Ascocarp Development in Selected Species of Claviceps and Cordyceps Shirley Ann Nordahl Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ascocarp Development in Anthracobia Melaloma
AN ABSTRACT OF THE THESIS OF HAROLD JULIUS LARSEN, JR. for the MASTER OF ARTS (Name) (Degree) in BOTANY presented on it (Major) (Date) Title: ASCOCA.RP DEVELOPMENT IN ANTHRACOBIA MELALOMA. Abstract approved:Redacted for privacy William C. Denison Cultural and developmental characteristics of a collection of Anthracobia melaloma with a brown hymeniurn and a barred exterior appearance were examined.It grows well in culture on CM and CMMY agar media and has a growth rate of 17 mm in 18 hours.It is heterothallic and produces asexual rnultinucleate arthrospores after incubation at 300C or above for several days in succession.These arthrospores germinate readily after transfer to fresh media. Antheridial hyphae and archicarps are produced by both mating types although the negative mating type isolates producemore abun- dant archicarps.Antheridia are indistinguishable from vegetative hyphae until just prior to plasmogamy when they become swollen. Septal pads arise on the septa separating the cells of the trichogyne and ascogonium subsequent to plasmogamy and persist throughout development. The paraphyses, the ectal and medullary excipulum, and the excipular hairs are all derived from the sheathing hyphae. Ascogenous hyphae and asci are derived from the largest cells of the ascogonium. A haploid chromosome number of four is confirmed for the species. Exposure to fluorescent light was unnecessary for apothecial induction, but did enhance apothecial maturation and the production of hyrnenial carotenoid pigments.Constant exposure to light inhibited -
Perithecial Ascomycetes from the 400 Million Year Old Rhynie Chert: an Example of Ancestral Polymorphism
Mycologia, 97(1), 2005, pp. 269±285. q 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism Editor's note: Unfortunately, the plates for this article published in the December 2004 issue of Mycologia 96(6):1403±1419 were misprinted. This contribution includes the description of a new genus and a new species. The name of a new taxon of fossil plants must be accompanied by an illustration or ®gure showing the essential characters (ICBN, Art. 38.1). This requirement was not met in the previous printing, and as a result we are publishing the entire paper again to correct the error. We apologize to the authors. T.N. Taylor1 terpreted as the anamorph of the fungus. Conidioge- Department of Ecology and Evolutionary Biology, and nesis is thallic, basipetal and probably of the holoar- Natural History Museum and Biodiversity Research thric-type; arthrospores are cube-shaped. Some peri- Center, University of Kansas, Lawrence, Kansas thecia contain mycoparasites in the form of hyphae 66045 and thick-walled spores of various sizes. The structure H. Hass and morphology of the fossil fungus is compared H. Kerp with modern ascomycetes that produce perithecial as- Forschungsstelle fuÈr PalaÈobotanik, Westfalische cocarps, and characters that de®ne the fungus are Wilhelms-UniversitaÈt MuÈnster, Germany considered in the context of ascomycete phylogeny. M. Krings Key words: anamorph, arthrospores, ascomycete, Bayerische Staatssammlung fuÈr PalaÈontologie und ascospores, conidia, fossil fungi, Lower Devonian, my- Geologie, Richard-Wagner-Straûe 10, 80333 MuÈnchen, coparasite, perithecium, Rhynie chert, teleomorph Germany R.T. -
Cordyceps Medicinal Fungus: Harvest and Use in Tibet
HerbalGram 83 • August – October 2009 83 • August HerbalGram Kew’s 250th Anniversary • Reviving Graeco-Arabic Medicine • St. John’s Wort and Birth Control The Journal of the American Botanical Council Number 83 | August – October 2009 Kew’s 250th Anniversary • Reviving Graeco-Arabic Medicine • Lemongrass for Oral Thrush • Hibiscus for Blood Pressure • St. John’s Wort and BirthWort Control • St. John’s Blood Pressure • HibiscusThrush for Oral for 250th Anniversary Medicine • Reviving Graeco-Arabic • Lemongrass Kew’s US/CAN $6.95 Cordyceps Medicinal Fungus: www.herbalgram.org Harvest and Use in Tibet www.herbalgram.org www.herbalgram.org 2009 HerbalGram 83 | 1 STILL HERBAL AFTER ALL THESE YEARS Celebrating 30 Years of Supporting America’s Health The year 2009 marks Herb Pharm’s 30th anniversary as a leading producer and distributor of therapeutic herbal extracts. During this