Rigid Geometry and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Rigid Geometry and Applications Rigid Geometry and Applications Kazuhiro Fujiwara & Fumiharu Kato Talk Plan • Aim: • To give a survey on foundation (based on recent developments). • To show how to use it. • Schedule: • I (Mon. 13): What is Rigid Geometry ? • II (Tue. 14): • Birational Geometry from Zariski’s Viewpoint • Birational Approach to Rigid Geometry • III (Wed. 15): Applications - How to use it. Example: An elliptic curve • E/Q When v = , Qv = R C. !• Base change∞ ⊂ ! Complex analytificationEQ What is Rigidv Geometry ? – v 2When, 3, 5, 7v,=. .p,, : place When v = p, ∈ {• ∞} • – Qv: v-adic completion ofan Q EC = When v = , Qv =QpR C. Qp CpQp = QpQp Cp = Qp • Uniformization∞ ⊂⊂ ⊂ ⊂ ⊂ ! Complex analytification Question: Analysis over Cp ? • • ! ! Q Q an C = Q C p C/Λ "p EC pp p −→⊂ • | |∞⊂ | | Question: Analysis over Cp ? • Λ an= Z= + Z τ ! Real - ComplexEC · Rigid analytic H analCytic geometrp y geometry Uniformizationτ •=| z|∞ | Im| z > 0 : Teichmullar¨ parameter. • ∈ { ∈ | } C C/Λ " Ean −→ C Λ = Z + Z τ · τ H = z C Im z > 0 : Teichmullar¨ parameter. ∈ { ∈ | } 1 2 3 3 2 When v = p, When v = , Qv = R C. • When•v = , Qv∞= R C⊂. • ! Comple∞ x analytification⊂ ! Complex analytification Qp Qp vs. Cp = Qp ⊂ Ean⊂= When v = p,anC Similarities • When v =Ep, = When v = p, Uniformization• C ! •Q Q • C = Q Uniformizationp QC pC/QΛ Ean C p = Qp p Qp Qpp" CQCpp p= QQpp pCp = Qp • ⊂ −→⊂ ⊂ ⊂⊂⊂ ⊂ ⊂ Algebraically closed Algebraicalan ly closed Question: AnalysisQuestionCQuestionΛo:v=C:erZ/+ΛCZ QuestionτE? : ! ! • • "p•· C ! • – −Analysis→ over Cp ?– Analysis over Cp ?! τ CompletH =– Analysise zwith– Analytification respectC oImv teroz CComplet>Epan?0–?Analytification: e Twitheichm respectullar¨E anto ? ∈ { ∈Λ =| Z + ZCp τ} Cp parameterp the absolut–.Analytificatione value norm theE anp-adic? norm p C· p • | |∞ | | • | p|∞ | | τ H = z C •Im| |∞z >| |0 : Teichmullar¨ parameter. ∈ { ∈ | } 3 3 2 3 2 3 When v = , Qv = R C. • ∞ ⊂ When!v = Comple, Qv = Rx analytificationC. • ∞ ⊂ ! Complex analytificationAnalytic Method: Uniformizationan an E = WhenEC v== p, C • UniformizationRecall: Jacobi’s uniformization /C. • • Uniformization • C C/Λ C / C/Λ AA ; −→A ww an AA ww QCAA ww C/QΛ E C = Q pA ww " p Λ√= Z + Zw τ p C p e2π 1 ⊂ ⊂ − · C×−→· τ H = z C Im z >Z0 Z τ an ∈ QuestionZ { ∈ Λ| :=2π √ +1}τ ! ! EC " C•×/q , q = e − . · Jacobi’s uniformizationTake q C suchTatethat’s uniformizationq p < 1, τ H =– Analysisz • C oImv∈erz C×p>p ?0 : T| eichm| ullar¨ Z Z ∈ C× {C×∈/q = |C/Λ an}C C /q parameter−–→.Analytification EC ?×p −→ ×p √ p = 2π 1τ q C×, q p < 1 q e − ∈ p | | Consider • qnt mkqm ℘ (t) = , s = . 1 n 2 k 1 qm n Z (1 q t) m 1 !∈ − !≥ − Define ℘(t) = ℘1(t) + s1. 