Synthesis and Functionalization of Novel Quinazoline Scaffolds As

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Functionalization of Novel Quinazoline Scaffolds As Research & Reviews: Journal of Chemistry e-ISSN:2319-9849 p-ISSN:2322-00 Synthesis and Functionalization of Novel Quinazoline Scaffolds as Antibacterial Agents Shaikha S-Al-Neyadi1, Alaa A Salem1, Akela Ghazawi2, Tibor Pal2 and Ibrahim M Abdou1* 1Department of Chemistry, College of Science, UAE University Al-Ain, 15551 UAE 2Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, UAE Research Article Received date: 15/08/2018 ABSTRACT Accepted date: 03/08/2018 A new series of Quinazoline derivatives have been designed and Published date: 06/09/2018 synthesized using palladium-catalyzed reactions. The antibacterial activities of the synthesized compounds were screened against four *For Correspondence pathogenic bacteria. Compounds 18b and 9 showed higher sensitivity to S. aureus (gram-positive) with an MIC ≤ 0.25-0.5 μg/ml, respectively. Ibrahim M Abdou, Department of Chemistry, Meanwhile, compounds 13a and 13b were more effective against gram- College of Science, UAE University Al-Ain, negative bacteria, with an MIC<0.25 μg/ml against Escherichia coli, and 15551 UAE, Tel +97137136120. high activities against Pseudomonas aeruginosa, with MIC values of 0.5 and 1.0 μg/ml, respectively. The broadest antibacterial activities were observed with the quinazolines 26a-c, which had MIC value ranging E-mail: [email protected] from<0.25-2 μg/ml. A β-cyclodextrin (β-Cyd) inclusion complex containing quinazolines as a guest was prepared using the kneading method. The Keywords: Quinazoline, Antibacterial synthesis, product was characterized by FTIR and 1H NMR spectrometry, which β-Cyclodextrin, Inclusion complex. proved the formation of the inclusion compound between the host and guest at a molar ratio of 2:1. Based on the results from the present study, some quinazolines could be used as a template for the future development of more potent therapeutic agents through modification or derivatization. INTRODUCTION An alarming, widespread increase in resistance to antimicrobial agents has been observed; thus, the identification of novel structures that will lead to the development of new, potent and less toxic antimicrobial agents is urgently needed. The multiple pharmacological actions of unique synthetic compounds are a prerequisite for classifying a drug as highly potent and efficacious, because these actions offer the possibility of treating various diseases [1]. Therefore, success in designing antimicrobial agents that are distinct from classical antibiotics is the key in treating infectious diseases known for their chronicity and a lack of re- sponse to traditional antibiotics that eventually leads to death. Consequently, the development of novel antibacterial agents with potent activity against drug-resistant microorganisms is urgently needed [2]. Different heterocyclic systems have been explored to develop therapeutically important agents. Among these systems, Quinazolines and Quinazolinones have played significant roles in medicinal chemistry and function as building blocks for the construction of different biologically active molecules [3]. Many sub- stituted quinazoline and quinazolinone derivatives possess a wide range of biological activities, such as antimalarial, anticancer, antimicrobial, antifungal, antiviral, antiprotozoal, anti-inflammatory, diuretic, muscle relaxant, antitubercular, antidepressant, and anticonvulsant activities, among others [4,5]. The quinazoline nucleus has emerged as an area of immense interest because of its broad spectrum of in vitro and in vivo chemotherapeutic efficiencies. Compound A exhibited greater activity against, E. faecalis, and P. aeruginosa. with inhibition zone (16-20 mm) compared to ciprofloxacin (16-21 mm). While Compounds B and C showed comparative activity against K. pneumoniae with inhibition zone (20 mm) as compared to ciprofloxacin (18 