Mouse Bag2 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Bag2 Conditional Knockout Project (CRISPR/Cas9) http://www.alphaknockout.com/ Mouse Bag2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Bag2 conditional knockout mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Bag2 gene ( NCBI Reference Sequence: NM_145392 ; Ensembl: ENSMUSG00000042215 ) is located on mouse chromosome 1. 3 exons are identified , with the ATG start codon in exon 1 and the TAG stop codon in exon 3 (Transcript: ENSMUST00000044691). Exon 2~3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the mouse Bag2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-23B12 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 18.1% of the coding region. The knockout of Exon 2~3 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 9252 bp. The size of effective cKO region: ~3900 bp. This strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxP insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level. The function of Gm37905-201 will be affected by deleting this cKO region. Page 1 of 7 http://www.alphaknockout.com/ Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Bag2 Homology arm cKO region loxP site Page 2 of 7 http://www.alphaknockout.com/ Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(9343bp) | A(26.45% 2471) | C(23.22% 2169) | G(24.16% 2257) | T(26.18% 2446) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 http://www.alphaknockout.com/ BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr1 - 33748577 33751576 3000 browser details YourSeq 306 1246 1614 3000 92.5% chr7 + 110610525 110610897 373 browser details YourSeq 277 1246 1588 3000 92.6% chr9 + 21118832 21119173 342 browser details YourSeq 275 1249 1577 3000 92.9% chr14 - 52157176 52157505 330 browser details YourSeq 269 1255 1581 3000 91.0% chr16 - 13803490 13803815 326 browser details YourSeq 267 1246 1581 3000 91.1% chr10 + 100554761 100555290 530 browser details YourSeq 262 1246 1605 3000 93.4% chr12 + 75729498 75729990 493 browser details YourSeq 261 1171 1576 3000 92.0% chr16 - 17864139 18290628 426490 browser details YourSeq 252 1246 1568 3000 88.4% chr10 + 62385066 62385379 314 browser details YourSeq 250 1246 1586 3000 92.0% chr1 + 84834294 84834637 344 browser details YourSeq 248 1246 1582 3000 92.0% chr13 + 62798056 62798393 338 browser details YourSeq 246 1246 1569 3000 89.0% chr17 + 47510164 47510489 326 browser details YourSeq 235 1245 1595 3000 92.5% chr1 - 63244746 63245283 538 browser details YourSeq 234 1246 1532 3000 92.4% chr2 + 26070928 26071519 592 browser details YourSeq 228 1246 1587 3000 87.6% chr1 - 136972058 136972384 327 browser details YourSeq 225 1248 1584 3000 92.5% chr10 + 4352297 4352659 363 browser details YourSeq 224 1265 1570 3000 91.7% chr4 + 124878333 124878637 305 browser details YourSeq 221 1247 1597 3000 92.4% chr1 - 156551504 156551890 387 browser details YourSeq 221 1273 1619 3000 92.4% chrX + 101483044 101483537 494 browser details YourSeq 220 1246 1561 3000 92.4% chr8 - 120384524 120384844 321 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr1 - 33742484 33745483 3000 browser details YourSeq 326 500 1872 3000 91.0% chr13 + 64331042 64383818 52777 browser details YourSeq 289 116 982 3000 90.2% chr19 + 37478341 37478768 428 browser details YourSeq 271 112 685 3000 95.4% chr1 + 136649465 136650049 585 browser details YourSeq 270 115 681 3000 88.9% chr7 - 127243031 127243384 354 browser details YourSeq 269 123 696 3000 91.3% chr17 - 29515518 29516074 557 browser details YourSeq 265 116 683 3000 93.2% chr9 - 21119007 21119592 586 browser details YourSeq 264 116 681 3000 86.4% chr16 + 91484123 91484456 334 browser details YourSeq 255 123 683 3000 88.7% chr17 - 33893664 