2 ! automorphic in the sense that ℘(qt) = ℘(t), 2 4 3 5 6 6 Theorem (Tate). Set B = 5s3 and C = (5s3+ / − − Theor7s5) 12.emThen(Tate).weSethavBe the= equality5s3 and C = (5s3+ 2 3 − − 7s5)/12.(℘"Then) + ℘we℘"ha=v(e℘)the+equalityB℘ + C. 2 3 Moreov(℘er",)by+the℘℘"mapping= (℘) + B℘ + C. Moreover, byt the(℘mapping(t) : ℘ (t) : 1), #→ " C /qZ is mappedt (℘bijecti(t) : ℘v(elyt) :onto1), the algebraic ×p #→ " Z P2 C Csubset×p/q inis mapped(Tpat) definedebijecti Curvbyelyvetheontocubicthe equationalgebraic 2 subset in P (Cp) defined by the cubic equation Y2Z + XYZ = X3 + BXZ2 + CZ3. Y2Z + XYZ = X3 + BXZ2 + CZ3. Embedding onto a cubic curve • Embedding onto a cubic curve • (℘:℘":1) 2 C / P (C ) ×p F p FF s9 FF s FF (℘:℘ :1) s FF " s 2 C F" s / P (C ) ×p F p FF Z s9 FF s FFC /q s FF ×p s F" s j(E) p > 1 C /qqZq p < 1 such that E ! • | | ⇐⇒ ×p∃ | | C / Z j(×E)qp. > 1 q q p < 1 such that E ! • | |Z ⇐⇒ ∃ | | C×p/q . Why do we need analytic methods ? Example: An elliptic curve • E/Q 19 Base change 7 ! There should exist an analytic geometry over Complex Analysis •RigidE(C) Anal! C/Λysis EQv C19p by which Z C×p C×p/q – v E(C2), 3,C5/,Λ7, . , : placeE(Q ) Q /q−Z→ ∈ { ! ∞} can bepreg!arded×p as an analytic map. – Q : v-adic completion of QApplication: v Z • E(Qp) ! Q×p/q Nagell-Lutz Theorem. K: algebraic number field, E/K: an elliptic curve. = E(K)tor is a finite set. ⇒ 1 7 There should exist an analytic geometry over • Cp by which C C /qZ ×p −→ ×p can be regardedNasotationan analytic map. Application: • Nagell-Lutz Theorem. (K,K| : |):algebraic completenumber non-archimedeanfield, valued field with non-trivialE/K: an ellipticvaluationcurv | e.|. = E(K)tor is a finite set. ⇒ : K R : multiplicative valuation of ht. 1, • | | → 0 i.e., ≥ (1) x = 0 x = 0. | | ⇐⇒ (2) xy = x y . | | | || | (3) x + y max x , y . | | ≤ {| | | |} : non-trivial K ! 1 . • | | ⇐⇒ | ×| { } Tate’s Rigid Analytic 14 Geometry n k[X1, . , Xn] Ak Algebraic Geometry /k Rigid Geometry /K K X , . , X Dn 1 n KTopologically finitely Function !! Finitely generated"" generated algebra A/K algebra algebra A/k K X , . , Xn (called: Affinoid algebra) !! 1 "" ν1 νn ν ,...,νn 0 aν1,...,νnT Tn aν1,...,νn 0 as = Points1 ≥ Maximal 1ideals· · · of A| Maximal| → ideals of A K[[T1, . , Tn]] ν1 + + νn ! "(Naive) (with∈ Zariski topology) (with· · · Admissible→ ∞ topology)# kn Building Affine variety Affinoid Block (Spm A, ) OX /k = k /K = K 7. その他 ある。extps を指定すると、本文用の明朝は太ミンに、本文用ゴシックは太ゴになる2)。同時にじゅ んも利用可能になる。 これは、Times Roman フォントが和文に比べると太いために、バランスをとるためである。ただ し、普及型の PS プリンタではモリサワ 5 書体が載っておらず、リュウミンと中ゴシック BBB しか 持っていないことが多いので使用には注意が必要。また、太ミンと太ゴは最近の流行ではない。最近 は見出しミンと見出しゴが多いのかも知れない。 また、平成書体を搭載した PS プリンタでも当然利用できない。注意が必要。Ghostscript では簡 単に追加できる。ただし、TrueType フォントが別途必要。それは Acrobat でも同様。 7.6 その他の命令 るび その他にもいくつか便利な命令を提供している。まず、本文にルビを付けるための命令である Y=ru by{ruby}命令がある。