mm) [6] (Figure 1). Figure 1. Quinazolinones with antibacterial activity. RRJCHEM | Volume 7 | Issue 3 | September, 2018 14 Research & Reviews: Journal of Chemistry e-ISSN:2319-9849 p-ISSN:2322-00 Quinazolinones have a well-established powerful and broad antimicrobial activity toward different species of pathogenic gram-negative and gram-positive bacteria [7]. Scientific research and clinical studies have already documented the value of Quin- azoline-4-ones in treating various microbial diseases [8]. Based on the importance of these molecules, our attention was focused on the synthesis of novel quinazoline derivatives to identify more potent molecules. We synthesized disubstituted quinazoline de- rivatives using various synthetic routes and evaluated their biological activities to identify new biologically active pharmacophores that may be specifically applied as antibacterial agents. The synthesized compounds were characterized using IR,1 H and 13C-NMR spectroscopy and elemental analysis. The derivatives were screened against Escherichia coli, Pseudomonas aeruginosa, Staphy- lococcus aureus and Enterococcus. The novel quinazoline derivatives synthesized in the present work might be beneficial in terms of their biological activities; further studies are required to confirm whether these compounds are potential drug candidate. RESULTS AND DISCUSSION Chemistry The aim of the present work was to use the benzoxazinone derivatives as intermediates in the synthesis of 2,3- and/or 2,4-disubstituted quinazolinones and to attach some interesting heterocycles with a quinazolin-4(3H)- one nucleus to identify new biologically active pharmacophores that may be specifically applied as antibacterial agents. Of the various quinazolines that have been reported, the C-2 and N3-disubstituted quinazolines exhibit interesting pharmacological activities [9]. 2,3-Disubstituted quinazolines have been shown to have potent antiviral and antihypertensive acitivities [10]. Based on these findings, the present investigation focused on attaching a pyrimidine moiety to quinazolin-4(3H)-one via azomethine linker (-C=N) at quinazoline N-3 while C-2 remained substituted with a phenyl group to identify new biologically active pharmacophores. The synthetic pathways to the intermediates and final compounds 2-7 are presented in Scheme 1. Briefly anthranilic acid 1 was converted into 3-ami- noquinazoline 3 via amination of 4H-benzo[d][1,3]oxazin-4-one 2, followed by a reaction with 5-formyl pyrimidine 6 to afford the target product 7. Anthranilic acid first, reacts with two equivalents of acid chlorides in pyridine solution to give 4H-benzo[d][1,3] oxazin-4-one 2 in 74%. The formation of 4H-benzo[d][1,3]oxazin-4- one 2 is explained by the well-established mechanism in which one mole of an acid chloride acylated the amino group and the second mole reacts with the carboxylic acid group of the anthranilic acid, followed by the loss of one molecule of acid to yield the 4H-benzo[d][1,3]oxazin-4-one 2 [11]. The formation of compound 2 was confirmed 3 by the presence of a sharp band at 1787 cm-1 assigned to C=O, along with a band at 1259 cm-1 for C-O-C, a 1605 cm-1 band for C=N, and a 1306 cm-1 band for C-N. The hydrazinolysis of the benzoxazinone ring system with hydrazine hydrate in boiling ethanol resulted in the production of 3-amino-2-phenylquinazolin-4-one 3 in 87% yield. In production of compound 3, hydrazine hydrate acts as a nucleophile and attacks the carbonyl group of cyclic ester due to its alpha effect. The insertion of ni- trogen atom constructed the quinazoline ring, which was characterized by the disappearance of the C-O-C stretching band at 1259 -1 -1 -1 cm and the appearance of a new carbonyl band at 1668 cm . The presence of a sharp NH2 band at 3307-3217 cm confirmed the formation of 3-amino-2-phenylquinazolin-4-one 3. The structure was further studied by 1H-NMR and the results showed the correct chemical shifts of all protons of the new quinazoline ring. Later, the condensation of