655.Full.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  ENSG Gene Encodes Effector TCR Pathway Costimulation Inhibitory/Exhaustion Synapse/Adhesion Chemokines/ReceptorsENSG Gene Encodes Effector TCR pathway Costimulation Inhibitory/exhaustion Synapse/adhesion Chemokines/receptors ENSG00000111537 IFNG IFNg x ENSG00000109471 IL2 IL-2 x ENSG00000232810 TNF TNFa x ENSG00000271503 CCL5 CCL5 x x ENSG00000139187 KLRG1 Klrg1 x ENSG00000117560 FASLG Fas ligand x ENSG00000121858 TNFSF10 TRAIL x ENSG00000134545 KLRC1 Klrc1 / NKG2A x ENSG00000213809 KLRK1 Klrk1 / NKG2D x ENSG00000188389 PDCD1 PD-1 x x ENSG00000117281 CD160 CD160 x x ENSG00000134460 IL2RA IL-2 receptor x subunit alpha ENSG00000110324 IL10RA IL-10 receptor x subunit alpha ENSG00000115604 IL18R1 IL-18 receptor 1 x ENSG00000115607 IL18RAP IL-18 receptor x accessory protein ENSG00000081985 IL12RB2 IL-12 receptor x beta 2 ENSG00000186810 CXCR3 CXCR3 x x ENSG00000005844 ITGAL CD11a x ENSG00000160255 ITGB2 CD18; Integrin x x beta-2 ENSG00000156886 ITGAD CD11d x ENSG00000140678 ITGAX; CD11c x x Integrin alpha-X ENSG00000115232 ITGA4 CD49d; Integrin x x alpha-4 ENSG00000169896 ITGAM CD11b; Integrin x x alpha-M ENSG00000138378 STAT4 Stat4 x ENSG00000115415 STAT1 Stat1 x ENSG00000170581 STAT2 Stat2 x ENSG00000126561 STAT5a Stat5a x ENSG00000162434 JAK1 Jak1 x ENSG00000100453 GZMB Granzyme B x ENSG00000145649 GZMA Granzyme A x ENSG00000180644 PRF1 Perforin 1 x ENSG00000115523 GNLY Granulysin x ENSG00000100450 GZMH Granzyme H x ENSG00000113088 GZMK Granzyme K x ENSG00000057657 PRDM1 Blimp-1 x ENSG00000073861 TBX21 T-bet x ENSG00000115738 ID2 ID2 x ENSG00000176083 ZNF683 Hobit x ENSG00000137265 IRF4 Interferon x regulatory factor 4 ENSG00000140968 IRF8 Interferon
- 
												  Differentiation and Bone Resorption Role of CX3CL1/Fractalkine InRole of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption Keiichi Koizumi, Yurika Saitoh, Takayuki Minami, Nobuhiro Takeno, Koichi Tsuneyama, Tatsuro Miyahara, This information is current as Takashi Nakayama, Hiroaki Sakurai, Yasuo Takano, Miyuki of September 29, 2021. Nishimura, Toshio Imai, Osamu Yoshie and Ikuo Saiki J Immunol published online 18 November 2009 http://www.jimmunol.org/content/early/2009/11/18/jimmuno l.0803627.citation Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 18, 2009, doi:10.4049/jimmunol.0803627 The Journal of Immunology Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption1 Keiichi Koizumi,2* Yurika Saitoh,* Takayuki Minami,* Nobuhiro Takeno,* Koichi Tsuneyama,†‡ Tatsuro Miyahara,§ Takashi Nakayama,¶ Hiroaki Sakurai,*† Yasuo Takano,‡ Miyuki Nishimura,ʈ Toshio Imai,ʈ Osamu Yoshie,¶ and Ikuo Saiki*† The recruitment of osteoclast precursors toward osteoblasts and subsequent cell-cell interactions are critical for osteoclast dif- ferentiation.
