The Contest Problem Book American Mathematics Competitions 1995–2000 Contests

Total Page:16

File Type:pdf, Size:1020Kb

The Contest Problem Book American Mathematics Competitions 1995–2000 Contests AMS / MAA PROBLEM BOOKS VOL 31 VII The Contest Problem Book American Mathematics Competitions 1995–2000 Contests Compiled and augmented by Harold B. Reiter The Contest Problem Book VII American Mathematics Competitions 1995–2000 Contests Originally published by The Mathematical Association of America, 2006. ISBN: 978-1-4704-4970-4 LCCN: 2005937659 Copyright © 2006, held by the American Mathematical Society Printed in the United States of America. Reprinted by the American Mathematical Society, 2019 The American Mathematical Society retains all rights except those granted to the United States Government. ⃝1 The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at https://www.ams.org/ 10 9 8 7 6 5 4 3 2 24 23 22 21 20 19 10.1090/prb/031 AMS/MAA PROBLEM BOOKS VOL 31 The Contest Problem Book VII American Mathematics Competitions 1995–2000 Contests Compiled and augmented by Harold B. Reiter MAA PROBLEM BOOKS SERIES Problem Books is a series of the Mathematical Association of America consisting of collections of problems and solutions from annual mathemat- ical competitions; compilations of problems (including unsolved problems) specific to particular branches of mathematics; books on the art and practice of problem solving, etc. Council on Publications Roger Nelsen, Chair Roger Nelsen Editor Irl C. Bivens Richard A. Gibbs Richard A. Gillman Gerald Heuer Elgin Johnston Kiran Kedlaya Loren C. Larson Margaret M. Robinson Mark Saul Tatiana Shubin The Contest Problem Book VII: American Mathematics Competitions, 1995{2000 Contests, compiled and augmented by Harold B. Reiter The Contest Problem Book VIII: American Mathematics Competitions (AMC 10), 2000{2007 Contests, compiled and edited by J. Douglas Faires & David Wells The Contest Problem Book IX: American Mathematics Competitions (AMC 12), 2001{2007 Contests, compiled and edited by J. Douglas Faires & David Wells A Friendly Mathematics Competition: 35 Years of Teamwork in Indiana, edited by Rick Gillman The Inquisitive Problem Solver, Paul Vaderlind, Richard K. Guy, and Loren C. Larson International Mathematical Olympiads 1986{1999, Marcin E. Kuczma Mathematical Olympiads 1998{1999: Problems and Solutions From Around the World, edited by Titu Andreescu and Zuming Feng Mathematical Olympiads 1999{2000: Problems and Solutions From Around the World, edited by Titu Andreescu and Zuming Feng Mathematical Olympiads 2000{2001: Problems and Solutions From Around the World, edited by Titu Andreescu, Zuming Feng, and George Lee, Jr. The William Lowell Putnam Mathematical Competition Problems and Solutions: 1938{1964, A. M. Gleason, R. E. Greenwood, L. M. Kelly The William Lowell Putnam Mathematical Competition Problems and Solutions: 1965{1984, Gerald L. Alexanderson, Leonard F. Klosinski, and Loren C. Larson The William Lowell Putnam Mathematical Competition 1985{2000: Problems, Solutions, and Commentary, Kiran S. Kedlaya, Bjorn Poonen, Ravi Vakil USA and International Mathematical Olympiads 2000, edited by Titu Andreescu and Zuming Feng USA and International Mathematical Olympiads 2001, edited by Titu Andreescu and Zuming Feng USA and International Mathematical Olympiads 2002, edited by Titu Andreescu and Zuming Feng USA and International Mathematical Olympiads 2003, edited by Titu Andreescu and Zuming Feng USA and International Mathematical Olympiads 2004, edited by Titu Andreescu, Zuming Feng, and Po-Shen Loh Contents Preface . ix 46th AHSME, 1995 . 1 47th AHSME, 1996 . 9 48th AHSME, 1997 . 17 49th AHSME, 1998 . 25 50th AHSME, 1999 . 33 Sample AMC 10, 1999 . 39 51st AMC 12, 2000 . 45 1st AMC 10, 2000 . 53 50th Anniversary AHSME . 59 46th AHSME solutions, 1995 . 71 47th AHSME solutions, 1996 . 83 48th AHSME solutions, 1997 . 95 49th AHSME solutions, 1998 . 107 50th AHSME solutions, 1999 . 119 Sample AMC 10 solutions, 1999 . 129 51st AMC 12 solutions, 2000 . 135 1st AMC 10 solutions, 2000 . 145 Additional Problems . .153 Solutions to Additional Problems . 159 Classification . 175 About the Editor . 