aminoquinazoline 3 with pyrimidine aldehydes 6a,b in the presence of acid catalyst to introduce the azomethine linker and produce Schiff base 7a and 7b in 86 and 84% yield respectively (Scheme 1). Scheme 1. Reagents and conditions: i=benzoyl chloride, pyridine, reflux, 4hr; ii=hydrazine hydrate, ethanol, reflux, 12 h; iii=N,N-dimethylamine or 4-chloroaniline, N,N-diisopropyl ethylamine (DIPEA), MW, 150 W, 10 min; iv=DMF-POCl3, 24 h, 25°C; v=ethanol, acetic acid, reflux. The suggested structure of the final product 7a was confirmed based on elemental analysis, IR and NMR spectroscopy data. IR spectroscopy revealed the presence of strong C=N stretching vibration at 1618 cm-1 that was assigned to the new Schiff base linker. In addition, the spectrum showed bands at 1683, 1256 and 1560 cm-1 that corresponded to C=O, C-O-C and C=C. The 1H-NMR spectrum of the final compound showed characteristic signal at δ=8.79 ppm corresponding to methylene protons. The 1H-NMR spectrum of compound 7a showed a signal resonance at δ=8.58 ppm that was attributed to the pyrimidine H-4,6. Formation of the azomethine linker was characterized by the disappearance of the CHO proton at δ=9.71 ppm in compound 6a. Chloroacetyl chloride was used in a simple nucleophilic substitution reaction to extent the linker at quinazoline N-3; the syn- RRJCHEM | Volume 7 | Issue 3 | September, 2018 15 Research & Reviews: Journal of Chemistry e-ISSN:2319-9849 p-ISSN:2322-00 thesis procedure began by reacting 3-amino-2-phenylquinazolin-4(3H)-one 3 with chloroacetyl chloride to yield the corresponding 2-chloro-N-[4-oxo-2-phenylquinazolin-4(3H)-yl]-acetamide 8 in 55% yield. The infrared spectrum of the 3-amino-quinazolin-4(3H)- -1 one 3 showed characteristic absorption bands at 3307 and 3217 cm , attributed to the 3-NH2, which disappeared upon the formation of 2-chloro-N-[4-oxo- substitutedquinazolin-4(3H)-yl]-acetamide 8. Similarly, the 1HNMR spectrum showed two charac- teristic diastereotopic doublets at δ 4.08-4.18 assigned to CH2 protons. Compound 8 was then reacted with 3,5-bis(trifluoromethyl)aniline in the presence of a catalytic amount of DIPEA to produce compound 9 at a good yield of 71% (Scheme 2).
Recommended publications
  • International Journal of Research in Pharmaceutical Sciences
    Hemalatha K et al., Int. J. Res. Pharm. Sci., 2020, 11(4), 7559-7564 ORIGINAL ARTICLE INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACEUTICAL SCIENCES Published by JK Welfare & Pharmascope Foundation Journal Home Page: www.pharmascope.org/ijrps 4-Anilino Quinazoline Derivatives: Molecular Docking and Evaluation of In vitro Cytotoxic Activity Hemalatha K*1, Sujatha K2, Panneerselvam P3, Girija K1 1Department of Pharmaceutical Chemistry, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, (A Government of Puducherry Institution), Indira Nagar, Gorimedu, Puducherry-06, India 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, (Deemed to be University), Porur, Chennai-116, Tamil Nadu, India 3Faculty of Pharmacy,(Medical Campus), Bharath Institute of Higher Education and Research, Chrompet, Chennai-44,Tamil Nadu, India Article History: ABSTRACT Received on: 20 Oct 2020 Revised on: 10 Nov 2020 A novel scaffold of 4-anilino quinazoline derivatives was designed on the basis Accepted on: 23 Nov 2020 of known inhibitor of quinazoline based drugs. The designed derivatives were synthesized using optimized reaction condition. Their structures were con- Keywords: irmed by FT-IR, 1H-NMR, 13C-NMR and Mass spectral data. The structures of synthesized compounds were subjected to in silico molecular docking using Anilino quinazoline, AutoDock software against the target Poly (ADP-ribose) polymerase-1 (PARP- AutoDock software, 1) enzyme. The compounds were evaluated for their in vitro cytotoxic activ- cytotoxic activity, ity against Daltons Lymphocyte Ascites (DLA) Cell lines. Molecular docking PARP 1, study of the newly synthesized compounds showed good binding mode in the Daltons Lymphoma active site of PARP-1.