- 
												  Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3RX Zhang, et al ORIGINAL ARTICLE Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3 1 Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China 2 Department of Otolaryngology , Jinan General Hospital of PLA, Shandong, China 3 Department of Otolaryngology, Changhai Hospital, Second Military Medical University, Shanghai, China ■ Abstract Objective: To analyze the roles of chemokines and their receptors in the pathogenesis of allergic rhinitis by observing the complementary DNA (cDNA) expression of the chemokines and their receptors in the nasal mucosa of patients with and without allergic rhinitis, using gene chips. Methods: The total RNAs were isolated from the nasal mucosa of 20 allergic rhinitis patients and purifi ed to messenger RNAs, and then reversely transcribed to cDNAs and incorporated with samples of fl uorescence-labeled with Cy5-dUPT (rhinitis patient samples) or Cy3- dUTP (control samples of nonallergic nasal mucosa). Thirty-nine cDNAs of chemokines and their receptors were latticed into expression profi le chips, which were hybridized with probes and then scanned with the computer to study gene expression according to the different fl uorescence intensities. Results: The cDNAs of the following chemokines were upregulated: CCL1, CCL2, CCL5, CCL7, CCL8, CCL11, CCL13, CCL14, CCL17, CCL18, CCL19, CCL24, and CX3CL1 in most of the allergic rhinitis sample chips. CCR2, CCR3, CCR4, CCR5, CCR8 and CX3CR1 were the highly expressed receptor genes. Low expression of CXCL4 was found in these tissues. Conclusion: The T helper cell (TH) immune system is not well regulated in allergic rhinitis.
- 
												  Ccl9 Induced by Tgf-Β Signaling in Myeloid Cells Enhances Tumor Cell Survival in the Premetastatic LungCCL9 INDUCED BY TGF-β SIGNALING IN MYELOID CELLS ENHANCES TUMOR CELL SURVIVAL IN THE PREMETASTATIC LUNG by Hangyi Yan A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2015 ABSTRACT The majority of cancer patients die from metastasis. To achieve metastasis, tumor cells must first survive and then proliferate to form colonies. Compelling data have shown the indispensable participation of host microenvironment for metastasis. Bone marrow derived myeloid cells sculpt a tumor-promoting microenvironment in the premetastatic organs prior to tumor cell arrival. However, the molecular mechanisms for this “seed and soil” hypothesis are unclear. Here we report that CCL9 was significantly produced and secreted by Gr-1+CD11b+ cells when co-cultured with tumor cells, and in the premetastatic lung. CCL9 knockdown (KD) in myeloid cells decreased metastasis, and this process signaled through its sole receptor CCR1. Overexpression of CCR1 lost the metastasis-promoting function in the context of CCL9 KD. CCL9 enhanced tumor cell survival in the premetastatic organs. The underlying molecular mechanisms included activation of cell survival factors phosphorylated AKT and BCL-2, as well as inhibition of Poly (ADP-ribose) polymerase (PARP)-dependent apoptosis pathway. Additionally, CCL9/CCR1 had autocrine effects, which enhanced CCL9 secretion and the survival of Gr-1+CD11b+ cells. We found that CCL9 was a key effector of myeloid transforming growth factor β (TGF-β) pathway that promotes metastasis. Decreased metastasis in mice with myeloid specific TGF-β receptor II deletion (Tgfbr2MyeKO) correlated with lower CCL9 expression in TGF-β deficient myeloid cells.
- 
												  Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged SwordsCellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview
- 
												  Bioinformatics Identification of CCL8/21 As Potential PrognosticBioscience Reports (2020) 40 BSR20202042 https://doi.org/10.1042/BSR20202042 Research Article Bioinformatics identification of CCL8/21 as potential prognostic biomarkers in breast cancer microenvironment 1,* 2,* 3 4 5 1 Bowen Chen , Shuyuan Zhang ,QiuyuLi, Shiting Wu ,HanHe and Jinbo Huang Downloaded from http://portlandpress.com/bioscirep/article-pdf/40/11/BSR20202042/897847/bsr-2020-2042.pdf by guest on 28 September 2021 1Department of Breast Disease, Maoming People’s Hospital, Maoming 525000, China; 2Department of Clinical Laboratory, Maoming People’s Hospital, Maoming 525000, China; 3Department of Emergency, Maoming People’s Hospital, Maoming 525000, China; 4Department of Oncology, Maoming People’s Hospital, Maoming 525000, China; 5Department of Medical Imaging, Maoming People’s Hospital, Maoming 525000, China Correspondence: Shuyuan Zhang ([email protected]) Background: Breast cancer (BC) is the most common malignancy among females world- wide. The tumor microenvironment usually prevents effective lymphocyte activation and infiltration, and suppresses infiltrating effector cells, leading to a failure of the host toreject the tumor. CC chemokines play a significant role in inflammation and infection. Methods: In our study, we analyzed the expression and survival data of CC chemokines in patients with BC using several bioinformatics analyses tools. Results: The mRNA expression of CCL2/3/4/5/7/8/11/17/19/20/22 was remark- ably increased while CCL14/21/23/28 was significantly down-regulated in BC tis- sues compared with normal tissues. Methylation could down-regulate expression of CCL2/5/15/17/19/20/22/23/24/25/26/27 in BC. Low expression of CCL3/4/23 was found to be associated with drug resistance in BC.