183 vii Preface History Name and sponsors The exam now known as the AMC 12 began in 1950 as the Annual High School Contest under the sponsorship of the Metropolitan (New York) Section of the Mathematical Association of America (MAA). It was offered only in New York state until 1952 when it became a national contest under the sponsorship of the MAA and the Society of Actuaries. By 1982, sponsorship had grown to include the national high school and two-year college honorary mathematics society Mu Alpha Theta, the National Council of Teachers of Mathematics (NCTM), and the Casualty Actuary Society. Today there are twelve sponsoring organizations, which, in addition to the above, include the American Statistical Association, the American Mathematical Association of Two-Year Colleges, the American Mathematical Society, the American Society of Pension Actuaries, the Consortium for Mathematics and its Applications, the national collegiate honorary mathematics society Pi Mu Epsilon, and the National Association of Mathematicians. During the years 1973{1982 the exam was called the Annual High School Mathematics Examination. The name American High School Mathematics Examination and the better known acronym AHSME, were introduced in 1983. At this time, the organizational unit became the American Mathematics Competitions (AMC), a subcommittee of the Mathematical Association of America. Also in 1983, a new exam, the American Invitational Math Exam (AIME), was introduced. Two years later, the AMC introduced the American Junior High School Mathematics Examination (AJHSME). In February 2000, the AMC introduced the AMC ix x The Contest Problem Book VII 10 for students in grade ten and below. At the same time, the AMC changed the name AJHSME to AMC 8 and AHSME to AMC 12. The two high school exams became 25 question, 75 minute exams. Participation Before 1992, the scoring of the exam was done locally, in some states by the teacher-managers themselves, and in other states by the volunteer state director. Beginning in 1992, all the scoring was done at the AMC office in Lincoln, Nebraska. Beginning in 1994, students were asked to indicate their sex on the answer form. The following table shows the degree of participation and average scores among females versus that for males. Year Females Mean Males Mean Unspecified Mean 1994 104,471 68.8 120,058 76.0 6,530 70.6 1995 115,567 72.3 133,523 78.5 6,877 73.7 1996 124,491 65.8 142,750 71.2 6,659 67.8 1997 120,649 63.8 140,359 69.8 7,944 65.5 1998 108,386 66.5 128,172 71.9 7,438 67.8 1999 105,705 66.1 126,992 71.1 8,200 67.5 2000(12) 71,272 61.0 89,965 67.9 5671 64.3 2000(10) 49,288 60.8 52,836 67.5 4870 63.6 Related Exams Until the introduction of the AIME in 1983, the AHSME was used for several purposes. It was introduced in order to promote interest in problem solving and mathematics among high school students. It was also used to select participants in the United States of America Mathematical Olympiad (USAMO), the six question, nine hour exam given each May to honor and reward the top high school problem solvers in America. The USAMO was used to pick the six-student United States Mathematical Olympiad team for the International Mathematical Olympiad competition held each July. With the introduction of the AIME, which was given the primary role of selecting USAMO participants, the AHSME question writing committee began to focus on the primary objective: providing students with an enjoyable problem-solving adventure. The AHSME became accessible to a much larger body of students. Some 7th and 8th graders, encouraged by their successes on the AJHSME, began participating. Preface xi Calculators In 1994, calculators were allowed for the first time. At that time, the AMC established the policy that every problem had to have a solution without a calculator that was no harder than a calculator solution. In 1996, this rule was modified to read ”every problem can be solved without the aid of a calculator'. Of course the availability of the graphing calculator, and now calculators with computer algebra systems (CAS) capabilities has changed the types of questions that can be asked. Allowing the calculator has had the effect of limiting the use of certain computational problems. Referring to the Special Fiftieth Anniversary AHSME, problems [1954{ 38], [1961{5], [1969{29], [1974{20], [1976{30], [1980{18], [1981{24], and [1992{14] would all have to be eliminated, either because of the graphing