region, as summarized in Dart (1992) (continued):

Latitude Longitude Elevation With Respect County eN) eW) to Sea Level (m) McCracken 37.0062 88.5315 -28

McCracken 37.0768 88. 5985 2

Marshall 36.7598 88.4151 -36

Marshall 36.9503 88.3846 34

2. Depths to bedrock based on P-wave soundings in the Jackson Purchase Region.

Site Latitude Longitude Elevation (m) Designation' (oN) (OW)

B 36.775 89.067 -344

c 36.783 89.021 -366 E 36.803 88.954 -260

H 36.793 88.814 -230

K 36.739 88.515 -263

N 36.799 88.739 -212

p 36.811 88.567 -124

v 36.733 88.406 -60

w 36.743 88.369 -15 X 36.772 88.339 10

' From Al-Yazdi (1994).

32 TABLE 3 (CONTINUED)

TYPE AND SOURCE OF DATA USED TO ESTIMATE THE DEPTH TO BEDROCK IN THE STUDY AREA

3. Depths to bedrock based on proprietary P-wave seismic reflection profiles in the Jackson Purchase Region (data being used with permission):

Site Latitude Longitude * Elevation (m) Designation CN) ("W) 1 36.840 88.863 -198

2 36. 763 88. 870 -202

3 36.692 88.870 -201

4 36.607 88.872 -245

5 36.567 89.154 -411

6 36.558 89.038 -369

7 36.550 88.975 -395

8 36.547 88.800 -289

9 36.547 88.727 -189

10 36.562 88.597 -143

11 36.570 88.430 -18

33 Figure 1. Map of the Jackson Purchase Region Showing County Lines. 0° o 9 SS S6° S4° S2° so• 40. I I I I I I lllinois �diono ' Ohio r L West ' ·� �7Virginia l ·j 3S0 0 I \ AHflfliiHI'liiHIIIY � I I 3S NEK� J "

Kentucky � Mi"ouri "--' Virginia C) "CI .J ;j ....+' CJ:) +' l "' 01 ...:1 -1 36° North 3 6° Carolina L c:2�ll ffilli. Tennessee Amm�r

South Mississippi Alabama Georgia Carolina

o 90° SS S6° S4° S2° so· Longitude ("W)

Figure 2. Map Showing the Geographic Locations of the New Madrid and Wabash Valley Seismic Zones. 37.2" K4 I /KS \ Kl K3 K2 K13 K14 KIO \ KU Kll K9 D K33 K31 37.0" J- '-,_ � "\.K!S K30 K K24 K19 �28 K18 Kl7 K22 K26 K2J K29 . ...___ K27 K20 K32 K21 I Kl6 z K4S I K2s K48 g___ K46 K44 K42 K39 K37 a> K47 K40 � K36 36.8° K38 E q K35 104 � K43 �I ,..:1OS K64 W K62 I 0> K56 =� K60 K57 K53 KSO K6! K58 K59 KS2 K65 K63 KSI -...... _ K69 36.6" ...... ___K80 K75 K73 r f '-. l KS2 K72 K77 K74 K66 � K76 K7l K70 K68 K81 K83 \ K67 K79 K78 I

36.4• 89.4° 89.2° 89.0• 88.8" 88.6" 88.4° 88.2° 88.0°

Longitude ("W)

Figure 3. Map Showing Locations of Sites Investigated for the Study. Figure 4. Typical Equipment Used on Site Investigations: Seismograph, Geophones, and Sledgehammer.

37 Trace No.

nls 50. 55I 52• 49• 461 43• 40• 37, 34I 31 I 20• 251 22• 19• 16I 13• 10• 7I 4 • 1 0 � ...... -.- _._ !> � .....___...... _ __.- ...... - - _..__ . _ _, ...... _- ...: .. .-<-· ...... - .. �-- ... .. I 1\

250

5 00

w 00

1250 -�--'<"'

1500 �� g}� tUwHH��U ?JHHU�f;f?ef{�/{�

Figure 5. SH-wave Walkaway Seismic Section Obtained at Site K82. 37.2"

38 37.0" -28

18

·124 -73 z0 35 �

Q) -a 98 - "1 ·230 - 6 40 _...,;:I 36.8° 260 1 2 3 .... +' .'.. �""] 1 -251 '" CJ:) -- ...:l -202 ..- (.0 /

8 90 -201 34

36.6° -245 35 18 41 4 -143 - 61 -508 -491 -364 ·189 -395 ·381 1 43 43 -518 I I 81

-400 -300 m m -200 m -100 m 0

3�4· 89.4° 89.0" 88.8" 88.2" 88.0" L___ �------�------J------��------��:------=�------�;------� 89.2° 88.6° 88.4" Longitude ("W)

Figure 6. Contour Map of the Depths (m) to Bedrock in the Jackson Purchase Region. 37.2" 0.80 \ 0.89 0.80 0.62 0.80 -----... 0.89� 1.60 1.00"-. 37.0° 1.14 0.6 1.14 \ ! 1.0 s 0.89 .00 -- 0.67 0.89 0.5 s 1.00 0.50 \ 0.89 0.73 I 0.73 1.33 1.14 z . 4 1.60 2.00 0.73 "--' � 1 2.00 2.00 2 0 0.67 0.53 36.8° ...... ------... 2.67 � 0.89 0.73 ;::$ � / . .... 2.67 � 2.0 . 1.00 � 1.33 1.60 1.60 1.60 r=====--�.---