time we have continually emphasized the importance of using the best quality certified organically cultivated and sustainably-wildcrafted herbs to produce our herbal healthcare products. This is why we created the “Pharm Farm” – our certified organic herb farm, and the “Plant Plant” – our modern, FDA-audited production facility. It is here that we integrate the centuries-old, time-proven knowledge and wisdom of traditional herbal medicine with the herbal sciences and technology of the 21st Century. Equally important, Herb Pharm has taken a leadership role in social and environmental responsibility through projects like our use of the Blue Sky renewable energy program, our farm’s streams and Supporting America’s Health creeks conservation program, and the Botanical Sanctuary program Since 1979 whereby we research and develop practical methods for the conser- vation and organic cultivation of endangered wild medicinal herbs. -
Coupled Biosynthesis of Cordycepin and Pentostatin in Cordyceps Militaris: Implications for Fungal Biology and Medicinal Natural Products
85 Editorial Commentary Page 1 of 3 Coupled biosynthesis of cordycepin and pentostatin in Cordyceps militaris: implications for fungal biology and medicinal natural products Peter A. D. Wellham1, Dong-Hyun Kim1, Matthias Brock2, Cornelia H. de Moor1,3 1School of Pharmacy, 2School of Life Sciences, 3Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK Correspondence to: Cornelia H. de Moor. School of Pharmacy, University Park, Nottingham NG7 2RD, UK. Email: [email protected]. Provenance: This is an invited article commissioned by the Section Editor Tao Wei, PhD (Principal Investigator, Assistant Professor, Microecologics Engineering Research Center of Guangdong Province in South China Agricultural University, Guangzhou, China). Comment on: Xia Y, Luo F, Shang Y, et al. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol 2017;24:1479-89.e4. Submitted Apr 01, 2019. Accepted for publication Apr 04, 2019. doi: 10.21037/atm.2019.04.25 View this article at: http://dx.doi.org/10.21037/atm.2019.04.25 Cordycepin, or 3'-deoxyadenosine, is a metabolite produced be replicated in people, this could become a very important by the insect-pathogenic fungus Cordyceps militaris (C. militaris) new natural product-derived medicine. and is under intense investigation as a potential lead compound Cordycepin is known to be unstable in animals due for cancer and inflammatory conditions. Cordycepin was to deamination by adenosine deaminases. Much of the originally extracted by Cunningham et al. (1) from a culture efforts towards bringing cordycepin to the clinic have been filtrate of a C. militaris culture that was grown from conidia. -
Morchella Esculenta</Em>
Journal of Bioresource Management Volume 3 Issue 1 Article 6 In Vitro Propagation of Morchella esculenta and Study of its Life Cycle Nazish Kanwal Institute of Natural and Management Sciences, Rawalpindi, Pakistan Kainaat William Bioresource Research Centre, Islamabad, Pakistan Kishwar Sultana Institute of Natural and Management Sciences, Rawalpindi, Pakistan Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Biodiversity Commons, and the Biology Commons Recommended Citation Kanwal, N., William, K., & Sultana, K. (2016). In Vitro Propagation of Morchella esculenta and Study of its Life Cycle, Journal of Bioresource Management, 3 (1). DOI: https://doi.org/10.35691/JBM.6102.0044 ISSN: 2309-3854 online This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. In Vitro Propagation of Morchella esculenta and Study of its Life Cycle © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited. Journal of Bioresource Management does not grant you any other rights in relation to this website or the material on this website. In other words, all other rights are reserved. For the avoidance of doubt, you must not adapt, edit, change, transform, publish, republish, distribute, redistribute, broadcast, rebroadcast or show or play in public this website or the material on this website (in any form or media) without appropriately and conspicuously citing the original work and source or Journal of Bioresource Management’s prior written permission. -
Marine Fungi: Some Factors Influencing Biodiversity