calculator's —solve and graphing" capabilities or because of the symbolic algebra capabilities of some recent calculators. But the AMC has felt, like NCTM, that students must learn when not to use the calculator as well as when and how to use it. Thus questions which become more difficult when the calculator is used indiscriminately are becoming increasingly popular with the committee. For example, consider [1999{21] below: how many solutions does cos.log x/ 0 have on the interval D .0; 1/? Students whose first inclination is to construct the graph of the function will be led to the answer 2 since in each viewing window, the function appears to have just two intercepts. However, the composite function has infinitely many x-intercepts. Scoring The number of problems and the scoring system has changed over the history of the exam. In the first years of the AHSME, there were a total of 50 questions with point values of 1, 2, or 3. In 1960, the number of questions was reduced from 50 to 40 and, in 1967, was further reduced from 40 to 35. The exam was reduced to 30 questions in 1974. In 1978, the scoring system was changed to the formula 30 4R W, where R is C the number of correct answers and W is the number of wrong answers.
Recommended publications
  • The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary
    The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary i Reproduction. The work may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents. In any reproduction, the original publication by the Publisher must be credited in the following manner: “First published in The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commen- tary, c 2002 by the Mathematical Association of America,” and the copyright notice in proper form must be placed on all copies. Ravi Vakil’s photo on p. 337 is courtesy of Gabrielle Vogel. c 2002 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2002107972 ISBN 0-88385-807-X Printed in the United States of America Current Printing (last digit): 10987654321 ii The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary Kiran S. Kedlaya University of California, Berkeley Bjorn Poonen University of California, Berkeley Ravi Vakil Stanford University Published and distributed by The Mathematical Association of America iii MAA PROBLEM BOOKS SERIES Problem Books is a series of the Mathematical Association of America consisting of collections of problems and solutions from annual mathematical competitions; compilations of problems (including unsolved problems) specific to particular branches of mathematics; books on the art and practice of problem solving, etc. Committee on Publications Gerald Alexanderson, Chair Roger Nelsen Editor Irl Bivens Clayton Dodge Richard Gibbs George Gilbert Art Grainger Gerald Heuer Elgin Johnston Kiran Kedlaya Loren Larson Margaret Robinson The Inquisitive Problem Solver, Paul Vaderlind, Richard K.
    [Show full text]
  • When Algebraic Entropy Vanishes Jim Propp (U. Wisconsin) Tufts
    When algebraic entropy vanishes Jim Propp (U. Wisconsin) Tufts University October 31, 2003 1 I. Overview P robabilistic DYNAMICS ↑ COMBINATORICS ↑ Algebraic DYNAMICS 2 II. Rational maps Projective space: CPn = (Cn+1 \ (0, 0,..., 0)) / ∼, where u ∼ v iff v = cu for some c =6 0. We write the equivalence class of (x1, x2, . , xn+1) n in CP as (x1 : x2 : ... : xn+1). The standard imbedding of affine n-space into projective n-space is (x1, x2, . , xn) 7→ (x1 : x2 : ... : xn : 1). The “inverse map” is (x : ... : x : x ) 7→ ( x1 ,..., xn ). 1 n n+1 xn+1 xn+1 3 Geometrical version: CPn is the set of lines through the origin in (n + 1)-space. n The point (a1 : a2 : ... : an+1) in CP cor- responds to the line a1x1 = a2x2 = ··· = n+1 an+1xn+1 in C . The intersection of this line with the hyperplane xn+1 = 1 is the point a a a ( 1 , 2 ,..., n , 1) an+1 an+1 an+1 (as long as an+1 =6 0). We identity affine n-space with the hyperplane xn+1 = 1. Affine n-space is a Zariski-dense subset of pro- jective n-space. 4 A rational map is a function from (a Zariski-dense subset of) CPn to CPm given by m rational functions of the affine coordinate variables, or, the associated function from a Zariski-dense sub- set of Cn to CPm (e.g., the “function” x 7→ 1/x on affine 1-space, associated with the function (x : y) 7→ (y : x) on projective 1-space).