    [Show full text]
  • Synthesis and Cytotoxicity Evaluation of Some New 4-(4Oxo-4H-Quinazoline-3Yl)- Thiobenzoic Acid-S-(1-H-Benzimidazole-2-Yl) Ester Derivates
    Organic and Medicinal Chemistry International Journal ISSN 2474-7610 Research Article Organic & Medicinal Chem IJ Volume 8 Issue 5 - September 2019 Copyright © All rights are reserved by Farshid Hassanzadeh DOI: 10.19080/OMCIJ.2019.08.555750 Synthesis and Cytotoxicity Evaluation of Some New 4-(4oxo-4H-Quinazoline-3yl)- Thiobenzoic Acid-S-(1-H-Benzimidazole-2-Yl) Ester Derivates Shirin Banitalebi Dehkordi1, Farshid Hassanzadeh1*, Marzieh Rahmani Khajouei2, Hojat Sadeghi1 and Nasim Dana3 1Department of Medicinal Chemistry, Isfahan University of Medical Sciences, Iran 2Isfahan Pharmaceutical Sciences Research Center, Isfahan, Iran 3Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran Submission: August 16, 2019; Published: September 11, 2019 *Corresponding author: Farshid Hassanzadeh, Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran Abstract Quinazolines are a group of heterocyclic compounds that have different biological activities such as cytotoxicity, anti-bacterial, anti-fungal. benzimidazoles on the other hand are also a group of heterocyclic compounds with anti-tumor, anti-virus, anti-fungal and anti-inflammatory effects. Due to significant cytotoxic effects of both quinazoline and benzimidazole derivatives , in this work a group of quinazolinone-benzimidazole hybrids were prepared. The structures of synthesized compounds were confirmed by IR and 1H-NMR. Cytotoxic activity of the compounds was evaluated at 1, 10, and 100 μM concentrations against MCF-7 and HT-29 cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromideKeywords: (MTT) Quinazoline; colorimetric Imidazole; assay. The Cytotoxic results show that compound 9d has highest cytotoxic activity against both MCF-7 and HT-29 cell lines.
    [Show full text]
  • Review of Litrature
    ejpmr, 2020,7(2), 225-234 SJIF Impact Factor 6.222 EUROPEAN JOURNAL OF PHARMACEUTICAL Review Article Dhanya et al. European Journal of Pharmaceutical and Medical Research AND MEDICAL RESEARCH ISSN 2394-3211 www.ejpmr.com EJPMR CHEMICAL CHARECTERISTICS, SYNTHESIS AND BIOLOGICAL ACTIVITIES OF QUINAZOLINE DERIVATIVES Dhanya S.*1, Prasobh G. R.1, S. M. Sandhya1 and Sebha M. C.1 Sree Krishna College of Pharmacy and Research Centre, Parasala, Thiruvananthapuram, Kerala. *Corresponding Author: Dhanya S. Sree Krishna College of Pharmacy and Research Centre, Parasala, Thiruvananthapuram, Kerala. Article Received on 25/11/2019 Article Revised on 15/12/2019 Article Accepted on 05/01/2020 ABSTRACT Quinazoline is a fused aromatic ring system where a benzene ring is fused to 5th and 6th positions of pyrimidine ring. Quinazolines are medicinally important as anti-convulsant, anti-cancer, anti-microbial, and anti-tubercular properties etc. They target epidermal growth factor receptors on tumour cells. This work is aimed to review the quinazoline derivatives which could deliver drug specifically various receptors and can use as lead in future drug development processes. KEYWORDS: anti-convulsant, anti-cancer, anti-microbial, and anti-tubercular. INTRODUCTION cell growth, differentiation, and survival. EGFR is over Heterocyclic Rings are organic compounds containing at expressed in several human tumors (e.g., breast, ovarian, least one atom of carbon and at least one element other colon, and prostate) and correlates with a poor prognosis than carbon such as sulfur, oxygen or nitrogen within a in many cancer patients. Thus EGFR is an attractive ring structure. These structures may comprise either target for the design and development of compounds that simple aromatic rings or nonaromatic rings.