Y=ruby{ 漢字 }{ よみ }として利用する。 ! " ! " また和文ではダッシュは全角ではなく、倍角を用いる。倍角ダッシュを引く命令は Y=dash{dash} である。 難しい内容を記述した段落には「危険な曲がり角」を付けるというブルバキ(Nicolas Bourbaki) 3 流の記述方法がある )。TEX は標準でそのためのフォントを持っている。ブルバキが用いたフォント There’s no a priori reason why one should • difficult take maximal ideals as points.より は遙かに洗練されていて格好がいい。それを用いることもできる。そ のためには 環 (Depends on approaches; there境を are用いる。 three others.) 最後に便利な命令をお教えしよう。本稿では何ヶ所かで欧文の途中で改行しているものがある。特 In Tate’s approach, one has to introduce the • T X Y=allowdisplaybreaks admissible topology as a Grothendieckに E の 説明を書いている場合によく直面する。たとえば、 なんて命令を topology. 説明していたら悲劇である。常に行をはみ出すかどうかでドキドキできる。和文では別に単語中で改 行したってかまわないのである。 しかし、Y=verb 命令を用いることはできない。今までの Another Manual シリーズでは改行しそう な場所に適当に Y=linebreak[2] を入れて対応しているのだが、Y=footnY=linebreak[2]ote なんて でてきたら思わず笑ってしまう。だから我々には bs2yen パッケージで対応する方法は許されなかっ た。これは面倒だ。そこで、Y=cs 命令を用意した。これは引き数に Y=を付けてタイプライタ体で出力 する。もちろん Y=の直後の改行は禁じられているのでずいぶん安心である。そしてなんといっても、 自動的に改行してくれるのである。四分アキの問題についてはずいぶんトリッキーな対策になってし まった。興味のある人は miscmac.sty ファイルを参照してほしい。もうちょっとだけ命令をみること ができるだろう。 さらに、plate.sty ファイルや moving.sty ファイルの内容も役に立つだろう。 7.7 おわりに このクラスファイルと多くのパッケージファイルは多くの著作の影響を受けている。筆者自身のも のも多数あるが、基本的にこのクラスファイルの使用に関しては著作権問題を気にする必要はない。 クラスファイルを作成したり調整したりしたい人の一助になれば幸いである。 2)ところで、Another Manual シリーズの本文は太ミンで 3)Nicolas Bourbaki 著、EL´ EMENTS´ DE ある。あまり気づいた人はいないようだが……。本文も欧 MATHEMA´ TIQUE 文が 9 ポイント、和文が 12 級強である。 11 n k[X1, . , Xn] A Example of Affinoid Algebrak n K X , . , Xn D !! 1 "" k 8 K X1, . , Xn !Basic! Block:"" Tate algebra. • ν1 νn – (νK,...,, νn):0 completeaν1,...,νnT non-archimedeanTn aν1,...,νn valued0 as = 1 | | ≥ 1 · · · | | → field. K[[T1, . , Tn]] ν1 + + νn ! " n ∈ n · · · → ∞ # – D = z = (z , . , zn) K z 1 . K { 1 ∈ | | i| ≤ } = The algebra of power series converging abso- Dn lutely and uniformly on closed unit disk “ K”. : Banach algebra with Gauss norm • Noetherian and every ideal is closed with re- • spect to the subspace topology. Structure of general affinoid algebras: • A = K X1, . , Xn /I ## 14 $$ Banach algebra by the induced norm ! A = K X , . , Xn /I (I: ideal) is a banach ## 1 $$ algebra by the induced norm . % % n k[X1, . , Xn] Ak n n K X1, . , Xn DK k[X1, . , Xn] Ak !! "" n K X , . , Xn K X1, . .D, Xn !! 1 "" !! K "" ν a T 1 T νn a 0 as ν1,...,νn 0 ν1,...,νn 1 n ν1,...,νn K X , . , X = ≥ · · · | | → 1 n K[[T1, . , Tn]] ν1 + + νn !! , . , "" A! "n ∈ · · · → ∞ # k[X1 Xn] ν1 νkn ν ,...,νn 0 aν1,...,νnT Tn aν1,...,νn 0 as n = 1 ≥ 1 · · · | | → k K[[T1, . , Tn]] ν1 + + νn ! " ∈ · · · → ∞ # K X , . , X Dn 1 n n K (Max(A), X) !! "" k O (Max(DictionarA), ) y /k = k OX K X1, . , Xn n !! "" k[X1, . , Xn] A Algebraic Geometry/k = k Rigid Geometry/K = K k ν1 νn ν ,...,νn 0 aν1,...,νnT Tn aν1,...,νn 0 as = 1 ≥ 1 · · · Basic| Block: Tate| →algn ebra. n Kk[[[TX1,,......,,T•Xn]]/]K ν= K+ K+AXν1, . , Xn D 1Basic Block:n– (TKate,1 alg): completeebra!!. knnon-archimedean"" valued field.k ! " ∈ • | | · · · → ∞ # – (K, ): –completeDn = znon-archimedean= (z , . , z ) Kvnaluedz field.1 . n | | K 1 nn i k n { nn ∈ 14| | | ≤ } K kX[X–,1D.,....