    [Show full text]
  • 2010 Integral
    Autumn 2010 Volume 5 Massachusetts Institute of Technology 1ntegral n e w s f r o m t h e mathematics d e p a r t m e n t a t m i t The retirement of seven of our illustrious col- leagues this year—Mike Artin, David Ben- Inside ney, Dan Kleitman, Arthur Mattuck, Is Sing- er, Dan Stroock, and Alar Toomre—marks • Faculty news 2–3 a shift to a new generation of faculty, from • Women in math 3 those who entered the field in the Sputnik era to those who never knew life without email • A minority perspective 4 and the Internet. The older generation built • Student news 4–5 the department into the academic power- house it is today—indeed they were the core • Funds for RSI and SPUR 5 of the department, its leadership and most • Retiring faculty and staff 6–7 distinguished members, during my early years at MIT. Now, as they are in the process • Alumni corner 8 of retiring, I look around and see that my con- temporaries are becoming the department’s Dear Friends, older group. Yikes! another year gone by and what a year it Other big changes are in the works. Two of Marina Chen have taken the lead in raising an was. We’re getting older, and younger, cele- our dedicated long-term administrators— endowment for them. Together with those of brating prizes and long careers, remembering Joanne Jonsson and Linda Okun—have Tim Lu ’79 and Peiti Tung ’79, their commit- our past and looking to the future.
    [Show full text]
  • From the Editor
    Department of Mathematics University of Wisconsin From the Editor. This year’s biggest news is the awarding of the National Medal of Science to Carl de Boor, professor emeritus of mathematics and computer science. Accompanied by his family, Professor de Boor received the medal at a White House ceremony on March 14, 2005. Carl was one of 14 new National Medal of Science Lau- reates, the only one in the category of mathematics. The award, administered by the National Science Foundation originated with the 1959 Congress. It honors individuals for pioneering research that has led to a better under- standing of the world, as well as to innovations and tech- nologies that give the USA a global economic edge. Carl is an authority on the theory and application of splines, which play a central role in, among others, computer- aided design and manufacturing, applications of com- puter graphics, and signal and image processing. The new dean of the College of Letters and Science, Gary Sandefur, said “Carl de Boor’s selection for the na- tion’s highest scientific award reflects the significance of his work and the tradition of excellence among our mathematics and computer science faculty.” We in the Department of Mathematics are extremely proud of Carl de Boor. Carl retired from the University in 2003 as Steen- bock Professor of Mathematical Sciences and now lives in Washington State, although he keeps a small condo- minium in Madison. Last year’s newsletter contains in- Carl de Boor formation about Carl’s distinguished career and a 65th birthday conference held in his honor in Germany.
    [Show full text]
  • Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances
    LOCAL CHARACTERISTICS, ENTROPY AND LIMIT THEOREMS FOR SPANNING TREES AND DOMINO TILINGS VIA TRANSFER-IMPEDANCES Running Head: LOCAL BEHAVIOR OF SPANNING TREES Robert Burton 1 Robin Pemantle 2 3 Oregon State University ABSTRACT: Let G be a finite graph or an infinite graph on which ZZd acts with finite fundamental domain. If G is finite, let T be a random spanning tree chosen uniformly from all spanning trees of G; if G is infinite, methods from [Pem] show that this still makes sense, producing a random essential spanning forest of G. A method for calculating local characteristics (i.e. finite-dimensional marginals) of T from the transfer-impedance matrix is presented. This differs from the classical matrix-tree theorem in that only small pieces of the matrix (n-dimensional minors) are needed to compute small (n-dimensional) marginals. Calculation of the matrix entries relies on the calculation of the Green's function for G, which is not a local calculation. However, it is shown how the calculation of the Green's function may be reduced to a finite computation in the case when G is an infinite graph admitting a Zd-action with finite quotient. The same computation also gives the entropy of the law of T. These results are applied to the problem of tiling certain lattices by dominos { the so-called dimer problem. Another application of these results is to prove modified versions of conjectures of Aldous [Al2] on the limiting distribution of degrees of a vertex and on the local structure near a vertex of a uniform random spanning tree in a lattice whose dimension is going to infinity.
