New Publications Offered by The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary
The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary i Reproduction. The work may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents. In any reproduction, the original publication by the Publisher must be credited in the following manner: “First published in The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commen- tary, c 2002 by the Mathematical Association of America,” and the copyright notice in proper form must be placed on all copies. Ravi Vakil’s photo on p. 337 is courtesy of Gabrielle Vogel. c 2002 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2002107972 ISBN 0-88385-807-X Printed in the United States of America Current Printing (last digit): 10987654321 ii The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary Kiran S. Kedlaya University of California, Berkeley Bjorn Poonen University of California, Berkeley Ravi Vakil Stanford University Published and distributed by The Mathematical Association of America iii MAA PROBLEM BOOKS SERIES Problem Books is a series of the Mathematical Association of America consisting of collections of problems and solutions from annual mathematical competitions; compilations of problems (including unsolved problems) specific to particular branches of mathematics; books on the art and practice of problem solving, etc. Committee on Publications Gerald Alexanderson, Chair Roger Nelsen Editor Irl Bivens Clayton Dodge Richard Gibbs George Gilbert Art Grainger Gerald Heuer Elgin Johnston Kiran Kedlaya Loren Larson Margaret Robinson The Inquisitive Problem Solver, Paul Vaderlind, Richard K. -
Weights in Rigid Cohomology Applications to Unipotent F-Isocrystals
ANNALES SCIENTIFIQUES DE L’É.N.S. BRUNO CHIARELLOTTO Weights in rigid cohomology applications to unipotent F-isocrystals Annales scientifiques de l’É.N.S. 4e série, tome 31, no 5 (1998), p. 683-715 <http://www.numdam.org/item?id=ASENS_1998_4_31_5_683_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1998, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scient. EC. Norm. Sup., ^ serie, t. 31, 1998, p. 683 a 715. WEIGHTS IN RIGID COHOMOLOGY APPLICATIONS TO UNIPOTENT F-ISOCRYSTALS BY BRUNO CHIARELLOTTO (*) ABSTRACT. - Let X be a smooth scheme defined over a finite field k. We show that the rigid cohomology groups H9, (X) are endowed with a weight filtration with respect to the Frobenius action. This is the crystalline analogue of the etale or classical theory. We apply the previous result to study the weight filtration on the crystalline realization of the mixed motive "(unipotent) fundamental group". We then study unipotent F-isocrystals endowed with weight filtration. © Elsevier, Paris RfisuM6. - Soit X un schema lisse defini sur un corp fini k. On montre que les groupes de cohomologie rigide, H9^ (X), admettent une filtration des poids par rapport a 1'action du Frobenius. -
Rigid-Analytic Geometry and Abelian Varieties
http://dx.doi.org/10.1090/conm/388/07262 Contemporary Mathematics Volume 388, 2005 Rigid-analytic geometry and the uniformization of abelian varieties Mihran Papikian ABSTRACT. The purpose of these notes is to introduce some basic notions of rigid-analytic geometry, with the aim of discussing the non-archimedean uniformizations of certain abelian varieties. 1. Introduction The methods of complex-analytic geometry provide a powerful tool in the study of algebraic geometry over C, especially with the help of Serre's GAGA theorems [Sl]. For many arithmetic questions one would like to have a similar theory over other fields which are complete for an absolute value, namely over non-archimedean fields. If one tries to use the metric of a non-archimedean field directly, then such a theory immediately runs into problems because the field is totally disconnected. It was John Tate who, in early 60's, understood how to build the theory in such a way that one obtains a reasonably well-behaved coherent sheaf theory and its cohomology [Tl]. This theory of so-called rigid-analytic spaces has many re- sults which are strikingly similar to algebraic and complex-analytic geometry. For example, one has the GAGA theorems over any non-archimedean ground field. Over the last few decades, rigid-analytic geometry has developed into a fun- damental tool in modern number theory. Among its impressive and diverse ap- plications one could mention the following: the Langlands correspondence relat- ing automorphic and Galois representations [D], [HT], [LRS], [Ca]; Mumford's work on degenerations and its generalizations [M2], [M3], [CF]; Ribet's proof that Shimura-Taniyama conjecture implies Fermat's Last Theorem [Ri]; fundamental groups of curves in positive characteristic [Ra]; the construction of abelian vari- eties with a given endomorphism algebra [OvdP]; and many others. -