    [Show full text]
  • QUINAZOLINE DERIVATIVES with POTENT ANTI-INFLAMMATORY and ANTI-ALLERGIC ACTIVITIES A, a B∗∗∗ P
    Int. J. Chem. Sci.: 6(3), 2008, 1119-1146 – A REVIEW QUINAZOLINE DERIVATIVES WITH POTENT ANTI-INFLAMMATORY AND ANTI-ALLERGIC ACTIVITIES a, a b∗∗∗ P. MANI CHANDRIKA A. RAGHU RAM RAO , B. NARSAIAH c and M. BHAGAWAN RAJU aMedicinal Chemistry Research Division, University College of Pharmaceutical Sciences, Kakatiya University, WARANGAL – 506 009 (A.P.) India. b Fluoro Organic Division, Indian Institute of Chemical Technology, TARNAKA, Hyderabad (A.P.) INDIA c S. N. Vanita Maha Vidyalaya College, Exhibition Grounds, Nampally, HYDERABAD - 500 007 (A.P.) INDIA. ABSTRACT The biosynthesis modulation of pro-inflammatory cytokines (PICs) has become an important strategy for pharmacological intervention in a variety of inflammatory and fibrotic disease states. Thus , inhibition of PICs will provide the basis f or an effective choice of treatment in inflammatory disorders like rheumatoid arthritis (RA), chronic obstructive pulmonary disease (COPD), asthma, psoriasis , chronic bronchitis and cystic fibrosis. In this review, basic attention is directed towards the s imple and fused substituted quinazolines with proven potencies whose quantitative data are consolidated from literature, which are possessing remarkable anti-inflammatory activity as nitric oxide synthase-II (NOS- II) inhibitors, nuclear factor kappa B (NFKB) inhibitors, tumor necrosis factor-alpha (TNF-α) inhibitors , interleukin-6 (IL-6) inhibitors and combined type 3 and 4 phosphodiesterase (PDE) inhibitors with both bronchodilatory and anti-inflammatory properties. Key words : Inflammation mediators, Substituted quinazolines, Phospho- diesterase inhibitors, Carrageenin–induced paw oedema, Percent inhibition, Adenosine antagonists, Cyclooxygenase inhibitors. INTRODUCTION The aim of this review is to highlight the wide range of developments displayed by ∗ Author for correspondence; E-mail address: [email protected] Fax: +91-40-27160387 1120 P.
    [Show full text]
  • Synthesis and Preliminary In-Vitro Cytotoxic Activity of Morpholino Propoxy Quinazoline Derivatives
    International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.6, No.1, pp 547-555, Jan-March 2014 Synthesis and Preliminary in-vitro Cytotoxic Activity of Morpholino Propoxy Quinazoline Derivatives Bhavesh Prajapati 1*, Ishan Panchal 1 1Sardar Patel College of Pharmacy, Bakrol, Gujarat, India. *Corres.author: [email protected] Phone no: 91-9016156043 Abstract: Present research work is about the synthesis and biological evaluation of morpholino propoxy quinazoline derivatives where in 7-methoxy-6-(3-morpholinopropoxy)3,4-dihydro quinazoline-4-one was converted in to 4-chloro-7-methoxy-6-(3-morphholinopropoxy)quinazoline by treating with Phosphorus oxychloride and N,N-diethyl aniline. 4-chloro-7-methoxy-6-(3-morpholinopropoxy)quinazoline condensed with various substituted aromatic amines and thiol using methanol gives various derivatives of 4-substituted morpholino propoxy quinazoline. Synthesized compounds were tested for their physicochemical properties and were further characterized by spectral analysis using FTIR, NMR and Mass spectroscopy. All synthesized compounds (compound I to VIII) were tested for their cytotoxicity by MTT assay. Among all the synthesized derivatives, compound-II was shown promising anticancer activity as compared to other synthesized derivatives. This was indicated by the IC 50 value of (5.5 and 7.1) respectively for the synthesized derivatives (compound- I and II). And gefitinib shown experimental IC 50 value 4.9µM. Study concluded efficient synthesis of the stated derivatives with the scheme and also prepared derivatives were with promising cytotoxic effect. Keywords: anti-cancer, benzo[d]thiazole, IC 50, 7-methoxy-6-(3-morpholinopropoxy)3,4-dihydroquinazoline-4- one, MTT assay.