=,.X,zXn=n](z1, . , zn)withDKA zi 1 . !! 1 K ={The"" algebra of po∈werk |kseries| | ≤ con} verging absolutely = The algebraandofuniformlypower serieson Dconn . verging absolutely 14 K Dn and uniformlyn : Banachon algebraK. with Gaussn norm k[X1, . , Xn] K XA1, . .•, Xn D !!: Banachk algebra"" with Gauss normK Affi• ne space Closed unit polydisk n K X1, . , Xn Dk !! K X1,".". , Xn Noetherian and every ideal is closed with respect to !! "" • Noetheriantheandsubspaceevery idealtopologyis closed. with respect to • ν1 νn ν ,...,νn 0 atheν1subspace,...,νnTStructuretopologyofTn.generalaν1a,...,ffinoidνn algebras:0 as = 1 ≥ • 1 · · · | | → StructureK[[Tof1,general. , Tanffi]]noidA ν=1Kalgebras:+X1, . .+. , Xνnn /I ! " • ∈ ## · · · $$ → ∞ # BanachA =algebraK X ,by. .the, Xninduced/I norm ## 1 $$ Banach algebra! A = byK theX ,induced. , Xn /normI (I: ideal) is a banach alge- ## 1 $$ bra by the induced norm . ! A14= K X , . , Xn /I (I: ideal) is a banach alge- ## 1 $$ % % bra by the induced norm . % % 8 8 14 14 14 14 Basic Block: Tate algebra. • – (K, ): complete non-archimedean valued field. | | Dn Basic Propertiesn – K = z = (z1, . , zn) K zi 1 . { ∈ | | | ≤ } 15 = The algebra of power series converging absolutely K X , . , Xn : and!! 1uniformly""on Dn .
Recommended publications
  • Weights in Rigid Cohomology Applications to Unipotent F-Isocrystals
    ANNALES SCIENTIFIQUES DE L’É.N.S. BRUNO CHIARELLOTTO Weights in rigid cohomology applications to unipotent F-isocrystals Annales scientifiques de l’É.N.S. 4e série, tome 31, no 5 (1998), p. 683-715 <http://www.numdam.org/item?id=ASENS_1998_4_31_5_683_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1998, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scient. EC. Norm. Sup., ^ serie, t. 31, 1998, p. 683 a 715. WEIGHTS IN RIGID COHOMOLOGY APPLICATIONS TO UNIPOTENT F-ISOCRYSTALS BY BRUNO CHIARELLOTTO (*) ABSTRACT. - Let X be a smooth scheme defined over a finite field k. We show that the rigid cohomology groups H9, (X) are endowed with a weight filtration with respect to the Frobenius action. This is the crystalline analogue of the etale or classical theory. We apply the previous result to study the weight filtration on the crystalline realization of the mixed motive "(unipotent) fundamental group". We then study unipotent F-isocrystals endowed with weight filtration. © Elsevier, Paris RfisuM6. - Soit X un schema lisse defini sur un corp fini k. On montre que les groupes de cohomologie rigide, H9^ (X), admettent une filtration des poids par rapport a 1'action du Frobenius.