36.6" 1.33 1.60

2.0 s 1.0 s 0.5 s

36.4° 89.4' . 89.2° 89.0° ss.so 88.6• 88.4° 88.2° ss.oo

Longitude ("W)

Figure 7. Contour Map of the Dynamic Site Periods for the Jackson Purchase Region. APPENDIX A

SEISMIC SECTIONS USED FOR CALCULATING VELOCITIES

41 Trace No. 34 31 2B 25 22 19 16 13 Hl 7 4 1 ------_. 16 ms .,..... i1 >''Miil'il>il<-

251<1 -.-

""" 1 51<11<1 -� ""

751<1 ·-

11<11<11<1 �(') I�<"·( !1 1 tS.\ )' t u •< 1!),\!I) }', ,.,( c � T )<,\(" I "V �J '>-'>-<,

Figure A.l. Site Kl in McCracken County (Joppa Quadrangle). Trace No. 1 o ms

250 -

-- � 500 co

750 -

1000 ...{� t�. .. �}��2\ � $ � ��?- i �

Figure A.2. Site K2 in Ballard County (Bandana Quadrangle). Trace No. 9 "±" qb ..,_, .. ., _,r -'" 31 2B 25 22 19 16 13 1 7 4 1 ems < c, ...... c" ooc' "'"'���··' """"i< ' ' il �;a;c ""'' l) \'1 1111111·'

"'" "'"

750 -'"-

1399 ( l \ I �· ( V\)). ) I ( \ ('J)('(2"'> I ).. ( <' =v=c ')C''"c�l "\.!t \ ??'-..: 1 '>-JoE, ·, 1 ,. ••

Figure A.3. Site K3 in Ballard County (Bandana Quadrangle). --;J:;J "''"' �� -"'"i' ""'' ..... ,-;>: ....,...... , ..... , ...... -� -- -� -- ' 41 1 9 m .. c ol1 • L s � ...., .,.... ""1 I � •-- ,. I 7 - - y:; io" ) I I' .,, � -..,�I I (i;;:Jo;,: I ) l ' I I ) 1

>1>- 01

j_{;lt)t) �\))�f{�i12-�;K:Y.:? I }�JS::c!J�{ l�r<.>l%>1<"<; s.)

Figure A.4. Site KS in Ballard County (Olmsted Quadrangle). 250 -

... m

l.009

Figure A.S. Site K6 in Marshall County (Calvert City Quadrangle): -,._.. ..F ..._, I 'oJ -.J.,_, _. ..._ 5 3 1 ...... 1 u,o �� ...... ,� .._. ..._ _,_..,. ..._ l -'-'-' ..._ .... _,_...._. .r 7 g :_j;: I I ,._; ' ms \::: \ • C 't'_ l ( l L • 1...... :...... '10 l C C t_ ' '.' J l 'Ill �· ' ' ' f � \ S ( ( 1' l / I 1 I 1 � 1 1 �·

.... --'1

Figure A.6. Site K7 in Marshall County (Calvert City Quadrangle). .,.. 00

750 -- �� �� �0 Hl00 I I I I I I I I I I I I

Figure A.7. Site K8 in McCracken County (Paducah West Quadrangle). Trace No. 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 0 ms 3 1 ,. 1 c .,.,.. K,.;J- ... ! O;:JII"\' .., � rb In i 1 l � ( 1 1" 1 � 1 1' 1 1' 1 1' , ·�

250 -

5 gg -3}-...-.._._: �

75G --

7 "' 1 GGO :,. f ,..ry <, ). "). l<- ( C"J..(!'l'> '• [ {, l (. CS.c- ,,.. I t' I S,. l, ) I'I'• p---,.;....;,_,:;.:.:;

Figure A.S. Site K9 in Ballard County (Heath Quadrangle). Trace No. 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4 1 0 ms ' ....:...... 1 ia-....:1 ;-'"' �' •. "Cit... •. '=>t::.= t' """".-...__ ilt" i1 W? (.>,> c'•.._ 1 11 \ It'I I 11 I ItI r 11 t J •�

01 0

750 -�� -

1099. /�F r Jt. r rc:. c "> ' r ' )rlJ •, -.. t ,. t � ) r r "> � p "h'J. , c:c{r, r c:;r-....c r ;c..._.....- 1

Figure A.9. Site KlO in Ballard County (LaCenter Quadrangle). Trace No. 41 39 37 35 33 31 29 27 25 23 21 19 17 iS 13 11 9 7 5 3 1 0 ms <( 1 .,; � to; 1 1 1 -;j 1 • 1 1 1 1 1 1 • , , 2-...c; R :r' <:" ;:a+_ ', •-,. <_ "l JO <" J <;;: { L I I \ .' \ } > l I I I I I I I \ <:

01 >-'

1.9(3:9 =::--_.....c ...., Jill(1 'c ..,r' • t < "-.. (, ; ( ,. _, ,.r c • .r l. >- .r ' 1 c' {(1bc,,.. '!:- __

Figure A.lO. Site Kll in Ballard County (LaCenter Quadrangle). Trace No. 4q Hl 7 4 1 _ __ __ -- _. _ _ 3.1 28 25 22 19 16 13 · .. ' ' o t ' ms �S�::: � �I·">,. � ���:,,· Jr l)o.lrff\<:21>( ,)I I I I)

250

500 01 tv

7 5 g <:.::i'".Jl'" '

--.. IS.c, l J !$X !?S.?I6? .!'\ ?) .10ol'l �...