    [Show full text]
  • ( 12 ) United States Patent
    US010227284B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 227 ,284 B2 Krill et al. (45 ) Date of Patent: Mar. 12 , 2019 (54 ) METHOD FOR PREPARING 7 ,423 , 173 B2 9 / 2008 Krill et al. ALPHA - HYDROXYCARBOXYLIC ACID 8 , 569 , 539 B2 10 / 2013 May et al . ESTERS IN WHICH AMMONIA IS 8 , 975 ,440 B2 3 / 2015 May et al. 9 ,428 ,437 B2 8 /2016 May et al. RECYCLED 2009 /0209781 Al 8 / 2009 Ackermann et al . ( 71 ) Applicant: Evonik Roehm GmbH , Darmstadt FOREIGN PATENT DOCUMENTS (DE ) DE 10 2013 213 699 Al 1 / 2015 ( 72 ) Inventors : Steffen Krill , Muehltal (DE ); Belaid EP 0 922 674 A1 6 / 1999 Ait Aissa , Darmstadt (DE ) ; Alexander EP 0 941 984 A2 9 / 1999 EP 0 941 984 A3 9 / 1999 May, Seeheim - Jugenheim (DE ) ; Marcel EP 0 945 423 B1 5 / 2003 Treskow , Darmstadt (DE ) EP 2018 362 A1 1 / 2009 EP 2 415 750 A12 / 2012 ( 73 ) Assignee : Evonik Roehm GmbH , Darmstadt JP 6 - 345692 A 12 / 1994 (DE ) WO WO 2007 / 131829 A1 11 /2007 WO 2008 / 009503 A11 / 2008 ( * ) Notice : Subject to any disclaimer, the term of this WO WO 2013 /026603 Al 2 / 2013 patent is extended or adjusted under 35 U . S . C . 154 ( b ) by 0 days . OTHER PUBLICATIONS (21 ) Appl . No. : 15 /508 , 200 Of Turk et al . “ Activated Carbon Systems for Removal of Light Gases " 1992 , 221 -228 . * ( 22 ) PCT Filed : Sep . 4 , 2015 U . S . Appl . No . 14 / 129, 811, filed Dec . 27, 2013 , US 2014 -0135521 Al, Koestner, et al.
    [Show full text]
  • Dissociation Constants of Organic Acids and Bases
    DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.
    [Show full text]
  • The Catalytic Hydrogenation of Benzodiazines
    THE CATALYTIC HYDROGENATION OF BENZODIAZINES: I. PHTHALAZINE II. QUINAZOLINE A Dissertation Presented to the Department of Chemistry Brigha~ Young University In Partial Fulfillment of the Requirements for the Degre~ Doctor of Philosophy by Danny Lee Elder August 1969 This dissertation, by Danny Lee Elder, is accepted in its present form b y the Department of Chemistry of Brigham Young University as satisfying the dissertation requirement for the degree of Doctor of Philosophy. ii . , TO Lynette, David, and Douglas iii ACKNOWLEDGEMENTS Deep appreciation is expressed to Dr. H. Smith Broadbent, without whose friendly association, patient help, and kindly ex- · tended advice this research problem could not have been carried out. Gratitude is also expressed £or the many extra-academic endeavors Dr. Broadbent has made on my behalf. Appreciation is extended to the Department of Chemistry of Brigham Young University for financial support in the form of teaching and research assistantships. My wife deserves special thanks for her encouragement, patience, understanding, and especially, for making it all worth- while. Finally, sincere thanks go to a great group of fellow-graduate students--Craig Argyle, Weldon Burnham, Vic Mylroie, Wes Parish, and Walter Sudweeks--for helpful discussions, comrade- ship, and most of all, for the memorable hours spent at such places as Anderson Lake, Four-Lakes Basin, Klondike Bluff, and of course, "Organic Pass, 11 (Grosebeck Pass). iv TABLE OF CONTENTS Chapter Page I. INTRODUCTION • • • • • • • • • • • • • • • 1 II. LITERATURE REVIEW • • • • • • • • • • • • 4 Phthalaz~ne • • • • . 4 Structure and properties • • • • • • • • • · 4 Synthesis of phthalazine • • • • • • • • • 8 Reduced phthalazines • • • • • • • • • • 10 Quinazoline • • • • • • . 12 Structure and properties • . • 12 Synthesis of quinazoline • • • • • 15 Reduced quinazolines • • • • 18 Catalytic Hydrogenation of Benzoazines and Benzodiazines • • • • • • • • 20 Quinoline .