    [Show full text]
  • A FIRST COURSE in PROBABILITY This Page Intentionally Left Blank a FIRST COURSE in PROBABILITY
    A FIRST COURSE IN PROBABILITY This page intentionally left blank A FIRST COURSE IN PROBABILITY Eighth Edition Sheldon Ross University of Southern California Upper Saddle River, New Jersey 07458 Library of Congress Cataloging-in-Publication Data Ross, Sheldon M. A first course in probability / Sheldon Ross. — 8th ed. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-13-603313-4 ISBN-10: 0-13-603313-X 1. Probabilities—Textbooks. I. Title. QA273.R83 2010 519.2—dc22 2008033720 Editor in Chief, Mathematics and Statistics: Deirdre Lynch Senior Project Editor: Rachel S. Reeve Assistant Editor: Christina Lepre Editorial Assistant: Dana Jones Project Manager: Robert S. Merenoff Associate Managing Editor: Bayani Mendoza de Leon Senior Managing Editor: Linda Mihatov Behrens Senior Operations Supervisor: Diane Peirano Marketing Assistant: Kathleen DeChavez Creative Director: Jayne Conte Art Director/Designer: Bruce Kenselaar AV Project Manager: Thomas Benfatti Compositor: Integra Software Services Pvt. Ltd, Pondicherry, India Cover Image Credit: Getty Images, Inc. © 2010, 2006, 2002, 1998, 1994, 1988, 1984, 1976 by Pearson Education, Inc., Pearson Prentice Hall Pearson Education, Inc. Upper Saddle River, NJ 07458 All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher. Pearson Prentice Hall™ is a trademark of Pearson Education, Inc. Printed in the United States of America 10987654321 ISBN-13: 978-0-13-603313-4 ISBN-10: 0-13-603313-X Pearson Education, Ltd., London Pearson Education Australia PTY. Limited, Sydney Pearson Education Singapore, Pte. Ltd Pearson Education North Asia Ltd, Hong Kong Pearson Education Canada, Ltd., Toronto Pearson Educacion´ de Mexico, S.A.
    [Show full text]
  • THE WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION 1985–2000 Problems, Solutions, and Commentary
    AMS / MAA PROBLEM BOOKS VOL 33 THE WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION 1985–2000 Problems, Solutions, and Commentary Kiran S. Kedlaya Bjorn Poonen Ravi Vakil 10.1090/prb/033 The William Lowell Putnam Mathematical Competition 1985-2000 Originally published by The Mathematical Association of America, 2002. ISBN: 978-1-4704-5124-0 LCCN: 2002107972 Copyright © 2002, held by the American Mathematical Society Printed in the United States of America. Reprinted by the American Mathematical Society, 2019 The American Mathematical Society retains all rights except those granted to the United States Government. ⃝1 The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at https://www.ams.org/ 10 9 8 7 6 5 4 3 2 24 23 22 21 20 19 AMS/MAA PROBLEM BOOKS VOL 33 The William Lowell Putnam Mathematical Competition 1985-2000 Problems, Solutions, and Commentary Kiran S. Kedlaya Bjorn Poonen Ravi Vakil MAA PROBLEM BOOKS SERIES Problem Books is a series of the Mathematical Association of America consisting of collections of problems and solutions from annual mathematical competitions; compilations of problems (including unsolved problems) specific to particular branches of mathematics; books on the art and practice of problem solving, etc. Committee on Publications Gerald Alexanderson, Chair Problem Books Series Editorial Board Roger Nelsen Editor Irl Bivens Clayton Dodge Richard Gibbs George Gilbert Art Grainger Gerald Heuer Elgin Johnston Kiran Kedlaya Loren Larson Margaret Robinson The Contest Problem Book VII: American Mathematics Competitions, 1995-2000 Contests, compiled and augmented by Harold B.