Figure A.ll. Site K12 in Ballard County (Barlow Quadrangle). 0 ms

250

Ol 500 CJ:)

750

l.1--l.f l'cJ' 1 1' I i' I I I i

250

01 1 509 "'"

759 -

7.

Hl99 �r ::r•rn r{ )·r.;;:s;:�,, ..,_�• >->I!.P.:u•). lrk.,.a !)_,.�=

Figure A.13. Site K14 in Ballard County (Barlow Quadrangle). Trace No.

e ms )2J�r�!1;�� �,, r� l � r � r � JJ ··7

01 01

Figure A.14. Site K16 in Marshall County (Briensburg Quadrangle). Trace i\1 o. G ms

250 -

01 SGG m

750

10GB � �b§S:i�}�t*)f-c� -� Figure A.15. Site K17 in Marshall County (Briensburg Quadrangle). Trace No. 19 17 15 13 11 9 \ � 3 1

01 -l

1 991'! [ <,-. )!. l"'c- "'- !';:- \. '> <')oS <. 2 <.C.. <. .> S.. <,C< ,!' <. '-,'--J.,. ( _.?'" ")oo 1 .�

Figure A.16. Site K18 in Marshall County (Briensburg Quadrangle). Trace No. 3.!. 29 27 25 23 21 .!.9 17 15 .!.3 11 9 7 5 3 1 oms . L c: ,· L Y 51 c: �

1 500 01 (I)

.!.099 ,....-.,_ .....I

Figure A.17. Site K19 in Marshall County (Elva Quadrangle). Trace No. 2 5 2 3 2J. J. 9 - 0 ms . ------. - - - -b .._ P W- .:.. c '-:::: i <;'_ ��:-...!...,c' c r' l r' c �· 1

J.00 -•-

01 (1)

709 -

P) ,. ., ,.. ,> P"'t ,.. , P P P' • .. � Pr pr � P" P � P J P" ...... PP'> (Oil.' "- U:tata:

Figure A.18. Site K20 in Marshall County (Elva Quadrangle). Trace No. 49 46 43 4fa 37 34 31 28 25 22 19 16 13 Hl 7 4 1 fa ,....._: LP'{1 1oo::' t1t" i!:e "'Cf"1 ms 1 LO:: E ...... \. )0 "r'r • J t:t:' t I t!;o r (=c>:" t' \.,;_>' I t >' I I t' I ,' I I

O'l 0

7 59 -

1fafafa ( ( P )<,.\,) I'-. ) I< II !IV"-"'2 J<,I?? 1>!rr \ C"'-.. lb > <, lI {!I ! ) < r"C-. I It r, .'>/c -

Figure A.l9. Site K21 in Graves County (Symsonia Quadrangle). 49 46 43 40 37 34 31 28 25 22 19 16 13 1 0 7 4 1 0 ms '"' de:::)/ ,.,.;; »;;wo lo: �r::: Jii'OOiid __, i? _ t?' "'I/ • · I "'il>i<:'iO$ >r it J I' I J 1' I I I, ( ' >

C"l >-'

� u .F ) t > r �"- r s r s) l 1) 'r 1 ., »<- t .., )H.x-..r , ; ,l .... � 1o1=m J �}()..) ! ... 1

Figure A.20. Site K22 in McCracken County (Symsonia Quadrangle). Trace No. 31. 29 27 25 23 21. 1.9 1.7 1.5 1.3 1.1. 9 7 5 3 1. 13 ms F JO<' :> J 1 ?2" <' Ji ·.:. ·.... -..:.. ); (' Z <' C 1' c / ? <' < )' I ( I 1' I t'

Cl":l t-o

1.131313 �?{5�5S"lsS>f �!)?����S.�

Figure A.21. Site K23 in McCracken County (Symsonia Quadrangle). Trace No. 49 46 43 413 37 34 31 28 25 22 19 16 13 Hl 7 4 1 g ms tl. ' • c 't ..:' ' r L • c :.1 r "'\ C '\ " l .,, ::/ """ '\OL .L&t:: .kt • t? L •-• ' 1' c 1 / t 1 1' 1 t 1 t t • t t

a> lsi

g 75 -�");"":

100g ....-"".)"!) J! ( S. )!().!'l. l l I ).. .1')c \ l C t I 'r;-r) I ) I ,•< t'!I } ) \ )> < ) .'' c'",-•r '£..:::--"""�

Figure A.22. Site K24 in McCracken County (Melber Quadrangle). Trace No. 49 46 43 40 37 34 31 2B 25 22 19 16 13 1 0 7 4 1 e ms •.. ' t:;� �e-< ' [.,.-". <;:(·--�' i;r;:Jiu-\ -..J,...,._ "a )' CQ ' ?:.>� ' 1 '-.C...?'Q t {.-•' { I'\:' \' i ' ) I \ .. I \?

