Pdf (Accessed on 1 August 2018)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cordyceps Medicinal Fungus: Harvest and Use in Tibet
HerbalGram 83 • August – October 2009 83 • August HerbalGram Kew’s 250th Anniversary • Reviving Graeco-Arabic Medicine • St. John’s Wort and Birth Control The Journal of the American Botanical Council Number 83 | August – October 2009 Kew’s 250th Anniversary • Reviving Graeco-Arabic Medicine • Lemongrass for Oral Thrush • Hibiscus for Blood Pressure • St. John’s Wort and BirthWort Control • St. John’s Blood Pressure • HibiscusThrush for Oral for 250th Anniversary Medicine • Reviving Graeco-Arabic • Lemongrass Kew’s US/CAN $6.95 Cordyceps Medicinal Fungus: www.herbalgram.org Harvest and Use in Tibet www.herbalgram.org www.herbalgram.org 2009 HerbalGram 83 | 1 STILL HERBAL AFTER ALL THESE YEARS Celebrating 30 Years of Supporting America’s Health The year 2009 marks Herb Pharm’s 30th anniversary as a leading producer and distributor of therapeutic herbal extracts. During this time we have continually emphasized the importance of using the best quality certified organically cultivated and sustainably-wildcrafted herbs to produce our herbal healthcare products. This is why we created the “Pharm Farm” – our certified organic herb farm, and the “Plant Plant” – our modern, FDA-audited production facility. It is here that we integrate the centuries-old, time-proven knowledge and wisdom of traditional herbal medicine with the herbal sciences and technology of the 21st Century. Equally important, Herb Pharm has taken a leadership role in social and environmental responsibility through projects like our use of the Blue Sky renewable energy program, our farm’s streams and Supporting America’s Health creeks conservation program, and the Botanical Sanctuary program Since 1979 whereby we research and develop practical methods for the conser- vation and organic cultivation of endangered wild medicinal herbs. -
Infection of the Silkworm, Bombyx Mori, with Cordyceps Militaris
Journal of Insect Biotechnology and Sericology 71, 61-63 (2002) Infection of the Silkworm, Bombyx mori, with Cordyceps militaris Ruiying Chen* and Masatoshi Ichida Faculty of TextileScience, Kyoto Institute of Technology, Saga-ippongi 1, Ukyou-ku,Kyoto 616-8354, Japan (Received April 3, 2001; Accepted December 29, 2001) To develop techniques to produce stromata of Cordyceps militaris (L.) Link on a large scale, the silkworm, Bombyx mori, was infected and the growth of stroma was investigated. The 5th instar larvae and the pupae of the silkworm reared in a sterilized indoor environment on an artificial diet and were inoculated with C. militaris by spraying, dipping, or by hypodermic injection. The rate of infection differed among the three methods; the highest being in the hypodermic injection. The rate of infection was also higher in the pupae than in the larvae. The formation and growth of the stromata were better in the silkworm pupae. A conidial suspension was injected at different sites on the pupal body. Infection rates, however, did not differ significantly among the sites. The formation and growth of the stromata were not affected by the injection site either. Key words: Cordyceps militaris, silkworm, Bombyx mori, infection, artificial inoculation, stromata suspension was adjusted to 10' conidia/ml. This suspension INTRODUCTION was used in the inoculation experiments. Cordyceps militaris (L.) Link. is a parasitic fungus hosted by many species of lepidopteran pupae. It belongs Rearing of host silkworm to the subdivision Ascomycotina whose stroma is The silkworm, Bombyx mori, was reared in a sterilized baculiform (Shimizu, 1997). Recently, many researches indoor environment on an artificial diet (Chen et al., 1992). -
Coupled Biosynthesis of Cordycepin and Pentostatin in Cordyceps Militaris: Implications for Fungal Biology and Medicinal Natural Products