    [Show full text]
  • Rigid Cohomology for Algebraic Stacks
    Rigid Cohomology for Algebraic Stacks by David Michael Brown A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Kenneth Ribet, Chair Professor Arthur Ogus Professor Christos Papadimitriou Fall 2010 Rigid Cohomology for Algebraic Stacks Copyright 2010 by David Michael Brown 1 Abstract Rigid Cohomology for Algebraic Stacks by David Michael Brown Doctor of Philosophy in Mathematics University of California, Berkeley Professor Kenneth Ribet, Chair We extend le Stum's construction of the overconvergent site [lS09] to algebraic stacks. We prove that ´etalemorphisms are morphisms of cohomological descent for finitely presnted crystals on the overconvergent site. Finally, using the notion of an open subtopos of [73] we define a notion of overconvergent cohomology supported in a closed substack and show that it agrees with the classical notion of rigid cohomology supported in a closed subscheme. i Contents Preface 1 1 Introduction 2 1.1 Background . .3 1.1.1 Algebraic de Rham cohomology and crystals . .3 1.1.2 Weil cohomologies . .4 1.1.3 Rigid cohomology . .4 1.2 Rigid cohomology for algebraic stacks . .5 1.2.1 Outline and statement of results: . .6 2 Definitions 7 2.1 Notations and conventions . .7 2.2 The overconvergent site . .8 2.3 Calculus on the overconvergent site and comparison with the classical theory 14 2.4 The overconvergent site for stacks . 23 3 Cohomological descent 25 3.1 Background on cohomological descent . 26 3.2 Cohomological descent for overconvergent crystals .
    [Show full text]
  • Perfect Matchings for the Three-Term Gale-Robinson Sequences Mireille Bousquet-Mélou, James Propp, Julian West
    Perfect matchings for the three-term Gale-Robinson sequences Mireille Bousquet-Mélou, James Propp, Julian West To cite this version: Mireille Bousquet-Mélou, James Propp, Julian West. Perfect matchings for the three-term Gale- Robinson sequences. The Electronic Journal of Combinatorics, Open Journal Systems, 2009, 16 (1), paper R125. hal-00396223 HAL Id: hal-00396223 https://hal.archives-ouvertes.fr/hal-00396223 Submitted on 17 Jun 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PERFECT MATCHINGS FOR THE THREE-TERM GALE-ROBINSON SEQUENCES MIREILLE BOUSQUET-MELOU,´ JAMES PROPP, AND JULIAN WEST Abstract. In 1991, David Gale and Raphael Robinson, building on explorations carried out by Michael Somos in the 1980s, introduced a three-parameter family of rational recurrence relations, each of which (with suitable initial conditions) appeared to give rise to a sequence of integers, even though a priori the recurrence might produce non-integral rational numbers. Throughout the ’90s, proofs of integrality were known only for individual special cases. In the early ’00s, Sergey Fomin and Andrei Zelevinsky proved Gale and Robinson’s integrality conjecture. They actually proved much more, and in particular, that certain bivariate ratio- nal functions that generalize Gale-Robinson numbers are actually polynomials with integer coefficients.
    [Show full text]
  • Jahresbericht Annual Report 2016
    Mathematisches Forschungsinstitut Oberwolfach Jahresbericht 2016 Annual Report www.mfo.de Herausgeber/Published by Mathematisches Forschungsinstitut Oberwolfach Direktor Gerhard Huisken Gesellschafter Gesellschaft für Mathematische Forschung e.V. Adresse Mathematisches Forschungsinstitut Oberwolfach gGmbH Schwarzwaldstr. 9-11 77709 Oberwolfach Germany Kontakt http://www.mfo.de [email protected] Tel: +49 (0)7834 979 0 Fax: +49 (0)7834 979 38 In diesem Bericht wurde an einigen Stellen die männliche Form lediglich aus Gründen der Vereinfachung gewählt. Dies dient der besseren Lesbarkeit. Entsprechende Begriffe gelten im Sinne der Gleichbehandlung grundsätzlich für Frauen und Männer. © Mathematisches Forschungsinstitut Oberwolfach gGmbH (2017) Jahresbericht 2016 – Annual Report 2016 Inhaltsverzeichnis/Table of Contents Vorwort des Direktors/Director’s foreword ............................................................................ 6 1. Besondere Beiträge/Special contributions 1.1. Modernisierung der Informations- und Kommunikationsinfrastruktur/ Modernisation of the information and communication infrastructure ............................... 8 1.2. Experiences of an Oberwolfach Leibniz Fellow ............................................................ 11 1.3. MiMa – Museum für Mineralien und Mathematik Oberwolfach/ MiMa – Museum for Minerals and Mathematics Oberwolfach ........................................ 13 1.4. IMAGINARY 2016 ................................................................................................... 15 1.5.