/500 0> - ��--c-c """

0 75 -),�,.��- �

1.1lllO <:;;,-"') lo<'"')."-C"< f f > < S. ) <' I ( C I I \ ) 1 7 <; '), ( r'!I '> S:: LS. ( I ( 1 I l \ I ) I I 1 IV'-.

Figure A.23. Site K25 in Graves County (Melber Quadrangle). ...,.. -r ...... , ..... ,. ....,...... , ... t -,· ..... , ..., ....., --r -,· -, -, -, �, ·, - 1 ; g ffiS ....-...... _ - • [_ <' - r "-.. ""_.Jc__,....-CL__,.-'I.. .. ft [_ .. �> I I

a> 01

Figure A.24. Site K26 in McCracken County (Lovelaceville Quadrangle). -:r....L. .J ...r �r ..:>� ->:>-J ..:>....L. .t:;.;., ¥.... r L. ...J Lou c.. ..1.. � _, ..1.. r .J.. ..J,..�...... ,....L..J.. 9 7 5 0 rns 3 1. ?'J (: d5 ;J<- I i><;;?<': <:

250 - �"'- ".

- m 1500 m

750 -""�

HlOG I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I > , <.. <- • 5>- c-

Figure A.25. Site K28 in Ballard County (Lovelaceville Quadrangle). Trace No. - -- 22 19 16 13 113 7 , ·- -· -· , 13ms -r -- �- -;- 4 1 J::J'r\">0 <' J f <;: K>""• ki;o("-_ 11\ ! r.. c\;A ,•.,.,:O?r<<, I fC>',:_\ I \' \ \ (I I 1' 1 '<'

en -J

1131313 <"'<:=-I>! l fr' \ 'Y=-Jol"l ) l.-""<. ., { )p ." C ,_l � ( ?"'C ) ( \ �\ �C \ I' P P ) I· � Y! ;:c" I ·>.,..,

Figure A.26. Site K30 in Ballard County (Blandville Quadrangle)_ "' C/0

759

Figure A.27. Site K33 in Ballard County (Wickliffe Quadrangle). Trace No. 13 ms

250

Gl 51313 CD

7513

j_l3l3l3 ?�1j1t �S)�\?) C!{�))»� �? �{ {�! �$ l t�)� f (�))���1

Figure A.28. Site K34in Marshall County (HardinQuadrangle). "'::!::;> '":tO "";t;� •-u:J ..:>( ..l'"j; .t::; O 22 19 16 13 11J 1 0 ms ..:.1..1. C..J ' 7' 4 I ?'('<;;."000(' f)')') ) � '? ?1:-- 1 V('?'-t•,_-5- ,•7 t')

-l ISI3G - 0

750 _ .._

H IOO I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I "1rJ.· --..c--..--=---..

Figure A.29. Site K35 in Marshall County (Hardin Quadrangle). Trace No. 39 37 35 33 3l. 29 27 25 23 2l. l.9 l.7 l.5 l.3 l.l. 9 7 5 3 oms ' ' ' ' ' ' ' l.' -ill...... ;:-e__ � <::·-' =' ·- " ' ' ? ' <:_ -j �1i;: j. I � ? I I J 611 J "- 'l \ I J 1 l f \ S ) 5 J ::>"

-'! >-'

H!OB

Figure A.30. Site K36 in Marshall County (Oak Level Quadrangle). Trace No .

._. ...,. W-.J oW ..._ ..I. -;7 .,.1... { 15 13 11 9 3 7 5 � ' ' ' ' ' ' ' ?" Ia ms ::;J.III �

-.:] !:-:>

759 _s�-�

!a!a!a 1 (} $ � � � �)7? < � � 1 f f;:� �§5_ s, Figure A.31. Site K37 in Marshall County (OakLevel Quadrangle). Trace No. 49 46 43 40 37 34 31 2B 25 22 19 16 13 10 7 4 1 0 ms ( P'J"lo'£::;;; I'C.¥-J;)ti-LRJ> O< !' ·Q<;.__"i �)IO);"iil! 1' I 1 1' I I (I I)

-l C>J

1000 3 {�Rtv l ��>f5{� f �S.$ �) 1 ��� VJf{ U.l)'h it{;;� 1

Figure A.32. Site K38in Marshall County (Oak Level Quadrangle). Trace No. 19 17 15 13 11 9 7 5 3

250 --- -

--'1 ...

1009 I I I I I I I I I I I 1 C C I 1 C 1 I I 1 I '!. I ! 'J. <,. <; I S �

Figure A.33. Site K39 in Graves County (West Plains Quadrangle). Trace No. 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 13 ms I c' ( / ... � t?� i:c- T??'t_ l2"71 ·-�-·-- L c,'I i ( e! {1 It' I /1 ) )1 I

-J 01

113913 �_L�4_���_L4_��_L_L��L-�

Figure A.34. Site K40 in Graves County (WestPlains Quadrangle). Trace No. 49 46 43 40 37 34 31 28 25 22 19 16 13 Hl 7 4 1 0 ms t<;792k�J;:kfl> :l�S:\.�·J .. [� �:::;u:J'.c;c._t;uJ�J J'\ ll' II I' 115