Fungal Diversity Marine fungi: some factors influencing biodiversity E.B. Gareth Jones I Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, and BIOTEC, National Center for Genetic Engineering and Biotechnology, 73/1 Rama 6 Road, Bangkok 10400, Thailand; e-mail: [email protected] Jones, E.B.G. (2000). Marine fungi: some factors influencing biodiversity. Fungal Diversity 4: 53-73. This paper reviews some of the factors that affect fungal diversity in the marine milieu. Although total biodiversity is not affected by the available habitats, species composition is. For example, members of the Halosphaeriales commonly occur on submerged timber, while intertidal mangrove wood supports a wide range of Loculoascomycetes. The availability of substrata for colonization greatly affects species diversity. Mature mangroves yield a rich species diversity while exposed shores or depauperate habitats support few fungi. The availability of fungal propagules in the sea on substratum colonization is poorly researched. However, Halophytophthora species and thraustochytrids in mangroves rapidly colonize leaf material. Fungal diversity is greatly affected by the nature of the substratum. Lignocellulosic materials yield the greatest diversity, in contrast to a few species colonizing calcareous materials or sand grains. The nature of the substratum can have a major effect on the fungi colonizing it, even from one timber species to the next. Competition between fungi can markedly affect fungal diversity, and species composition. Temperature plays a major role in the geographical distribution of marine fungi with species that are typically tropical (e.g. Antennospora quadricornuta and Halosarpheia ratnagiriensis), temperate (e.g. Ceriosporopsis trullifera and Ondiniella torquata), arctic (e.g. -
Compatibility of the Predatory Beetle, Delphastus Catalinae, with An
insects Article Compatibility of the Predatory Beetle, Delphastus catalinae, with an Entomopathogenic Fungus, Cordyceps fumosorosea, for Biocontrol of Invasive Pepper Whitefly, Aleurothrixus trachoides, in Florida 1 2, , 3 4 Pasco B. Avery , Vivek Kumar * y , Antonio Francis , Cindy L. McKenzie and Lance S. Osborne 2 1 Indian River Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA; pbavery@ufl.edu 2 IFAS, Mid-Florida Research and Education Center, University of Florida, 2725 S. Binion Road, Apopka, FL 32703, USA; lsosborn@ufl.edu 3 Florida Department of Agriculture and Consumer Services, UF/IFAS Mid-Florida Research and Education Center Division of Plant Industry, 915 10th Street E, Palmetto, FL 34221, USA; Antonio.Francis@freshfromflorida.com 4 Horticultural Research Laboratory, Subtropical Insect Research Unit, USDA-ARS, U.S., 2001 South Rock Road, Fort Pierce, FL 34945, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-636-383-2665 Current address: Bayer Crop Science, Chesterfield, MO 63017, USA. y Received: 26 July 2020; Accepted: 30 August 2020; Published: 1 September 2020 Simple Summary: The solanum whitefly, Aleurothrixus trachoides, is a polyphagous pest known to attack > 70 crops worldwide. Endemic to the Neotropical region, in the past few years, it has emerged as a significant pest of several horticultural crops including pepper in the United States. To develop an eco-friendly sustainable management strategy for this pest, in this study, we evaluated the efficacy and compatibility of two commercially available biological control agents, predatory beetle Delphastus catalinae (Dc) and entomopathogenic fungi Cordyceps fumosorosea (Cfr) under laboratory conditions. -
BIOL 1030 – TOPIC 3 LECTURE NOTES Topic 3: Fungi (Kingdom Fungi – Ch
BIOL 1030 – TOPIC 3 LECTURE NOTES Topic 3: Fungi (Kingdom Fungi – Ch. 31) KINGDOM FUNGI A. General characteristics • Fungi are diverse and widespread. • Ten thousand species of fungi have been described, but it is estimated that there are actually up to 1.5 million species of fungi. • Fungi play an important role in ecosystems, decomposing dead organisms, fallen leaves, feces, and other organic materials. °This decomposition recycles vital chemical elements back to the environment in forms other organisms can assimilate. • Most plants depend on mutualistic fungi to help their roots absorb minerals and water from the soil. • Humans have cultivated fungi for centuries for food, to produce antibiotics and other drugs, to make bread rise, and to ferment beer and wine • Fungi play ecological diverse roles - they are decomposers (saprobes), parasites, and mutualistic symbionts. °Saprobic fungi absorb nutrients from nonliving organisms. °Parasitic fungi absorb