- 
												  Chemochine E ImmunitàChemochine e Immunità Mariagrazia Uguccioni AIBT 2016 – Pesaro 1987 – Discovery of the first “chemotactic cytokine” – IL8 Marco Baggiolini Theodor Kocher Institute University of Bern (CH) The Chemokine System - 2016 CCL23 CXCL8 CCL15 CXCL7 CCL14 CXCL6 CCL13 CXCL5 CXCL8 CXCL3 CCL8 CXCL6 CCL7 CXCL11 CXCL2 CXCL1 CCL5 CCL13 CXCL10 CCL3 CCL8 CXCR1 CXCL9 CCL7 CCL26 CXCR2 CCR1 CCL2 CCL13 CXCR3 CCL11 CXCL12 CCR2 CCL8 CCL7 CXCR4 CCL5 CCR3 CXCL13 CXCR5 CCL22 CCL17 CCR4 CXCL16 CXCR6 CCL3 CCR5 CCL4 CXCL17 CXCR8 CCL5 CCL8 CCR6 CX3CR1 CCL20 CX3CL1 XCR1 CCR7 XCL1 CCL19 CCR10 CCR8 XCL2 CCR9 CCL21 CCL27 CCL1 CCL28 CCL25 Cell Migration Selectin-mediated rolling 1 Chemoattractan signalling 2 Integrin-mediated cell adhesion 3 Step 1: attachement and rolling Migration along Step 2: activation chemotactic gradient Step 3: arrest and adhesion Chemokine source Functional Modules in Cell Migration T naive IL-2 CCR7 mature DC Priming B naive IL-6 CXCR5 FDC, TFH Antibody immature DC GM-CSF CCR1, CCR5 T naive Antigen uptake TH1 IFN- CCR5 M Bacteria TH2 IL-4, IL-5 CCR3 Eos/Bas Parasites TH17 IL-17, IL-22 CCR6 Neut Fungi CTL IFN-, Perf CXCR3 M Virus From Blood to Tissue CCR1 Tissue Blood CCR2 CCR2 CCR5 CXCR3 From Tissue to Lymph Nodes CCL21 Lymph nodes are privileged sites normal for dendritic cell-naïve T cell encounters CCL21 CCR7 CCL21 inflamed CCL19 from S. Lira, Nat Immunol 2005, 6:866. Functional Modules in Cell Migration T naive IL-2 CCR7 mature DC Priming B naive IL-6 CXCR5 FDC, TFH Antibody immature DC GM-CSF CCR1, CCR5 T naive Antigen uptake TH1 IFN- CCR5
- 
												  Expression of Inflammation-Related Genes Is Altered in Gastric Tissue of Patients with Advanced Stages of NAFLDHindawi Publishing Corporation Mediators of Inflammation Volume 2013, Article ID 684237, 10 pages http://dx.doi.org/10.1155/2013/684237 Clinical Study Expression of Inflammation-Related Genes Is Altered in Gastric Tissue of Patients with Advanced Stages of NAFLD Rohini Mehta,1,2 Aybike Birerdinc,1,2 Arpan Neupane,1,2 Amirhossein Shamsaddini,1,2 Arian Afendy,1,3 Hazem Elariny,1,3 Vikas Chandhoke,2 Ancha Baranova,1,2 and Zobair M. Younossi1,3 1 Betty and Guy Beatty Obesity and Liver Program, Inova Health System, Falls Church, VA 22042, USA 2 Center for the Study of Chronic Metabolic Diseases, School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA 3 Center for Liver Diseases and Department of Medicine, Inova Fairfax Hospital, Falls Church, VA 22042, USA Correspondence should be addressed to Zobair M. Younossi; [email protected] Received 15 December 2012; Revised 12 February 2013; Accepted 14 February 2013 Academic Editor: David Bernardo Ordiz Copyright © 2013 Rohini Mehta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD) and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades.