250 - . ��<

15g0 - --.:] Cl>

1000 �,.)"'�[< �s.rxs�> J�>s..�r? s< J(c).t<,S!b(! 1 > > 2 r t��

Figure A.35. Site K41 in Graves County (Hickory Quadrangle). Trace No. 49 46 43 49 37 34 31 28 25 22 19 16 13 19 7 4 1 9 ms ' ' ' �� ' :.1.- � *' t ' f ' ' ' I J 1 I_ 1 I 1 I \: �... ��� C � .::.._ ;»'7'� "' ·,_ { J ( { I 1 I I I I I (

259 -

-J -J

.1 �99 ....,._ ,.-r..... r> >> •? .. , J n ?\ *,rr <..,. \ -.c r' D::r\...-.... t w ., ,...... _., ,....,..,_ 1 111J>,_,'). .,., -=e.:;: .__

Figure A.36. Site K42 in Graves County (Hickory Quadrangle). 7 5 3 .1 9 ms

259 -

-:] 00

Figure A.37. Site K43 in Graves County (Fancy Farm Quadrangle). Trace No. 49 46 43 4<1 37 34 31 2B 25 22 19 16 13 Hl 7 4 1

�·�.- ���r:i; �511/i;:; �� F.;�. ·:X ;! ' )")� t.> ?'" ��"' '--;;- >l' � ' I I I ' I I I '

--l

1ggg L��rr;:�j��gf)XbL/1} iXt��

Figure A38. Site K44 in Carlisle County (Milburn Quadrangle). Trace No. 49 46 43 40 37 .3 4 31 28 25 22 19 16 13 10 7 4 1 0 ms � <( ,. I � I I ...:: � 'k! I � I I I I I .,k '" """ "; .....,., <. - ·- � ?' , s >

250 -

00 0

Hl09 �X.>�

Figure A.39. Site K45 in Carlisle County (Milburn Quadrangle). Trace No. 41. 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 1 !a ms 3

25!a -

i 5!a!a - 00 >-'

75!a -

1.!a@ � f{fi 1�%�� f ii1 I��� Figure A.40. Site K47 in Carlisle County (Milburn Quadrangle). Trace No. 49 46 43 413 37 34 31 2B 25 22 19 16 13 113 7 4 13 ms 1 ' r� J)!J; \0 .."\1? :c;::e�' Ji' \ .!;c;r (·.... ? "\!'t' .. .,.,___/ c'-...... _\L__../ e: t"�::::W" $: ....._(:J\j"='.� "" \/I \ 11 I\� ·

2513

0 !:<)00 / 513 -

_.....,. __,.-=--- 1GG9 ?S ...... _c"" c•... ) -.... ;:., l F f c \ • P",) i

Figure A.41. Site K49 in Carlisle County (Arlington Quadrangle). 49 46 43 40 37 34 �ms -'.1. o<.ol.l' '-_. o<.oc- .J.. J ..&.\J ..._ _. .,.I... 'UI -;o: ..L. ' ' ex ill'::>e c' (t::it tt't tt't l t' ttY.Id · .., £::?�- ,..... -·. �·J< Jii 'st t' t t t ttl 1 /( 1 ('

C1J 00

75G -·- -

j_Goo I IIIII Ill\ 15!6! 'G:<..1?(V\n\<:: '� k�S)�{(:;} :.>

Figure A.42. Site KSO in Calloway County (Hico Quadrangle). Trace No. 31 19 16 13 __ -- -- ·- -. �� 2S 25 22 Hl 7 4 1 � I I ! I I I I I I I I ! r I t ! fa ms YII' >"S

Cl:! """

Hlgg )<).(( )'=, [< <"':a-?:.. -.(c' .---C<;.C. ) ).'"><.,(,<�5.- s. C !"C� I n.<,:...,.;...,_$,. .}')../:.,.yl I lP\ ) C-"'

Figure A.43. Site KSl in Calloway County (Hico Quadrangle). -- -- ... - ,.. _.. , ?7 J>1;c:' )- �<:':>·- '·-'( t<:u<'rt I ( • i?''"):·· C !'>) 1' I I 1' I I 1' I l (

00 CJ1

75g -- �-

99 I I I I I I I I I I I I I I I I 1 1 1 ,P r s ? i,J.)s. 1 1<:�.,;:-. u1 I I I I I I I I I I I I ,.I

Figure A.44. Site K52 in Calloway County (Hico Quadrangle). Trace No. 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 5.:;::1=c:;_) '"::...... '\1 C ms � P <::1 t � 6 -..:._ .,..._.1- •.... _... )-o:;.. b_'t't_ c' I / !I d J \' t •, 11 l 1' I s' J -...

00 Cl"l

Hlm:! CS..')..J( <."'"). ( (, CC K.JI"(, !?)CJIc-. I \ 1 l )' 1 f"• JD"}'S.)) �--

Figure A.45. Site K53 in Calloway County (Dexter Quadrangle). Trace No. 49 46 43 40 37 34 31 2B 25 22 19 16 13 Hl 7 4 1 0 ' ms c. '7 ' ' J lo 'c;;>'; J 1' ' 5 '\1 ., ,c::'r J t:' »t 1' r 1 10':::> 1 c;;! \ > .• J .,.. . ' < J , ' 1 1 1' 1 1 1 1 J'

(JJ __,

19@9 } ) ,. l l' P "':h lo( ( ( '> ( F/ -! f l 1 l J> (. ), ). J1 p ( (� t'=..C)hr ) r p Q 1:., ( ! 1 P?f: "H?"·�

Figure A.46. Site K54 in Calloway County (Dexter Quadrangle). Trace No. 49 46 43 49 37 34 31 2B 25 22 19 16 13 4 1 Ia Hl 7 ffiS iO'I:"_•....._' o;;; •J! /t ""e::t-- LCt , Jl 1 'i / •< "\Ot:1:>" �1 WI 11r Lt 1 Bt , I \ 111 t I 1 t t \1 J J 1 1 J' :J J t'

00 00

1000 ��<:�1u;8{11 2{! 1? lf> liJ j_fJ ';: g ms - � -- _t;::r_ (II?.) �it?-' t<5 ) I"' -;_; u·- be;; j;c• l".:.."".:s· ·, �I< I I� I I I�I I I (I\I I i ;> .>

00 CD

750 -

- j_ggg cS\!S.<.'))((S,'dP (!l ')) U\(S.I'.. ¥�'

Figure A.48. Site K56in Calloway County (Kirksey Quadrangle). Trace No.

49 46 43 40 37 34 31 28 25 22 19 16 13 Hl 7 4 1 0 ' ' ' ' ms . c''t:e:: l!:•ill •t { Z:::::'c 7 "-c ...-:'...... ,.J ''r .,..,'•y�' Jc'; c Jlt:? t'/ J r r 1 r r r r r r r 1 c \

tO 0

103B l' 2 )")D { !l ?s--) (l)( t (} I I ( ) )! ( > ) f)! I ) )"<."') ))I lS.S.r' l�.,-�

Figure A.49. Site K57 in Graves County (Farmington Quadrangle). Trace No. 49 46 43 40 37 3<1 .31 20 25 22 19 16 13 10 7 4 1 ms 1 1 Ia ./ '( a:..;,I \ ...... 'I _.• ,_�_ 'i!;.I ?'c:_;w<::;:\e- __ P: tc r 'ilb4;::r•. ( ...... __ )- ..---.� ) 1 t' 1 I 1' I I 1 1 I 1 1 I }

w >-' j500 -/<"--""!

750 -

( 1 t:)QQ Jll":.r-.,_ lit: ) I P'!"':( >. .. I P'C'\\\ ) Z f I C \ )') 1,. ..., ) r ) l...,r ...... l),l\,.1,,)_ '.!"'.�

Figure A.50. Site K58 in Graves County (Farmington Quadrangle). Trace No. 49 46 43 40 37 34 31 2B 25 22 19 16 13 10 7 4 1 0 ms ' ' ' "i; r??'<:::·-....:.:1'/<-.J.... ,:::Jio\?,;;>e;2-r. ,·· b-;:� �)Or 12: �-l ,JI I I 1 I J 1 ' I 1 I , \

Figure A.Sl. Site K59 in Graves County (Mayfield Quadrangle). 25B -

c.o CJ:)

75G -

il'lGB

Figure A.52. Site K60 in Graves County (Dublin Quadrangle). 11 9 7 5 3 1

250

(!) >!>-

750 ��

Hl@O ").. \ ) S !' I b } )I> <' "' ( ?�? C ! {, ) S.. ? ', c""S;.. C (). \��

Figure A.53. Site K61 in Hickman County (Dublin Quadrangle). Trace No. 49 46 43 413 37 34 31 28 25 22 19 16 13 113 7 4 1 g ms ( nc'1 l'i' (<: ....n;:);f'rh

13 <001 I s 13

1131313�s.>�t0!��5X?rQ«�t�)$g;;�f-�

Figure A.54. Site K62 in Hickman County (Clinton Quadrangle). g ms I I I T1 i'l I i'l I j'�

25B

75B

HleB ?. � ")..( c; � l I ! 1 s![)). \ ( \ \ <

Figure A.55. Site K63 in Hickman County (Clinton Quadrangle). Trace No. 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 9 m!\ GS8SS:s)m��J�(�{"�ri�t5 I' t I11 · I�

(D -:I

li'!OB I I I I I I I I I I I I I I I I I I I I I I r T ·, D ] ) ,-""") '¥- .....__..,_,. 1') '-

Figure A.56. Site K64 in Hickman County (Oakton Quadrangle). Trace No. 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4 1 0 ms ''tfXC:l3' l<:<"_,..K�'vfR'h �?� Jiln!-:..;.< ');.1;(I I I' 1 1 �·

co 00

HlOO ��mll� Figure A.56B. Site K65 in Hickman County (Oakton Quadrangle). 13ms

Hill -

21313

31313 - <:£) <:£)

41313 -

51313 -

7. � .._, 61313

Figure A.57. Site K67 iu Calloway County (New Concord Quadrangle). Trace No. 22 19 16 13 10 7 1 49 46 43 4'3 37 34 31 2C 25 4 13 ms �"' w:�MaII' Iii;; h ii(""K":'..,.i f � I < t f 1 I' ' ' ) ( >;.� Ji")") ( 1' I I I I I I 1 1' l I [' 2.:::--

...... 0 0

Figure A.58. Site K68 in Calloway County (New Concord Quadrangle). Trace No. 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 s 3 1 (1 ' ' ' (3 ffiS ii t :o,{ 7 J' C t .... c:! e_ J '\: ( k ' t t' ( }1 t / I \1 \ \ 1 I c' I r' 1 1' I 1 I 1 I 1' \ J

...... 0 ......