    [Show full text]
  • A Contribution in the Rotor-Router Model Hassan Douzi * * University Ibn Zohr, Faculty of Science, BP: 8106, Agadir, Morocco
    A Contribution in the Rotor-router model Hassan Douzi * * University Ibn Zohr, Faculty of Science, BP: 8106, Agadir, Morocco I had the opportunity to discover the Rotor-Router model (designated here by RR4) through an excellent paper on experimental mathematics by J.P.Delahaye [5]. It simulates a discrete ant’s walk on integer lattice Z 2 [1] [2]: • All ants start their displacement from the same site (point) called origin. • They move each time to a neighbouring site according to the four cardinal directions: North, West, South, and East. • Each site posses a Rotor pointing towards one direction, and rotating in the following order: North West South East. Initially all rotors points towards the north direction. • When an ant arrives on a site occupied by another one, it moves towards the direction indicated by the rotor after having turned this one. • An ant stops definitely when it meets a non occupied site. We can easily program this model and after the departure and settlement of a great number of ants we can observe with fascination that the occupied field forms an extremely regular disc. This model was introduced by Jim Propp as a deterministic version of the internal diffusion limited aggregation model (IDLA) [1] where ants move in the same manner but randomly. I had then consulted some recent literature on this problem, in particular those of J.Propp, L.Levine and M.Kleber [1] [2] [4] are very instructive. Important results about IDLA are obtained especially by Lawler & al. [7] [8]: after n random ants walk the occupied field rescaled by a factor of n1/2 , approaches a Euclidean ball in R 2 as n → ∞.
    [Show full text]
  • Explicit Methods in Number Theory
    Mathematisches Forschungsinstitut Oberwolfach Report No. 32/2015 DOI: 10.4171/OWR/2015/32 Explicit Methods in Number Theory Organised by Karim Belabas, Talence Bjorn Poonen, Cambridge MA Fernando Rodriguez Villegas, Trieste 5 July – 11 July 2015 Abstract. The aim of the series of Oberwolfach meetings on ‘Explicit meth- ods in number theory’ is to bring together people attacking key problems in number theory via techniques involving concrete or computable descriptions. Here, number theory is interpreted broadly, including algebraic and ana- lytic number theory, Galois theory and inverse Galois problems, arithmetic of curves and higher-dimensional varieties, zeta and L-functions and their special values, and modular forms and functions. Mathematics Subject Classification (2010): 11xx, 12xx, 13xx, 14xx. Introduction by the Organisers The workshop Explicit Methods in Number Theory was organised by Karim Be- labas (Talence), Bjorn Poonen (Cambridge MA), and Fernando Rodriguez-Villegas (Trieste), and it took place July 5–11, 2015. Eight previous workshops on the topic had been held, every two years since 1999. The goal of the meeting was to present new methods and results on concrete aspects of number theory. In several cases, this included algorithmic and experimental work, but the emphasis was on the implications for number theory. There was one ‘mini-series’ of five expository talks by Andrew Granville and Andrew Sutherland on the breakthrough results on small gaps between primes obtained by Zhang, Maynard and the ensuing two Polymath projects. Some other themes were: Arakelov class groups, • L-functions, • 1810 Oberwolfach Report 32/2015 rational points, • heuristics and theorems about the proportion of curves satisfying various • arithmetic condition.
    [Show full text]