85 Editorial Commentary Page 1 of 3 Coupled biosynthesis of cordycepin and pentostatin in Cordyceps militaris: implications for fungal biology and medicinal natural products Peter A. D. Wellham1, Dong-Hyun Kim1, Matthias Brock2, Cornelia H. de Moor1,3 1School of Pharmacy, 2School of Life Sciences, 3Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK Correspondence to: Cornelia H. de Moor. School of Pharmacy, University Park, Nottingham NG7 2RD, UK. Email: [email protected]. Provenance: This is an invited article commissioned by the Section Editor Tao Wei, PhD (Principal Investigator, Assistant Professor, Microecologics Engineering Research Center of Guangdong Province in South China Agricultural University, Guangzhou, China). Comment on: Xia Y, Luo F, Shang Y, et al. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol 2017;24:1479-89.e4. Submitted Apr 01, 2019. Accepted for publication Apr 04, 2019. doi: 10.21037/atm.2019.04.25 View this article at: http://dx.doi.org/10.21037/atm.2019.04.25 Cordycepin, or 3'-deoxyadenosine, is a metabolite produced be replicated in people, this could become a very important by the insect-pathogenic fungus Cordyceps militaris (C. militaris) new natural product-derived medicine. and is under intense investigation as a potential lead compound Cordycepin is known to be unstable in animals due for cancer and inflammatory conditions. Cordycepin was to deamination by adenosine deaminases. Much of the originally extracted by Cunningham et al. (1) from a culture efforts towards bringing cordycepin to the clinic have been filtrate of a C. militaris culture that was grown from conidia. -
Cordycepin, a Metabolite of Cordyceps Militaris, Reduces Immune-Related Gene Expression in Insects
Journal of Invertebrate Pathology xxx (xxxx) xxx Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects Victoria C. Woolley a,*, Graham R. Teakle a, Gillian Prince a, Cornelia H. de Moor b, David Chandler a a Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK b School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK ARTICLE INFO ABSTRACT Keywords: Hypocrealean entomopathogenic fungi (EPF) (Sordariomycetes, Ascomycota) are natural regulators of insect Cordycepin populations in terrestrial environments. Their obligately-killing life-cycle means that there is likely to be strong Cordyceps militaris selection pressure for traits that allow them to evade the effects of the host immune system. In this study, we Secondary metabolite 0 quantifiedthe effects of cordycepin (3 -deoxyadenosine), a secondary metabolite produced by Cordyceps militaris Entomopathogenic fungi (Hypocreales, Cordycipitaceae), on insect susceptibility to EPF infection and on insect immune gene expression. Insect immunity µ 1 Galleria mellonella Application of the immune stimulant curdlan (20 g ml , linear beta-1,3-glucan, a constituent of fungal cell walls) to Drosophila melanogaster S2r+ cells resulted in a significant increase in the expression of the immune effector gene metchnikowin compared to a DMSO-only control, but there was no significantincrease when curdlan was co-applied with 25 µg ml 1 cordycepin dissolved in DMSO. Injection of cordycepin into larvae of Galleria mellonella (Lepidoptera: Pyralidae) resulted in dose-dependent mortality (LC50 of cordycepin = 2.1 mg per insect 6 days after treatment). -
Fruit Body Formation on Silkworm by Cordyceps Militaris
Mycobiology 38(2) : 128-132 (2010) DOI:10.4489/MYCO.2010.38.2.128 © The Korean Society of Mycology Fruit Body Formation on Silkworm by Cordyceps militaris In-Pyo Hong1*, Pil-Don Kang1, Ki-Young Kim1, Sung-Hee Nam1, Man-Young Lee1, Yong-Soo Choi1, Nam-Suk Kim1, Hye-Kyung Kim1, Kwang-Gill Lee1 and Richard A. Humber2 1National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea 2USDA-ARS Biological Integrated Pest Management Research Unit, Robert W. Holly Center for Agriculture & Health, Tower Road, Ithaca, NY 14853, USA (Received March 31, 2010. Accepted April 11, 2010) Injection inoculation protocols for fruit body formation of Cordyceps militaris (C. militaris) were investigated to improve the