.1g(;H3 \ < E 9 � ). \ ( ). r "{, 1 C l I I I l l \ \ t I Y )> r '\.,!)c -, C C ,P o 1 c- --

Figure A.59. Site K69 iu Calloway County (Murray Quadrangle). I-' 0 !:"'

61

7 Qfa I C ( C ( •...., S. < ( / '=..., r f l� '> \!C.... ( ,....---,_, ,.� ).,•Jll' / ,!' 11. t 1 / f � c"" t\ ·,_, r J-, ,.. 1/ )....II-!., .._.

Figure A.60. Site K70 in Calloway County (Murray Quadrangle). Trace No. 31. 29 27 25 23 21. 1.9 1.7 1.5 1.3 11. 9 7 5 3 1 13 ms $ S t ;' } \. ( { ) � 1 t 6 I ( I <' I !' C !' i' I I' I f > �

..... 0 ""'

( c ...... - < ?' Jf1P' .... <. j_jJQQ { c:: \... \r.... .::: • c } )' ...... � < --.. (, o,:::_ ( }I ' -...,__ c -... ,_ ,__

Figure A.61. Site K71 in Calloway County (Murray Quadrangle). Trace No. 31. 29 27 25 23 21. 1.9 l. 7 1.5 1.3 l.l. 9 0 ms ) r • t ,.· ""\\OO::r' 7 .; ...,;,....._ t' c .; ·-- 1' 1 ,· ·�-- ,• t t' \ ,' t ,· _,�

>-' 0 *'"

Figure A.62. Site K72 in Calloway County (Lynn Grove Quadrangle). ------. 5 3 1 0 ms -j.< i; IF ' i;;:: � ' � ' I!; ' ' ' ' ' ' < f .. ---==----- � .... ;,_ c::: -...�....__. l 1._ 11 ) 1 ' ! • l I I 5 (

...... 0 CJl

Figure A.63. Site K73 in Graves County (Lynnville Quadrangle). Trace No. 4:1 39 37 35 33 3:1 29 27 25 23 2:1 :19 17 15 :13 1:1 9 7 5 3 1 �an ms "'! ! "'= 1; :::;>1- :F .. � I I .,. ! 0!!!! I I • ' '· o:-. 1 .... oc ,� at t i i L J 1 :» \ \ ( l I I I 1 ) I I I ) ' -'

..... 0 m

; < l ?' C t ! 5 ' t l c t t, t ·• 1 r , .b f t -... .; 1 ; �-� 1999 -.. { J ) I >-J { <. \

Figure A.64. Site K74 in Graves County (Lynnville Quadrangle). Trace No. 4:1 39 37 35 33 3:1 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 1 1 ' ' 9ffiS -i:: t J ""'"•-!._t L::.._ ...... t' 1 -..!._ L:f1 I ""'1l1 t /1 I j' I t' I t' J / I t' I \1 I 1 I 1 I t' l

...... 0 --1

Figure A.65. Site K76 in Graves County (Cuba Quadrangle). 5 3 1 9 7

..... 0 00

Figure A.66. Site K77 in Graves County (Water Valley Quadrangle). 1.3 1.1. 9 7 5 3

...... 0

� HIBO 1 ),. )'-=-l< C, '• ( ) I' ( ( S" '). I \ ').. ) ...... ? S. )'>: )It: s,Jo!.<",r.....,

Figure A.67. Site K78 in Hickman County (Water Valley Quadrangle). Trace No.

>--' >--' 0

Figure A.68. Site K79 in Fulton County (Crutchfield Quadrangle). Trace No. 49 46 43 40 37 34 31 2G 25 22 19 16 13 10 0 11 ,"\:_f'; e:e-'Mi•' a• 'LI .!:r•L...,< ).:--_ J._, 1 7 4 1 ms __ •.' t Li \ \ w!::J ,,'\ I 1' 1 I 11 ,' 1 I

,.... ,.... ,....