    [Show full text]
  • Rigid-Analytic Geometry and Abelian Varieties
    http://dx.doi.org/10.1090/conm/388/07262 Contemporary Mathematics Volume 388, 2005 Rigid-analytic geometry and the uniformization of abelian varieties Mihran Papikian ABSTRACT. The purpose of these notes is to introduce some basic notions of rigid-analytic geometry, with the aim of discussing the non-archimedean uniformizations of certain abelian varieties. 1. Introduction The methods of complex-analytic geometry provide a powerful tool in the study of algebraic geometry over C, especially with the help of Serre's GAGA theorems [Sl]. For many arithmetic questions one would like to have a similar theory over other fields which are complete for an absolute value, namely over non-archimedean fields. If one tries to use the metric of a non-archimedean field directly, then such a theory immediately runs into problems because the field is totally disconnected. It was John Tate who, in early 60's, understood how to build the theory in such a way that one obtains a reasonably well-behaved coherent sheaf theory and its cohomology [Tl]. This theory of so-called rigid-analytic spaces has many re- sults which are strikingly similar to algebraic and complex-analytic geometry. For example, one has the GAGA theorems over any non-archimedean ground field. Over the last few decades, rigid-analytic geometry has developed into a fun- damental tool in modern number theory. Among its impressive and diverse ap- plications one could mention the following: the Langlands correspondence relat- ing automorphic and Galois representations [D], [HT], [LRS], [Ca]; Mumford's work on degenerations and its generalizations [M2], [M3], [CF]; Ribet's proof that Shimura-Taniyama conjecture implies Fermat's Last Theorem [Ri]; fundamental groups of curves in positive characteristic [Ra]; the construction of abelian vari- eties with a given endomorphism algebra [OvdP]; and many others.
    [Show full text]
  • Algebra & Number Theory Vol. 7 (2013)
    Algebra & Number Theory Volume 7 2013 No. 3 msp Algebra & Number Theory msp.org/ant EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Raman Parimala Emory University, USA John H. Coates University of Cambridge, UK Jonathan Pila University of Oxford, UK J-L. Colliot-Thélène CNRS, Université Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hélène Esnault Freie Universität Berlin, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universität, Germany Joseph H. Silverman Brown University, USA Edward Frenkel University of California, Berkeley, USA Michael Singer North Carolina State University, USA Andrew Granville Université de Montréal, Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Virginia, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale University, USA Ravi Vakil Stanford University,
    [Show full text]
  • Crystalline Fundamental Groups II — Log Convergent Cohomology and Rigid Cohomology
    J. Math. Sci. Univ. Tokyo 9 (2002), 1–163. Crystalline Fundamental Groups II — Log Convergent Cohomology and Rigid Cohomology By Atsushi Shiho Abstract. In this paper, we investigate the log convergent coho- mology in detail. In particular, we prove the log convergent Poincar´e lemma and the comparison theorem between log convergent cohomology and rigid cohomology in the case that the coefficient is an F a-isocrystal. We also give applications to finiteness of rigid cohomology with coeffi- cient, Berthelot-Ogus theorem for crystalline fundamental groups and independence of compactification for crystalline fundamental groups. Contents Introduction 2 Conventions 8 Chapter 1. Preliminaries 9 1.1. A remark on log schemes 9 1.2. Stratifications and integrable connections on formal groupoids 17 1.3. Review of rigid analytic geometry 24 Chapter 2. Log Convergent Site Revisited 37 2.1. Log convergent site 37 2.2. Analytic cohomology of log schemes 56 2.3. Log convergent Poincar´e lemma 90 2.4. Log convergent cohomology and rigid cohomology 111 Chapter 3. Applications 135 3.1. Notes on finiteness of rigid cohomology 136 3.2. A remark on Berthelot-Ogus theorem for fundamental 2000 Mathematics Subject Classification. Primary 14F30;Secondary 14F35. The title of the previous version of this paper was Crystalline Fundamental Groups II — Overconvergent Isocrystals. 1 2 Atsushi Shiho groups 147 3.3. Independence of compactification for crystalline fundamental groups 150 References 161 Introduction This paper is the continuation of the previous paper [Shi]. In the previ- ous paper, we gave a definition of crystalline fundamental groups for certain fine log schemes over a perfect field of positive characteristic and proved some fundamental properties of them.