incidence of infection in the silkworm species Bombyx mori (B. mori). Injection, with suspensions of C. militaris hyphal bodies into living silkworm pupae, was used to test for fruit body production. Use of Daeseungjam rather than Baegokjam or Keumokjam varieties of B. mori is thought to be suitable for infection by C. militaris. From mounting, nine-day-old to 11- day-old pupae showed the best incidence of infection with a 100 µL injection volume. Silkworm pupae injected with a hyphal suspension concentration of more than 2 × 105 colony-forming unit (cfu) recorded a greater than 96% incidence of infection. Also, fruit bodies of C. militaris were induced and produced at a light intensity between 500 and 1,000 lx. KEYWORDS : Bombyx mori, Cordyceps militaris, Fruit body, Hyphal bodies, Injection inoculation Cordyceps is entomopathogenic fungi that parasitize insects duction of C. militaris using a silkworm is needed. -
Compatibility of the Predatory Beetle, Delphastus Catalinae, with An
insects Article Compatibility of the Predatory Beetle, Delphastus catalinae, with an Entomopathogenic Fungus, Cordyceps fumosorosea, for Biocontrol of Invasive Pepper Whitefly, Aleurothrixus trachoides, in Florida 1 2, , 3 4 Pasco B. Avery , Vivek Kumar * y , Antonio Francis , Cindy L. McKenzie and Lance S. Osborne 2 1 Indian River Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA; pbavery@ufl.edu 2 IFAS, Mid-Florida Research and Education Center, University of Florida, 2725 S. Binion Road, Apopka, FL 32703, USA; lsosborn@ufl.edu 3 Florida Department of Agriculture and Consumer Services, UF/IFAS Mid-Florida Research and Education Center Division of Plant Industry, 915 10th Street E, Palmetto, FL 34221, USA; Antonio.Francis@freshfromflorida.com 4 Horticultural Research Laboratory, Subtropical Insect Research Unit, USDA-ARS, U.S., 2001 South Rock Road, Fort Pierce, FL 34945, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-636-383-2665 Current address: Bayer Crop Science, Chesterfield, MO 63017, USA. y Received: 26 July 2020; Accepted: 30 August 2020; Published: 1 September 2020 Simple Summary: The solanum whitefly, Aleurothrixus trachoides, is a polyphagous pest known to attack > 70 crops worldwide. Endemic to the Neotropical region, in the past few years, it has emerged as a significant pest of several horticultural crops including pepper in the United States. To develop an eco-friendly sustainable management strategy for this pest, in this study, we evaluated the efficacy and compatibility of two commercially available biological control agents, predatory beetle Delphastus catalinae (Dc) and entomopathogenic fungi Cordyceps fumosorosea (Cfr) under laboratory conditions. -
Improvement of Fruiting Body Production in Cordyceps Militaris by Molecular Assessment
Arch Microbiol (2013) 195:579–585 DOI 10.1007/s00203-013-0904-8 SHORT COMMUNICATION Improvement of fruiting body production in Cordyceps militaris by molecular assessment Guozhen Zhang · Yue Liang Received: 23 January 2013 / Revised: 16 May 2013 / Accepted: 19 May 2013 / Published online: 12 June 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract Cordyceps militaris is a heterothallic ascomy- Introduction cetous fungus that has been cultivated as a medicinal mush- room. This study was conducted to improve fruiting body Mushrooms have recently drawn considerable attention as production by PCR assessment. Based on single-ascospore attractive and abundant sources of useful natural products isolates selected from wild and cultivated populations, the (Smith et al. 2002). Among others, Cordyceps species have conserved sequences of α-BOX in MAT1-1 and HMG-BOX traditionally been used not only as a folk tonic food and in MAT1-2 were used as markers for the detection of mat- nutraceutical, but also as a restorative drug for longevity ing types by PCR. PCR results indicated that the ratio of and vitality (Paterson and Russell 2008). Mushrooms of mating types is consistent with a theoretical ratio of 1:1 this genus have also been used for dietary fiber, health sup- (MAT1-1:MAT1-2) in wild (66:70) and cultivated (71:60) plements, and maintenance as well as for prevention and populations. Cross-mating between the opposite mating treatment for human diseases for centuries in East Asian types produced over fivefold more well-developed fruiting countries (Paterson and Russell 2008). bodies than self- or cross-mating between strains within the Cordyceps militaris belongs to Cordycipitaceae, Hypo- same mating type. -