nutrients from the cells of living hosts. .Some parasitic fungi, including some that infect humans and plants, are pathogenic. .Fungi cause 80% of plant diseases. °Mutualistic fungi also absorb nutrients from a host organism, but they reciprocate with functions that benefit their partner in some way. • Fungi are a monophyletic group, and all fungi share certain key characteristics. B. Morphology of Fungi 1. heterotrophs - digest food with secreted enzymes “exoenzymes” (external digestion) 2. have cell walls made of chitin 3. most are multicellular, with slender filamentous units called hyphae (Label the diagram below – Use Textbook figure 31.3) 1 of 11 BIOL 1030 – TOPIC 3 LECTURE NOTES Septate hyphae Coenocytic hyphae hyphae may be divided into cells by crosswalls called septa; typically, cytoplasm flows through septa • hyphae can form specialized structures for things such as feeding, and even for food capture 4. -
Cordyceps Yinjiangensis, a New Ant-Pathogenic Fungus
Phytotaxa 453 (3): 284–292 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.453.3.10 Cordyceps yinjiangensis, a new ant-pathogenic fungus YU-PING LI1,3, WAN-HAO CHEN1,4,*, YAN-FENG HAN2,5,*, JIAN-DONG LIANG1,6 & ZONG-QI LIANG2,7 1 Department of Microbiology, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China. 2 Institute of Fungus Resources, Guizhou University, Guiyang, Guizhou 550025, China. 3 [email protected]; https://orcid.org/0000-0002-9021-8614 4 [email protected]; https://orcid.org/0000-0001-7240-6841 5 [email protected]; https://orcid.org/0000-0002-8646-3975 6 [email protected]; https://orcid.org/0000-0002-2583-5915 7 [email protected]; https://orcid.org/0000-0003-2867-2231 *Corresponding author: [email protected], [email protected] Abstract Ant-pathogenic fungi are mainly found in the Ophiocordycipitaceae, rarely in the Cordycipitaceae. During a survey of entomopathogenetic fungi from Southwest China, a new species, Cordyceps yinjiangensis, was isolated from the ponerine. It differs from other Cordyceps species by its ant host, shorter phialides, and smaller septate conidia formed in an imbricate chain. Phylogenetic analyses based on the combined datasets of (LSU+RPB2+TEF) and (ITS+TEF) confirmed that C. yinjiangensis is distinct from other species. The new species is formally described and illustrated, and compared to similar species. Keywords: 1 new species, Cordyceps, morphology, phylogeny, ponerine Introduction The ascomycete genus Cordyceps sensu lato (sl) consists of more than 600 fungal species. -
A Renal-Protective and Vision-Improved Traditional Chinese Medicine - Cordyceps Cicadae
SMGr up A Renal-Protective and Vision-Improved Traditional Chinese Medicine - Cordyceps cicadae Jui-Hsia Hsu1, Bo-Yi Jhou2, Shu-Hsing Yeh3, Yen-Lien Chen4 and Chin-Chu Chen5 1 2 Grape King Bio Ltd, Taiwan 3Institute of Food Science and Technology, National Taiwan University, Taiwan Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shin Chien Univer- 4 sity, Taiwan 5Department of Applied Science, National Hsin-Chu University of Education, Taiwan *CorrespondingBiotechnology Center, author Grape: King Bio Ltd, Taiwan Chin-Chu Chen , Biotechnology Center, Grape King Bio Ltd, NO.60, Sec. 3, Longgang Rd., Zhongli Dist., Taoyuan City 320, Taiwan (R.O.C.), Tel: +886 3 4572121; Fax:Published +886 3 Date: 4572128; Email: [email protected] February 18, 2016 CLASSIFICATION OF C. CICADAE Cordyceps cicadae (C. cicadae ), also known as Clavicipitaceae Cordyceps cicadae flower, Chanhua and Sandwhe, belongs Cicada flammate, Platypleura kaempferi, Cryptotympana pustulata and to the family and the genus (Table 1), which strictly parasitize on Patylomia pieli cicada nymph or larva of . The host larva were consumed as nutrition and became a tightly packed mass of mycelium, then formed flower bud-shaped stroma from mouth, head or bottom of cicada larva. It is a C.wonderful cicadae biological complex of fungusCordyceps and larva. cicadae C. cicadae Cordyceps sobolifera (C. sobolifera C. can be roughly divided into Shing ( Shing) and cicadae ) based on their morphology (Figure 1) [1]. The parasitic nymphs of C. Shing are relatively large with pale or pale yellow bodies of about 3 cm long and 1-1.5 Recentcm wide. Advances Heads in Chineseof the nymphsMedicine |are www.smgebooks.com clavate, displaying white at the front. -
Cordyceps – a Traditional Chinese Medicine and Another Fungal Therapeutic Biofactory?