Algebra & Number Theory Vol. 7 (2013)
Algebra & Number Theory Volume 7 2013 No. 3 msp Algebra & Number Theory msp.org/ant EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Raman Parimala Emory University, USA John H. Coates University of Cambridge, UK Jonathan Pila University of Oxford, UK J-L. Colliot-Thélène CNRS, Université Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hélène Esnault Freie Universität Berlin, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universität, Germany Joseph H. Silverman Brown University, USA Edward Frenkel University of California, Berkeley, USA Michael Singer North Carolina State University, USA Andrew Granville Université de Montréal, Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Virginia, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale University, USA Ravi Vakil Stanford University, -
Crystalline Fundamental Groups II — Log Convergent Cohomology and Rigid Cohomology
J. Math. Sci. Univ. Tokyo 9 (2002), 1–163. Crystalline Fundamental Groups II — Log Convergent Cohomology and Rigid Cohomology By Atsushi Shiho Abstract. In this paper, we investigate the log convergent coho- mology in detail. In particular, we prove the log convergent Poincar´e lemma and the comparison theorem between log convergent cohomology and rigid cohomology in the case that the coefficient is an F a-isocrystal. We also give applications to finiteness of rigid cohomology with coeffi- cient, Berthelot-Ogus theorem for crystalline fundamental groups and independence of compactification for crystalline fundamental groups. Contents Introduction 2 Conventions 8 Chapter 1. Preliminaries 9 1.1. A remark on log schemes 9 1.2. Stratifications and integrable connections on formal groupoids 17 1.3. Review of rigid analytic geometry 24 Chapter 2. Log Convergent Site Revisited 37 2.1. Log convergent site 37 2.2. Analytic cohomology of log schemes 56 2.3. Log convergent Poincar´e lemma 90 2.4. Log convergent cohomology and rigid cohomology 111 Chapter 3. Applications 135 3.1. Notes on finiteness of rigid cohomology 136 3.2. A remark on Berthelot-Ogus theorem for fundamental 2000 Mathematics Subject Classification. Primary 14F30;Secondary 14F35. The title of the previous version of this paper was Crystalline Fundamental Groups II — Overconvergent Isocrystals. 1 2 Atsushi Shiho groups 147 3.3. Independence of compactification for crystalline fundamental groups 150 References 161 Introduction This paper is the continuation of the previous paper [Shi]. In the previ- ous paper, we gave a definition of crystalline fundamental groups for certain fine log schemes over a perfect field of positive characteristic and proved some fundamental properties of them. -
2010 Integral
Autumn 2010 Volume 5 Massachusetts Institute of Technology 1ntegral n e w s f r o m t h e mathematics d e p a r t m e n t a t m i t The retirement of seven of our illustrious col- leagues this year—Mike Artin, David Ben- Inside ney, Dan Kleitman, Arthur Mattuck, Is Sing- er, Dan Stroock, and Alar Toomre—marks • Faculty news 2–3 a shift to a new generation of faculty, from • Women in math 3 those who entered the field in the Sputnik era to those who never knew life without email • A minority perspective 4 and the Internet. The older generation built • Student news 4–5 the department into the academic power- house it is today—indeed they were the core • Funds for RSI and SPUR 5 of the department, its leadership and most • Retiring faculty and staff 6–7 distinguished members, during my early years at MIT. Now, as they are in the process • Alumni corner 8 of retiring, I look around and see that my con- temporaries are becoming the department’s Dear Friends, older group. Yikes! another year gone by and what a year it Other big changes are in the works. Two of Marina Chen have taken the lead in raising an was. We’re getting older, and younger, cele- our dedicated long-term administrators— endowment for them. Together with those of brating prizes and long careers, remembering Joanne Jonsson and Linda Okun—have Tim Lu ’79 and Peiti Tung ’79, their commit- our past and looking to the future. -
Local Uniformization of Rigid Spaces