1000�;9-!lR:i t{�)i;)?·t?�?11 5 � � t�) {)) i

Figure A.69. Site KSO in Fulton County (Crutchfield Quadrangle). Trace No. !a ms

250 - -

>-' 599 - t-' !:'.:>

7 59 -

7. "" l.l'l99 l :;..t<;.! �>.J:!?<.) <,. )o.).-;.s 1 i) ) ) { r �.. � �) � )··�

Figure A.70. Site K81 in Fulton County (Crutchfield Quadrangle). Trace No. 58 55 52 49 46 43 413 37 34 31. 20 25 22 19 16 13 113 7 4 1 0 ms J' -;. r, '.- ���:� ' _,. .. l > > f� > ·, r ,. \ :�;;::;::) <;: \ \' I � :>><- >�- . 2 ' ?;). l \ l l I J � � -=--- ·, '1 ) <;) So- .l-�r f?C_-q��)o< ·.Y·��;'i � � <,.) ! ';> ><��=r{� i l'r -,.. ,_.- ::,rf!·;,.-��u:=-� }��sf�� )-$�-�r N--"-·;;-.?.,:..;.;r_.._f�t'1 :l,-� f�)" � 1 • j· >r\:s;��,. :?�Bf ���;>-::,._, ,. ::- ""' '0::l V) � \. !'('�r - � � '• \-:, . J ---III �- - ]II- � � ;p )..=-. -· >- t <" .: ) �) ....]" ,,.?}_y- ';_J-� 5 y_;" {l�?i ,-:;_>: ,..$�_5., ':.-- ...)ot,.� �-r ). -�--� v--: J 2513 . > ... ;- _., · . - . J �J.Yr7:!)'..-sO< -·,-'n �-;.-'"1.. )�;?'-"1:-:-(_h�-�J I\ \� f- j� ;>.).:;.: l\q.:�l , J-k_?� y;)..�-,��6\f?� � rn Ill 1jJ�;� �-1 ) ;!>')- � '>7'· .,. � \.� -"c .;:q,...f •., !:": , \ p > J J -�;·y��·-).���-·-?,?) , ) , �--'"'7-: � � _.,. ; r,..· :> ;> �..- \• .tc\ /"?"<; 1 > 1 t � , I , '" r 1 I I 1 � >i r ) - • ,>- ) '·"! �;/ ?')·� t { ) � ? i I . / g :-S�:tf<: { ' > ) { '• '( (I 1-' ?o::;s-;:r�.,---"':Jo.>.,_)'f 5013 "--'>.�� ·;. -,. ') L�..... fft-�-:>- 1 ,-(���1�)- -.sS:- - . .--.. ·Q � ... \ > .. :Et:8 � .>,> .•;;· ·> � ::{�? -- � ) - -? \>.w ��!3�.l ��iJ /! .� ) r ��r-���-t·-�-J:;�>--�·;[J- )i rj--,- -� ! .. 3J:[;{f:;tr� � J r, �� )' . ·- I h�f:....: S '1! .,.,.... h '• �'.;'"If\ y=-K"?} •;:P't- l l (:;,_� ,}� ,;>": ? �>-" t; $ ] - . ,�>-;, t�� = � � ) / <"� · ( r tt _ >-' 7513 -"'"- 't�@lli"' ""?i fff�-�t?'?\- - --���r � 5 >-' '>f� � t � ,. ,��� ""�", :. .:,..; ..,J<:: -,c w t c,<;.?- "dvl? ! -� .)-��;.,.... :;. ���!?'< ,. ',..�� .3 i.'"· s_J) 1- ;;:. ,, -.,. 1",;> ����tt-; r.:1-r�;�:r>�"'rn':�>o,.��>-),t�� > �· ·;-:: �� ?� \"':- -.. - .. _ .li 1:� ? z:.;� .- < r + � .. � ,,., . ���� H ., ,.; ,..:. ....> ,l'S?-""'-. p �1 �1"). x.(" � I>·\ J';'� -v ,,....f�-�-r1J:>�,;;,. J1t-?t�n;t �1 (, .. 11300 _) ... £Ut /H t;.·· ::r, r--:-....,. .--··�> ?'.} - -r-r. 1rt: d ) -�- ���� ·,.- ,=�"'-,.:'r, .,Jo�.....:;,�? -<:"�fS b.Ji �'?5: "11-d',r· ·;::��K) �r�� �--.:1)< t��it:>;:;-- �-''i��i:? >)':-.. J <" ::> > '<;:-,.i�:,..� >.'-:>i'.•J. • \ ; i'-,.>]o� • (':r� -s�., � - ; .>- -'- - t-<:"'" &< /t ;.;>..\J.J',;?-! r�> 5-=�Y,0-v · 5'; r::�·;�¢--:';.,_?XS�.;;-:·r).?N�� r""�� ,.[.- ? � _. k·<},· ,- �\ • \ r ;.� 1 �·�? -�>:�fli1- • ) .L�- - ·K; � >-J�>- -bs�,._;:-,.�-->h",-.J';;$� ',.��p).<;_,, . .,iH§� t .. > � ... 1 ��. ( ) ? > ('.? . �,�}-)� 5{">-::rt-=..<..: �?,�4 �. ?-t � - >!c' hJ )'.,_.> ',. ! �c""�,"?"v 1 �J';�- }.�'t _?:,,'?", ), - � ) � _) •?._,r' < - - � . .. �·,,.,-> ��_ " r� ;:J-. � §� �� 1 1: (�<- f(�>.. f>... � t..�"igi..{.�F}..;,_3..;. {""�;;-.,;:r; � ;:� ��;.,...,.·J., - J �f · � ,!'��R�' > .>�t·�- .?1 } -.. C"' . c �c.. � Hc ? "'<' 1 )o� ':; ., :a • � '>-<� nr · - · - f ,. -... � H? �.:=,J "'"(1 ����� - · :1.5130 c._ �'"'-'- t1· L . -� J

Figure A.71. Site K82 in Fulton County (Cayce Quadrangle). Trace No. 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 .1.1 9 7 5 3 1_ � t : ms _' .3 =L:oe::.•...! i -�-=- eo'...._ •-' c=J c .L r < c-..: 1 ...,.' -c::::-< • J1 r r' r ,' t t' c ' ' t t' '' .,·

25B

.... I50B .... ;�:>.

75@

• ,Jll" t ,....�""',..,...,.. ( ; :... 1 c lo \ 1{ r" ), r--:c ..._;:.,-.c_ 1� j_ggg: �J.r ,... -... • '( -... llr JI:S t' » f ) s.

Figure A.72. Site K83 in Fulton County (Cayce Quadrangle).