    [Show full text]
  • Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry
    Baran, Richter Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry 5 4 Deprotonation of N–H, Deprotonation of C–H, Deprotonation of Conjugate Acid 3 4 3 4 5 4 3 5 6 6 3 3 4 6 2 2 N 4 4 3 4 3 4 3 3 5 5 2 3 5 4 N HN 5 2 N N 7 2 7 N N 5 2 5 2 7 2 2 1 1 N NH H H 8 1 8 N 6 4 N 5 1 2 6 3 4 N 1 6 3 1 8 N 2-Pyrazoline Pyrazolidine H N 9 1 1 5 N 1 Quinazoline N 7 7 H Cinnoline 1 Pyrrolidine H 2 5 2 5 4 5 4 4 Isoindole 3H-Indole 6 Pyrazole N 3 4 Pyrimidine N pK : 11.3,44 Carbazole N 1 6 6 3 N 3 5 1 a N N 3 5 H 4 7 H pKa: 19.8, 35.9 N N pKa: 1.3 pKa: 19.9 8 3 Pyrrole 1 5 7 2 7 N 2 3 4 3 4 3 4 7 Indole 2 N 6 2 6 2 N N pK : 23.0, 39.5 2 8 1 8 1 N N a 6 pKa: 21.0, 38.1 1 1 2 5 2 5 2 5 6 N N 1 4 Pteridine 4 4 7 Phthalazine 1,2,4-Triazine 1,3,5-Triazine N 1 N 1 N 1 5 3 H N H H 3 5 pK : <0 pK : <0 3 5 Indoline H a a 3-Pyrroline 2H-Pyrrole 2-Pyrroline Indolizine 4 5 4 4 pKa: 4.9 2 6 N N 4 5 6 3 N 6 N 3 5 6 3 N 5 2 N 1 3 7 2 1 4 4 3 4 3 4 3 4 3 3 N 4 4 2 6 5 5 5 Pyrazine 7 2 6 Pyridazine 2 3 5 3 5 N 2 8 N 1 2 2 1 8 N 2 5 O 2 5 pKa: 0.6 H 1 1 N10 9 7 H pKa: 2.3 O 6 6 2 6 2 6 6 S Piperazine 1 O 1 O S 1 1 Quinoxaline 1H-Indazole 7 7 1 1 O1 7 Phenazine Furan Thiophene Benzofuran Isobenzofuran 2H-Pyran 4H-Pyran Benzo[b]thiophene Effects of Substitution on Pyridine Basicity: pKa: 35.6 pKa: 33.0 pKa: 33.2 pKa: 32.4 t 4 Me Bu NH2 NHAc OMe SMe Cl Ph vinyl CN NO2 CH(OH)2 4 8 5 4 9 1 3 2-position 6.0 5.8 6.9 4.1 3.3 3.6 0.7 4.5 4.8 –0.3 –2.6 3.8 6 3 3 5 7 4 8 2 3 5 2 3-position 5.7 5.9 6.1 4.5 4.9 4.4 2.8 4.8 4.8 1.4 0.6 3.8 4 2 6 7 7 3 N2 N 1 4-position
    [Show full text]
  • Synthesis, Characterisation and Biological Evaluation Of
    ry: C ist urr m en e t Prabhakar et al., Organic Chem Curr Res 2016, 5:4 h R C e c s i e n DOI: 10.4172/2161-0401.1000174 a a r Organic Chemistry c g r h O ISSN: 2161-0401 Current Research ResearchResearch Article Article Open Accesss Synthesis, Characterisation and Biological Evaluation of Quinazoline Derivatives as Novel Anti-Microbial Agents Prabhakar V1*, Sudhakar BK2, Ravindranath LK2, Latha J3 and Venkateswarlu B4 1Faculty of Engineering Chemistry, SVR Engineering College, Jawaharlal Nehru Technological University - Ananthapuramu (JNTU-A), Nandyal, Kurnool District, Andhra Pradesh, India 2Department of Chemistry, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India 3Department of Environmental Science, Sri Krishnadevaraya University College of Engineering and Technology, Ananthapuramu, Andhra Pradesh, India 4Jawaharlal Nehru Technological University (JNTU-A), Kavali, Nellore District, Andhra Pradesh, India Abstract A novel series of Quinazolines were synthesised by cyclisation reaction of Anthranilic acid with urea to get 2,4 di hydroxy quinazoline (2) intermediate, which were further treated with POCl3 to get 2,4 di chloro quinazoline (3), which was treated with Thio-morpholine (4) for 3 hrs to get compounds (5), which are reacted with aqueous ammonia to get compound(6), which was further reacts with different boronic acids 7(a-j) by using Chan-Lam coupling reaction conditions to get Target Novel Quinazoline derivatives (8a-8j). The structures of new compounds were confirmed by IR and 1H NMR and 13C NMR spectral data. Anti-bacterial and anti-fungal activities were evaluated and compared with the standard drugs, compounds 8i, 8d, 8h, 8g exhibited promising anti-microbial and anti-fungal activity compared to standard drugs.