    [Show full text]
  • Local Uniformization of Rigid Spaces
    ALTERED LOCAL UNIFORMIZATION OF RIGID-ANALYTIC SPACES BOGDAN ZAVYALOV Abstract. We prove a version of Temkin's local altered uniformization theorem. We show that for any rig-smooth, quasi-compact and quasi-separated admissible formal OK -model X, there is a finite extension K0=K such that X locally admits a rig-´etalemorphism g : X0 ! X and a OK0 OK0 00 0 0 rig-isomorphism h: X ! X with X being a successive semi-stable curve fibration over OK0 and 00 0 X being a poly-stable formal OK0 -scheme. Moreover, X admits an action of a finite group G such 0 0 that g : X ! X is G-invariant, and the adic generic fiber X 0 becomes a G-torsor over its quasi- OK0 K 0 0 compact open image U = g 0 (X 0 ). Also, we study properties of the quotient map X =G ! X K K OK0 and show that it can be obtained as a composition of open immersions and rig-isomorphisms. 1. Introduction 1.1. Historical Overview. A celebrated stable modification theorem [DM69] of P. Deligne and D. Mumford says that given a discrete valuation ring R and a smooth proper curve X over the fraction 0 field K, there is a finite separable extension K ⊂ K such that the base change XK0 extends to a semi-stable curve over the integral closure of R in K0. This theorem is crucial for many geometric and arithmetic applications since it allows one to reduce many questions about curves over the fraction field K of R to questions about semi-stable curves over a finite separable extension of K.
    [Show full text]
  • 1. Affinoid Algebras and Tate's P-Adic Analytic Spaces
    1. Affinoid algebras and Tate’s p-adic analytic spaces : a brief survey 1.1. Introduction. (rigid) p-adic analytic geometry has been discovered by Tate after his study of elliptic curves over Qp with multiplicative reduction. This theory is a p-adic analogue of complex analytic geometry. There is however an important difference between the complex and p-adic theory of analytic functions m coming from the presence of too many locally constant functions on Zp , which are locally analytic in any reasonable sense. A locally ringed topological space which is n locally isomorphic to (Zp , sheaf of locally analytic function) is called a Qp-analytic manifold, and it is NOT a rigid analytic space in the sense of Tate. It is for instance always totally disconnected as a topological space, which already prevents from doing interesting geometry Tate actually has a related notion of "woobly analytic space" (espace analytique bancal en francais) that he opposes to its "rigid analytic space". We strongly recommend to read Tate’s inventiones paper "Rigid analytic spaces" and to glance through Bosch-Guntzer-Remmert "Non archimedean analysis" for more details (especially for G-topologies). For a nice introduction to this and other approaches, we recommend Conrad’s notes on rigid analytic geometry on his web page. For the purposes of this course, we shall use the language of rigid analytic ge- ometry when studying families of modular forms and when studying the generic fiber of deformation rings (see below). The eigencurve for instance will be a rigid analytic curve. Our aim here is to give the general ideas of Tate’s definition of a rigid analytic space.
    [Show full text]
  • Issue 118 ISSN 1027-488X
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY S E European M M Mathematical E S Society December 2020 Issue 118 ISSN 1027-488X Obituary Sir Vaughan Jones Interviews Hillel Furstenberg Gregory Margulis Discussion Women in Editorial Boards Books published by the Individual members of the EMS, member S societies or societies with a reciprocity agree- E European ment (such as the American, Australian and M M Mathematical Canadian Mathematical Societies) are entitled to a discount of 20% on any book purchases, if E S Society ordered directly at the EMS Publishing House. Recent books in the EMS Monographs in Mathematics series Massimiliano Berti (SISSA, Trieste, Italy) and Philippe Bolle (Avignon Université, France) Quasi-Periodic Solutions of Nonlinear Wave Equations on the d-Dimensional Torus 978-3-03719-211-5. 2020. 374 pages. Hardcover. 16.5 x 23.5 cm. 69.00 Euro Many partial differential equations (PDEs) arising in physics, such as the nonlinear wave equation and the Schrödinger equation, can be viewed as infinite-dimensional Hamiltonian systems. In the last thirty years, several existence results of time quasi-periodic solutions have been proved adopting a “dynamical systems” point of view. Most of them deal with equations in one space dimension, whereas for multidimensional PDEs a satisfactory picture is still under construction. An updated introduction to the now rich subject of KAM theory for PDEs is provided in the first part of this research monograph. We then focus on the nonlinear wave equation, endowed with periodic boundary conditions. The main result of the monograph proves the bifurcation of small amplitude finite-dimensional invariant tori for this equation, in any space dimension.