ALTERED LOCAL UNIFORMIZATION OF RIGID-ANALYTIC SPACES BOGDAN ZAVYALOV Abstract. We prove a version of Temkin's local altered uniformization theorem. We show that for any rig-smooth, quasi-compact and quasi-separated admissible formal OK -model X, there is a finite extension K0=K such that X locally admits a rig-´etalemorphism g : X0 ! X and a OK0 OK0 00 0 0 rig-isomorphism h: X ! X with X being a successive semi-stable curve fibration over OK0 and 00 0 X being a poly-stable formal OK0 -scheme. Moreover, X admits an action of a finite group G such 0 0 that g : X ! X is G-invariant, and the adic generic fiber X 0 becomes a G-torsor over its quasi- OK0 K 0 0 compact open image U = g 0 (X 0 ). Also, we study properties of the quotient map X =G ! X K K OK0 and show that it can be obtained as a composition of open immersions and rig-isomorphisms. 1. Introduction 1.1. Historical Overview. A celebrated stable modification theorem [DM69] of P. Deligne and D. Mumford says that given a discrete valuation ring R and a smooth proper curve X over the fraction 0 field K, there is a finite separable extension K ⊂ K such that the base change XK0 extends to a semi-stable curve over the integral closure of R in K0. This theorem is crucial for many geometric and arithmetic applications since it allows one to reduce many questions about curves over the fraction field K of R to questions about semi-stable curves over a finite separable extension of K. -
1. Affinoid Algebras and Tate's P-Adic Analytic Spaces
1. Affinoid algebras and Tate’s p-adic analytic spaces : a brief survey 1.1. Introduction. (rigid) p-adic analytic geometry has been discovered by Tate after his study of elliptic curves over Qp with multiplicative reduction. This theory is a p-adic analogue of complex analytic geometry. There is however an important difference between the complex and p-adic theory of analytic functions m coming from the presence of too many locally constant functions on Zp , which are locally analytic in any reasonable sense. A locally ringed topological space which is n locally isomorphic to (Zp , sheaf of locally analytic function) is called a Qp-analytic manifold, and it is NOT a rigid analytic space in the sense of Tate. It is for instance always totally disconnected as a topological space, which already prevents from doing interesting geometry Tate actually has a related notion of "woobly analytic space" (espace analytique bancal en francais) that he opposes to its "rigid analytic space". We strongly recommend to read Tate’s inventiones paper "Rigid analytic spaces" and to glance through Bosch-Guntzer-Remmert "Non archimedean analysis" for more details (especially for G-topologies). For a nice introduction to this and other approaches, we recommend Conrad’s notes on rigid analytic geometry on his web page. For the purposes of this course, we shall use the language of rigid analytic ge- ometry when studying families of modular forms and when studying the generic fiber of deformation rings (see below). The eigencurve for instance will be a rigid analytic curve. Our aim here is to give the general ideas of Tate’s definition of a rigid analytic space. -
Issue 118 ISSN 1027-488X
NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY S E European M M Mathematical E S Society December 2020 Issue 118 ISSN 1027-488X Obituary Sir Vaughan Jones Interviews Hillel Furstenberg Gregory Margulis Discussion Women in Editorial Boards Books published by the Individual members of the EMS, member S societies or societies with a reciprocity agree- E European ment (such as the American, Australian and M M Mathematical Canadian Mathematical Societies) are entitled to a discount of 20% on any book purchases, if E S Society ordered directly at the EMS Publishing House. Recent books in the EMS Monographs in Mathematics series Massimiliano Berti (SISSA, Trieste, Italy) and Philippe Bolle (Avignon Université, France) Quasi-Periodic Solutions of Nonlinear Wave Equations on the d-Dimensional Torus 978-3-03719-211-5. 2020. 374 pages. Hardcover. 16.5 x 23.5 cm. 69.00 Euro Many partial differential equations (PDEs) arising in physics, such as the nonlinear wave equation and the Schrödinger equation, can be viewed as infinite-dimensional Hamiltonian systems. In the last thirty years, several existence results of time quasi-periodic solutions have been proved adopting a “dynamical systems” point of view. Most of them deal with equations in one space dimension, whereas for multidimensional PDEs a satisfactory picture is still under construction. An updated introduction to the now rich subject of KAM theory for PDEs is provided in the first part of this research monograph. We then focus on the nonlinear wave equation, endowed with periodic boundary conditions. The main result of the monograph proves the bifurcation of small amplitude finite-dimensional invariant tori for this equation, in any space dimension. -