Cordyceps Yinjiangensis, a New Ant-Pathogenic Fungus
Phytotaxa 453 (3): 284–292 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.453.3.10 Cordyceps yinjiangensis, a new ant-pathogenic fungus YU-PING LI1,3, WAN-HAO CHEN1,4,*, YAN-FENG HAN2,5,*, JIAN-DONG LIANG1,6 & ZONG-QI LIANG2,7 1 Department of Microbiology, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China. 2 Institute of Fungus Resources, Guizhou University, Guiyang, Guizhou 550025, China. 3 [email protected]; https://orcid.org/0000-0002-9021-8614 4 [email protected]; https://orcid.org/0000-0001-7240-6841 5 [email protected]; https://orcid.org/0000-0002-8646-3975 6 [email protected]; https://orcid.org/0000-0002-2583-5915 7 [email protected]; https://orcid.org/0000-0003-2867-2231 *Corresponding author: [email protected], [email protected] Abstract Ant-pathogenic fungi are mainly found in the Ophiocordycipitaceae, rarely in the Cordycipitaceae. During a survey of entomopathogenetic fungi from Southwest China, a new species, Cordyceps yinjiangensis, was isolated from the ponerine. It differs from other Cordyceps species by its ant host, shorter phialides, and smaller septate conidia formed in an imbricate chain. Phylogenetic analyses based on the combined datasets of (LSU+RPB2+TEF) and (ITS+TEF) confirmed that C. yinjiangensis is distinct from other species. The new species is formally described and illustrated, and compared to similar species. Keywords: 1 new species, Cordyceps, morphology, phylogeny, ponerine Introduction The ascomycete genus Cordyceps sensu lato (sl) consists of more than 600 fungal species. -
A Renal-Protective and Vision-Improved Traditional Chinese Medicine - Cordyceps Cicadae
SMGr up A Renal-Protective and Vision-Improved Traditional Chinese Medicine - Cordyceps cicadae Jui-Hsia Hsu1, Bo-Yi Jhou2, Shu-Hsing Yeh3, Yen-Lien Chen4 and Chin-Chu Chen5 1 2 Grape King Bio Ltd, Taiwan 3Institute of Food Science and Technology, National Taiwan University, Taiwan Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shin Chien Univer- 4 sity, Taiwan 5Department of Applied Science, National Hsin-Chu University of Education, Taiwan *CorrespondingBiotechnology Center, author Grape: King Bio Ltd, Taiwan Chin-Chu Chen , Biotechnology Center, Grape King Bio Ltd, NO.60, Sec. 3, Longgang Rd., Zhongli Dist., Taoyuan City 320, Taiwan (R.O.C.), Tel: +886 3 4572121; Fax:Published +886 3 Date: 4572128; Email: [email protected] February 18, 2016 CLASSIFICATION OF C. CICADAE Cordyceps cicadae (C. cicadae ), also known as Clavicipitaceae Cordyceps cicadae flower, Chanhua and Sandwhe, belongs Cicada flammate, Platypleura kaempferi, Cryptotympana pustulata and to the family and the genus (Table 1), which strictly parasitize on Patylomia pieli cicada nymph or larva of . The host larva were consumed as nutrition and became a tightly packed mass of mycelium, then formed flower bud-shaped stroma from mouth, head or bottom of cicada larva. It is a C.wonderful cicadae biological complex of fungusCordyceps and larva. cicadae C. cicadae Cordyceps sobolifera (C. sobolifera C. can be roughly divided into Shing ( Shing) and cicadae ) based on their morphology (Figure 1) [1]. The parasitic nymphs of C. Shing are relatively large with pale or pale yellow bodies of about 3 cm long and 1-1.5 Recentcm wide. Advances Heads in Chineseof the nymphsMedicine |are www.smgebooks.com clavate, displaying white at the front. -
Cordyceps – a Traditional Chinese Medicine and Another Fungal Therapeutic Biofactory?