    [Show full text]
  • [Math.NT] 11 Jun 2006
    UNIFORM STRUCTURES AND BERKOVICH SPACES MATTHEW BAKER Abstract. A uniform space is a topological space together with some additional structure which allows one to make sense of uni- form properties such as completeness or uniform convergence. Mo- tivated by previous work of J. Rivera-Letelier, we give a new con- struction of the Berkovich analytic space associated to an affinoid algebra as the completion of a canonical uniform structure on the associated rigid-analytic space. 1. Introduction In [7], Juan Rivera-Letelier proves that there is a canonical uni- form structure on the projective line over an arbitrary complete non- archimedean ground field K whose completion is the Berkovich pro- jective line over K. In this note, we extend Rivera-Letelier’s ideas by proving that there is a canonical uniform structure on any rigid-analytic affinoid space X, defined in a natural way in terms of the underlying affinoid algebra A, whose completion yields the analytic space Xan as- sociated to X by Berkovich in [1]. Actually, the existence of such a uniform structure on X can be deduced easily from general properties of Berkovich spaces and uniform spaces (see §4.3), so the interesting point here is that one can define the canonical uniform structure on X and verify its salient properties using only some basic facts from rigid analysis, and without invoking Berkovich’s theory. Therefore one arrives at a new method for constructing (as a topological space) the arXiv:math/0606252v1 [math.NT] 11 Jun 2006 Berkovich space associated to X, and for verifying some of its impor- tant properties (e.g., compactness).
    [Show full text]
  • Irreducible Components of Rigid Spaces Annales De L’Institut Fourier, Tome 49, No 2 (1999), P
    ANNALES DE L’INSTITUT FOURIER BRIAN CONRAD Irreducible components of rigid spaces Annales de l’institut Fourier, tome 49, no 2 (1999), p. 473-541 <http://www.numdam.org/item?id=AIF_1999__49_2_473_0> © Annales de l’institut Fourier, 1999, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 49, 2 (1999), 473-541 IRREDUCIBLE COMPONENTS OF RIGID SPACES by Brian CONRAD Introduction. Let A; be a field complete with respect to a non-trivial non-archime- dean absolute value and let X be a rigid analytic space over k. When X = Sp(A) is affinoid, it is clear what one should mean by the irreducible components of X: the analytic sets Sp(A/p) for the finitely many minimal prime ideals p of the noetherian ring A. However, the globalization of this notion is not as immediate. For schemes and complex analytic spaces, a global theory of irreducible decomposition is well-known ([EGA], Oi, §2, [GAS], 9.2). Some extra commutative algebra is required in order to carry out the basic construction for rigid spaces. In [CM], §1.2, Coleman and Mazur propose an elementary definition of irreducible components for rigid spaces (as well as a related notion that they call a "component part").