[Math.NT] 11 Jun 2006
UNIFORM STRUCTURES AND BERKOVICH SPACES MATTHEW BAKER Abstract. A uniform space is a topological space together with some additional structure which allows one to make sense of uni- form properties such as completeness or uniform convergence. Mo- tivated by previous work of J. Rivera-Letelier, we give a new con- struction of the Berkovich analytic space associated to an affinoid algebra as the completion of a canonical uniform structure on the associated rigid-analytic space. 1. Introduction In [7], Juan Rivera-Letelier proves that there is a canonical uni- form structure on the projective line over an arbitrary complete non- archimedean ground field K whose completion is the Berkovich pro- jective line over K. In this note, we extend Rivera-Letelier’s ideas by proving that there is a canonical uniform structure on any rigid-analytic affinoid space X, defined in a natural way in terms of the underlying affinoid algebra A, whose completion yields the analytic space Xan as- sociated to X by Berkovich in [1]. Actually, the existence of such a uniform structure on X can be deduced easily from general properties of Berkovich spaces and uniform spaces (see §4.3), so the interesting point here is that one can define the canonical uniform structure on X and verify its salient properties using only some basic facts from rigid analysis, and without invoking Berkovich’s theory. Therefore one arrives at a new method for constructing (as a topological space) the arXiv:math/0606252v1 [math.NT] 11 Jun 2006 Berkovich space associated to X, and for verifying some of its impor- tant properties (e.g., compactness). -
THE WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION 1985–2000 Problems, Solutions, and Commentary
AMS / MAA PROBLEM BOOKS VOL 33 THE WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION 1985–2000 Problems, Solutions, and Commentary Kiran S. Kedlaya Bjorn Poonen Ravi Vakil 10.1090/prb/033 The William Lowell Putnam Mathematical Competition 1985-2000 Originally published by The Mathematical Association of America, 2002. ISBN: 978-1-4704-5124-0 LCCN: 2002107972 Copyright © 2002, held by the American Mathematical Society Printed in the United States of America. Reprinted by the American Mathematical Society, 2019 The American Mathematical Society retains all rights except those granted to the United States Government. ⃝1 The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at https://www.ams.org/ 10 9 8 7 6 5 4 3 2 24 23 22 21 20 19 AMS/MAA PROBLEM BOOKS VOL 33 The William Lowell Putnam Mathematical Competition 1985-2000 Problems, Solutions, and Commentary Kiran S. Kedlaya Bjorn Poonen Ravi Vakil MAA PROBLEM BOOKS SERIES Problem Books is a series of the Mathematical Association of America consisting of collections of problems and solutions from annual mathematical competitions; compilations of problems (including unsolved problems) specific to particular branches of mathematics; books on the art and practice of problem solving, etc. Committee on Publications Gerald Alexanderson, Chair Problem Books Series Editorial Board Roger Nelsen Editor Irl Bivens Clayton Dodge Richard Gibbs George Gilbert Art Grainger Gerald Heuer Elgin Johnston Kiran Kedlaya Loren Larson Margaret Robinson The Contest Problem Book VII: American Mathematics Competitions, 1995-2000 Contests, compiled and augmented by Harold B. -
Irreducible Components of Rigid Spaces Annales De L’Institut Fourier, Tome 49, No 2 (1999), P
ANNALES DE L’INSTITUT FOURIER BRIAN CONRAD Irreducible components of rigid spaces Annales de l’institut Fourier, tome 49, no 2 (1999), p. 473-541 <http://www.numdam.org/item?id=AIF_1999__49_2_473_0> © Annales de l’institut Fourier, 1999, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 49, 2 (1999), 473-541 IRREDUCIBLE COMPONENTS OF RIGID SPACES by Brian CONRAD Introduction. Let A; be a field complete with respect to a non-trivial non-archime- dean absolute value and let X be a rigid analytic space over k. When X = Sp(A) is affinoid, it is clear what one should mean by the irreducible components of X: the analytic sets Sp(A/p) for the finitely many minimal prime ideals p of the noetherian ring A. However, the globalization of this notion is not as immediate. For schemes and complex analytic spaces, a global theory of irreducible decomposition is well-known ([EGA], Oi, §2, [GAS], 9.2). Some extra commutative algebra is required in order to carry out the basic construction for rigid spaces. In [CM], §1.2, Coleman and Mazur propose an elementary definition of irreducible components for rigid spaces (as well as a related notion that they call a "component part").