- 
												  Overexpression of Microrna-155 Suppresses Chemokine Expression Induced by Interleukin-13 in BEAS-2B Human Bronchial Epithelial CellsAllergology International 65 (2016) S17eS23 Contents lists available at ScienceDirect Allergology International journal homepage: http://www.elsevier.com/locate/alit Original article Overexpression of microRNA-155 suppresses chemokine expression induced by Interleukin-13 in BEAS-2B human bronchial epithelial cells * Satoshi Matsukura a, , Yuki Osakabe a, Ayaka Sekiguchi a, Daisuke Inoue a, Yusuke Kakiuchi a, Toshitaka Funaki a, Yohei Yamazaki a, Hiromi Takayasu a, Hidetsugu Tateno a, Eisuke Kato a, Aya Wakabayashi a, Makoto Hayashi a, Gen Ishii a, b, Fumihiro Yamaguchi a, Yutaka Tsuchiya a, Keita Kasahara b, Hironori Sagara c, Fumio Kokubu a a Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan b Respiratory Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan c Department of Internal Medicine, Division of Allergy and Respiratory Medicine, Showa University School of Medicine, Tokyo, Japan article info abstract Article history: Background: MicroRNAs are non-coding small RNAs that regulate expression of target genes by binding Received 22 January 2016 to 30 untranslated regions. In this study, we used bronchial epithelial cells to investigate in vitro the role Received in revised form of the microRNA miR-155 in the expression of chemokines associated with airway inflammation. miR- 23 April 2016 155 has previously been reported to regulate allergic inflammation. Accepted 30 April 2016 Methods: BEAS-2B bronchial epithelial cells were cultured and transfected with mimic or inhibitor oli- Available online 3 August 2016 gonucleotides to overexpress or downregulate miR-155, as confirmed by real-time PCR. Cells were then stimulated with tumor necrosis factor-alpha, interleukin-13 (IL-13), and a double stranded RNA that Keywords: Asthma binds Toll-like receptor 3.
- 
												  The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of LiteratureInternational Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
- 
												  Critical Role of CXCL4 in the Lung Pathogenesis of Influenza (H1N1) Respiratory InfectionARTICLES Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection L Guo1,3, K Feng1,3, YC Wang1,3, JJ Mei1,2, RT Ning1, HW Zheng1, JJ Wang1, GS Worthen2, X Wang1, J Song1,QHLi1 and LD Liu1 Annual epidemics and unexpected pandemics of influenza are threats to human health. Lung immune and inflammatory responses, such as those induced by respiratory infection influenza virus, determine the outcome of pulmonary pathogenesis. Platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) has an immunoregulatory role in inflammatory diseases. Here we show that CXCL4 is associated with pulmonary influenza infection and has a critical role in protecting mice from fatal H1N1 virus respiratory infection. CXCL4 knockout resulted in diminished viral clearance from the lung and decreased lung inflammation during early infection but more severe lung pathology relative to wild-type mice during late infection. Additionally, CXCL4 deficiency decreased leukocyte accumulation in the infected lung with markedly decreased neutrophil infiltration into the lung during early infection and extensive leukocyte, especially lymphocyte accumulation at the late infection stage. Loss of CXCL4 did not affect the activation of adaptive immune T and B lymphocytes during the late stage of lung infection. Further study revealed that CXCL4 deficiency inhibited neutrophil recruitment to the infected mouse lung. Thus the above results identify CXCL4 as a vital immunoregulatory chemokine essential for protecting mice against influenza A virus infection, especially as it affects the development of lung injury and neutrophil mobilization to the inflamed lung. INTRODUCTION necrosis factor (TNF)-a, interleukin (IL)-6, and IL-1b, to exert Influenza A virus (IAV) infections cause respiratory diseases in further antiviral innate immune effects.2 Meanwhile, the innate large populations worldwide every year and result in seasonal immune cells act as antigen-presenting cells and release influenza epidemics and unexpected pandemic.
- 
												  Metastasis: Active Lymph NodesRESEARCH HIGHLIGHTS METASTASIS subcapsular sinus. Further investiga- tions in vivo revealed that CCR8 acti- vation in tumour cells was required Active lymph nodes for tumour cell extravasation from lymphatic vessels, specifically for the Lymph node metastases are CCL1 activates CCR8-mediated transmigration of tumour cells from indicative of poor prognosis but intracellular signalling in tumour the subcapsular sinus into the lymph tumour cell the mechanisms of tumour cell cells, which resulted in cellular node cortex. entry into the dissemination via the lymphatics changes that are consistent with cell These data unpick the process of are poorly understood. Although it migration. lymphatic dissemination and iden- lymph node is widely believed that tumour cells Is the CCR8–CCL1 paracrine tify the sequence of steps leading to requires active enter the lymph nodes passively with pathway important in lymphatic lymph node metastasis. The authors cell migration the flow of lymph, previous data have metastasis? The suppression of showed that CCR8 is expressed by indicated that some chemokines may CCR8 expression or activity in a large subset of human melanoma promote lymphatic extravasation human melanoma cells did not samples, and it will be interesting and metastasis. Das et al. now dem- affect tumour growth or vasculariz to determine whether this pathway onstrate that tumour cell entry into ation on implantation into immuno can be targeted to prevent lymph the lymph node requires active cell deficient mice, but significantly node metastasis. migration and they also identify the reduced the incidence of lymph Gemma K. Alderton lymphatic endothelium of the lymph node metastasis. Furthermore, ORIGINAL RESEARCH PAPER Das, S.