    [Show full text]
  • P-ADIC UNIFORMIZATION of CURVES 1. Introduction: Why Bother? Let Us Presume That We Have at Our Disposal the Fully-Formed Theory
    p-ADIC UNIFORMIZATION OF CURVES EVAN WARNER 1. Introduction: why bother? Let us presume that we have at our disposal the fully-formed theory of rigid- analytic spaces., as sketched in my last talk. Why would we care to look for uniformizations of algebraic objects in the rigid analytic category?1 Let's look at the analogous situation in the complex-analytic category. We know that, for example, abelian varieties are uniformized by spaces of the form Cg=Λ, where Λ is a free Z-module of full rank (i.e., a lattice). What does this gain us? Here are two examples: complex uniformization allows us to \see" the structure of the torsion points explicitly (in an obvious way), and also allows us to \see" endomor- g phisms of abelian varieties (by looking at the endomorphism ring End(C ) = Mg(C) and picking out those which respect the action of Λ). In the p-adic setting, we can do all this and more. Namely, we have the important additional fact that p-adic uniformization is Galois-equivariant (this has no content over C, of course), so we can use uniformization to study, for example, GalQp and its action on the Tate module. It turns out that p-adic uniformization can also be used to construct explicit N´eronmodels and has significant computational advantages (see Kadziela's article, for example). 2. The Tate curve Consider the standard complex uniformization of elliptic curves: given any E=C, there exists a lattice Λ in C such that E(C) ' C=Λ ^ as complex-analytic spaces.
    [Show full text]
  • Notes Is to Introduce the Basic Notions of Rigid Analytic Geometry, with the Aim of Discussing the Non-Archimedean Uni- Formizations of Certain Abelian Varieties
    RIGID ANALYTIC GEOMETRY AND ABELIAN VARIETIES MIHRAN PAPIKIAN Abstract. The purpose of these notes is to introduce the basic notions of rigid analytic geometry, with the aim of discussing the non-archimedean uni- formizations of certain abelian varieties. 1. Introduction Complex analytic geometry is a powerful tool in the study of algebraic geometry over C, especially with the help of Serre’s GAGA theorems. For many arithmetic questions one would like to have a similar theory over other fields which are complete for a metric, for example, Qp or Fp((t)), or more generally, over non-archimedean fields. If one tries to use the metric of the field directly, then such a theory im- mediately runs into serious problems as the fields we are dealing with are totally disconnected. It was John Tate who early 60’s understood how to build the theory in such a way that one obtains reasonably well-behaved coherent sheaf theory and their cohomology [Tat71]. This theory of so-called rigid analytic spaces has many other results, which are strikingly similar with algebraic and complex analytic geometry. For example, one has the GAGA theorems over any non-archimedean ground field. A very important development in the theory of rigid analytic spaces were the papers of David Mumford [Mum72b] and [Mum72a], where, using Grothendieck’s idea of associating a “generic fibre” to a formal scheme, the author gives a theory of analytic uniformization of totally degenerate curves and totally degenerate abelian varieties. These results generalize Tate’s work on non-archimedean uniformization of elliptic curves with split multiplicative reduction.
    [Show full text]
  • Arxiv:2012.12656V2 [Math.AG]
    BIG PICARD THEOREM FOR JET DIFFERENTIALS AND NON-ARCHIMEDEAN AX-LINDEMANN THEOREM DINH TUAN HUYNH, RUIRAN SUN, AND SONG-YAN XIE* ABSTRACT. By implementing jet differential techniques in non-archimedean geometry, we obtain a big Picard type extension theorem, which generalizes a previous result of Cherry and Ru. As applications, we establish two hyperbolicity-related results. Firstly, we prove a non-archimedean Ax-Lindemann theorem for totally degenerate abelian varieties. Secondly, we show the pseudo-Borel hyperbolicity for subvarieties of general type in abelian varieties. 1. Introduction The classical Lindemann-Weierstrass Theorem states that, if α1,...,αn are Q-linearly independent al- gebraic numbers, then their exponentials exp(α1),..., exp(αn) are Q-algebraically independent. To under- stand a conjecture of Schanuel, Ax established the differential field analogues of it in [Ax71], which can be formulated in the following geometrical way n ∗ n Ax-Lindemann Theorem. (i) (for tori) Let πt := (exp(2πi·),..., exp(2πi·)) : C → (C ) be the uniformizing map and let Y ⊂ Cn be an algebraic subvariety. Then any irreducible component of the ∗ n Zariski closure of the image πt(Y ) is a translate of some subtorus of (C ) . n (ii) (for abelian varieties) Let πa : C → A be the uniformizing map of a complex abelian variety A and let Y ⊂ Cn be an algebraic subvariety. Then any irreducible component of the Zariski closure of the image πa(Y ) is a translate of some abelian subvariety of A. The uniformizing map πt (resp. πa) satisfies the exponential differential equation associated to the com- n mutative group scheme (Gm) (resp.
    [Show full text]