Available online at www.sciencedirect.com PHYTOCHEMISTRY Phytochemistry 69 (2008) 1469–1495 www.elsevier.com/locate/phytochem Review Cordyceps – A traditional Chinese medicine and another fungal therapeutic biofactory? R. Russell M. Paterson * Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal Received 17 December 2007; received in revised form 17 January 2008 Available online 17 March 2008 Abstract Traditional Chinese medicines (TCM) are growing in popularity. However, are they effective? Cordyceps is not studied as systemat- ically for bioactivity as another TCM, Ganoderma. Cordyceps is fascinating per se, especially because of the pathogenic lifestyle on Lepi- dopteron insects. The combination of the fungus and dead insect has been used as a TCM for centuries. However, the natural fungus has been harvested to the extent that it is an endangered species. The effectiveness has been attributed to the Chinese philosophical concept of Yin and Yang and can this be compatible with scientific philosophy? A vast literature exists, some of which is scientific, although others are popular myth, and even hype. Cordyceps sinensis is the most explored species followed by Cordyceps militaris. However, taxonomic concepts were confused until a recent revision, with undefined material being used that cannot be verified. Holomorphism is relevant and contamination might account for some of the activity. The role of the insect has been ignored. Some of the analytical methodologies are poor. Data on the ‘‘old” compound cordycepin are still being published: ergosterol and related compounds are reported despite being universal to fungi. There is too much work on crude extracts rather than pure compounds with water and methanol solvents being over- represented in this respect (although methanol is an effective solvent). -
Multigene Phylogeny and HPLC Analysis Reveal Fake Ophiocordyceps Sinensis in Markets
Mycosphere 7 (6): 853–867 (2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/6/16 Copyright © Guizhou Academy of Agricultural Sciences Multigene phylogeny and HPLC analysis reveal fake Ophiocordyceps sinensis in markets Wen TC1,2, Wei DP1, Long FY1, 2, Zeng XY1, 3, Kang JC1, 2* 1 The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China 2 School of Pharmacy, Guizhou University, Guiyang 550025, Guizhou, China 3 Center of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand Wen TC, Wei DP, Long FY, Zeng XY, Kang JC 2016 – Multigene phylogeny and HPLC analysis reveal fake Ophiocordyceps sinensis in markets. Mycosphere 7(6), 853–867, Doi 10.5943/mycosphere/7/6/16 Abstract Ophiocordyceps sinensis (Cordyceps sinensis) has long been a Chinese Traditional Medicine and functional food in China. Because of its valued medicinal effect and improvement in the Chinese economy, market demand for O. sinensis has significantly increased in recent years. Here, we use multigene and High Performance Liquid Chromatography (HPLC) analysis of specimens bought from markets to reveal the sale of fake O. sinensis in Traditional Chinese Medicine markets. The insect larvae (belonging to Lepidopteran) was a different species to that normally infected by O. sinensis. Combined sequence analysis of ITS, nrSSU, EF-1α and RPB1 gene markers also revealed the putative O. sinensis to be Metacordyceps taii. Producers had gone to great lengths to produce remarkably similar fake O. sinensis specimens. The insect body was infected with M. -
Hidden Fungi: Combining Culture-Dependent and -Independent DNA Barcoding Reveals Inter-Plant Variation in Species Richness of Endophytic Root Fungi in Elymus Repens
Journal of Fungi Article Hidden Fungi: Combining Culture-Dependent and -Independent DNA Barcoding Reveals Inter-Plant Variation in Species Richness of Endophytic Root Fungi in Elymus repens Anna K. Høyer and Trevor R. Hodkinson * Botany, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin D2, Ireland; [email protected] * Correspondence: [email protected] Abstract: The root endophyte community of the grass species Elymus repens was investigated using both a culture-dependent approach and a direct amplicon sequencing method across five sites and from individual plants. There was much heterogeneity across the five sites and among individual plants. Focusing on one site, 349 OTUs were identified by direct amplicon sequencing but only 66 OTUs were cultured. The two approaches shared ten OTUs and the majority of cultured endo- phytes do not overlap with the amplicon dataset. Media influenced the cultured species richness and without the inclusion of 2% MEA and full-strength MEA, approximately half of the unique OTUs would not have been isolated using only PDA. Combining both culture-dependent and -independent methods for the most accurate determination of root fungal species richness is therefore recom- mended. High inter-plant variation in fungal species richness was demonstrated, which highlights the need to rethink the scale at which we describe endophyte communities. Citation: Høyer, A.K.; Hodkinson, T.R. Hidden Fungi: Combining Culture-Dependent and -Independent Keywords: DNA barcoding; Elymus repens; fungal root endophytes; high-throughput amplicon DNA Barcoding Reveals Inter-Plant sequencing; MEA; PDA Variation in Species Richness of Endophytic Root Fungi in Elymus repens. J. Fungi 2021, 7, 466.