Available online at www.sciencedirect.com PHYTOCHEMISTRY Phytochemistry 69 (2008) 1469–1495 www.elsevier.com/locate/phytochem Review Cordyceps – A traditional Chinese medicine and another fungal therapeutic biofactory? R. Russell M. Paterson * Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal Received 17 December 2007; received in revised form 17 January 2008 Available online 17 March 2008 Abstract Traditional Chinese medicines (TCM) are growing in popularity. However, are they effective? Cordyceps is not studied as systemat- ically for bioactivity as another TCM, Ganoderma. Cordyceps is fascinating per se, especially because of the pathogenic lifestyle on Lepi- dopteron insects. The combination of the fungus and dead insect has been used as a TCM for centuries. However, the natural fungus has been harvested to the extent that it is an endangered species. The effectiveness has been attributed to the Chinese philosophical concept of Yin and Yang and can this be compatible with scientific philosophy? A vast literature exists, some of which is scientific, although others are popular myth, and even hype. Cordyceps sinensis is the most explored species followed by Cordyceps militaris. However, taxonomic concepts were confused until a recent revision, with undefined material being used that cannot be verified. Holomorphism is relevant and contamination might account for some of the activity. The role of the insect has been ignored. Some of the analytical methodologies are poor. Data on the ‘‘old” compound cordycepin are still being published: ergosterol and related compounds are reported despite being universal to fungi. There is too much work on crude extracts rather than pure compounds with water and methanol solvents being over- represented in this respect (although methanol is an effective solvent). -
Cordyceps, an Endangered Medicinal Plant : a Short Review
Plant Archives Vol. 18 No. 1, 2018 pp. 33-43 ISSN 0972-5210 CORDYCEPS, AN ENDANGERED MEDICINAL PLANT : A SHORT REVIEW Nirupama Bhattachryya Goswami* and Jagatpati Tah Department of Botany, Aftav House, Frazer Avenue, Burdwan – 713 104 (West Bengal), India. maximal distribution of the spores from the fruit body that sprouts out of the dead insect is achieved(Hughes et Cordyceps is a genus of A fungi (sac fungi) that al., 2010 ). Marks have been found on fossilised leaves includes about 400 species. All Cordyceps species that suggest this ability to modify the host’s behavior are endoparasitoids, parasitic mainly on insects and evolved more than 48 million years ago (Sung et al., other arthropods (they are thus entomopathogenic fungi); 2007). a few are parasitic on other fungi. Until recently, the best known species of the genus was Cordyceps sinensis The genus has a worldwide distribution and most of (John and Matt, 2008) first recorded as yartsagunbu in the approximately 400 species (Holiday et al., 2004) have Nyamnyi Dorje’s 15th century Tibetan text An ocean of been described from Asia (notably Nepal, China, Japan, Aphrodisiacal Qualities (Winkler, 2008a). In 2007, Bhutan, Korea, Vietnamspeies are particularly abundant nuclear DNA sampling revealed this species to be and diverse inhumid temperate and tropical forests. unrelated to most of the rest of the members of the genus; Some Cordyceps species are sources of biochemicals as a result, it was renamed Ophiocordycepssinensis and with interesting biological and pharmacological properties placed in a new family, the Ophiocordycipitaceae. (Holiday, 2005), like cordycepin; the anamorph of C.