    [Show full text]
  • Synthesis and Structure–Activity Relationship of N4-Benzylamine-N2
    RSC Advances View Article Online PAPER View Journal | View Issue Synthesis and structure–activity relationship of N4- benzylamine-N2-isopropyl-quinazoline-2,4- Cite this: RSC Adv.,2017,7, 52227 diamines derivatives as potential antibacterial agents Zhengyun Jiang,a W. David Hong,bcde Xiping Cui,a Hongcan Gao,a Panpan Wu,ad Yingshan Chen,a Ding Shen,a Yang Yang,a Bingjie Zhang,a Mark J. Taylor,b Stephen A. Ward,b Paul M. O'Neill,c Suqing Zhao *a and Kun Zhang*ade AseriesofN4-benzylamine-N2-isopropyl-quinazoline-2,4-diamine derivatives has been synthesized and tested for antibacterial activity against five bacterial strains. Twelve different substituents on the N4-benzylamine group have been investigated along with replacement of the quinazoline core (with either a benzothiophene or regioisomeric pyridopyrimidine ring systems). In order to develop structure activity relationships, all derivatives were tested for their antibacterial activities against Escherichia coli and Staphylococcus aureus via Kirby– Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Bauer assays and minimum inhibitory concentration assays. Eight of the most potent compounds against S. aureus and E. coli were also screened against one strain of methicillin-resistant S. aureus (MRSA), Received 18th September 2017 Staphylococcus epidermidis and Salmonella typhimurium to further examine their antibacterial activities. Lead Accepted 26th October 2017 compound A5 showed good activities with MICs of 3.9 mgmLÀ1 against E. coli, S. aureus and S. epidermidis DOI: 10.1039/c7ra10352b and 7.8 mgmLÀ1 against MRSA. Selected front runners were also screened for their DMPK properties in vitro rsc.li/rsc-advances to assess their potential for further development.
    [Show full text]
  • RSC Advances
    RSC Advances View Article Online REVIEW View Journal | View Issue Recent advances in the pharmacological diversification of quinazoline/quinazolinone Cite this: RSC Adv., 2020, 10,41353 hybrids Prashant S. Auti,† Ginson George† and Atish T. Paul ‡* Due to the pharmacological activities of quinazoline and quinazolinone scaffolds, it has aroused great interest in medicinal chemists for the development of new drugs or drug candidates. The pharmacological activities of quinazoline and its related scaffolds include anti-cancer, anti-microbial, anti-convulsant, and antihyperlipidaemia. Recently, molecular hybridization technology is used for the development of hybrid analogues with improved potency by combining two or more pharmacophores of bioactive scaffolds. The molecular hybridization of various biologically active pharmacophores with quinazoline derivatives resulted in lead compounds with multi-faceted biological activity wherein specific Received 31st July 2020 as well as multiple targets were involved. The present review summarizes the advances in lead Accepted 27th October 2020 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. compounds of quinazoline hybrids and their related heterocycles in medicinal chemistry. Moreover, the DOI: 10.1039/d0ra06642g review also helps to intensify the drug development process by providing an understanding of the rsc.li/rsc-advances potential role of these hybridized pharmacophoric features in exhibiting various pharmacological activities. 1. Introduction molecules is widely known as molecular hybridization. The molecular hybridization strategy is emerging as a novel Nowadays, “one drug one target one disease approach” is not approach, involving the conglomeration of two or more phar- appropriate in complex diseases such as cancer and infectious macophores in one scaffold to develop hybrid multi-functional 1,2 5 This article is licensed under a diseases.
    [Show full text]