33893992 329 browser details YourSeq 246 116 682 3000 88.3% chr4 - 133760470 133760958 489 browser details YourSeq 241 129 682 3000 88.9% chr6 + 51519549 51519888 340 browser details YourSeq 236 112 682 3000 90.6% chr11 + 80452630 80453142 513 browser details YourSeq 234 112 682 3000 88.2% chr10 - 62579141 62579462 322 browser details YourSeq 225 1519 2183 3000 91.9% chr11 + 101693579 101694308 730 browser details YourSeq 219 160 682 3000 89.4% chr11 - 3314643 3315100 458 browser details YourSeq 215 1537 1878 3000 84.6% chr16 - 91723465 91723880 416 browser details YourSeq 207 112 682 3000 93.7% chr9 - 65778205 65778798 594 browser details YourSeq 203 175 681 3000 93.6% chr19 - 45339616 45340205 590 browser details YourSeq 198 184 696 3000 98.1% chr10 + 128052046 128052670 625 browser details YourSeq 197 194 682 3000 88.9% chr11 - 20029651 20029989 339 Note: The 3000 bp section downstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 http://www.alphaknockout.com/ Gene and protein information: Bag2 BCL2-associated athanogene 2 [ Mus musculus (house mouse) ] Gene ID: 213539, updated on 25-Sep-2020 Gene summary Official Symbol Bag2 provided by MGI Official Full Name BCL2-associated athanogene 2 provided by MGI Primary source MGI:MGI:1891254 See related Ensembl:ENSMUSG00000042215 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as BC016230; 2610042A13Rik Expression Ubiquitous expression in bladder adult (RPKM 26.9), placenta adult (RPKM 26.6) and 28 other tissues See more Orthologs human all NEW Try the new Data Table view Genomic context Location: 1; 1 B See Bag2 in Genome Data Viewer Exon count: 3 Annotation release Status Assembly Chr Location 109 current GRCm39 (GCF_000001635.27) 1 NC_000067.7 (33784565..33796831, complement) 108.20200622 previous assembly GRCm38.p6 (GCF_000001635.26) 1 NC_000067.6 (33745484..33757750, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 1 NC_000067.5 (33802329..33814595, complement) Chromosome 1 - NC_000067.7 Page 5 of 7 http://www.alphaknockout.com/ Transcript information: This gene has 4 transcripts Gene: Bag2 ENSMUSG00000042215 Description BCL2-associated athanogene 2 [Source:MGI Symbol;Acc:MGI:1891254] Gene Synonyms 2610042A13Rik Location Chromosome 1: 33,745,484-33,757,795 reverse strand. GRCm38:CM000994.2 About this gene This gene has 4 transcripts (splice variants) and 290 orthologues. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Match Flags Bag2-201 ENSMUST00000044691.8 1860 210aa ENSMUSP00000042009.7 Protein coding CCDS14864 Q91YN9 TSL:1 GENCODE basic APPRIS P1 Bag2-203 ENSMUST00000187602.1 378 57aa ENSMUSP00000139538.1 Protein coding - A0A087WNX9 TSL:2 GENCODE basic Bag2-204 ENSMUST00000189741.1 955 No protein - Retained intron - - TSL:NA Bag2-202 ENSMUST00000155484.1 781 No protein - Retained intron - - TSL:2 32.31 kb Forward strand 33.74Mb 33.75Mb 33.76Mb Genes Rab23-201 >protein coding Gm37905-201 >TEC (Comprehensive set... Rab23-206 >nonsense mediated decay Rab23-202 >protein coding Rab23-208 >retained intron Rab23-203 >retained intron Rab23-204 >retained intron Contigs < AC163668.5 Genes (Comprehensive set... < Bag2-201protein coding < Zfp451-206nonsense mediated decay < Bag2-202retained intron < Bag2-204retained intron < Zfp451-201protein coding < Bag2-203protein coding Regulatory Build 33.74Mb 33.75Mb 33.76Mb Reverse strand 32.31 kb Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding processed transcript Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Page 6 of 7 http://www.alphaknockout.com/ Transcript: ENSMUST00000044691 < Bag2-201protein coding Reverse strand 12.31 kb ENSMUSP00000042... Coiled-coils (Ncoils) SMART BAG domain PROSITE profiles BAG domain PANTHER BAG family molecular chaperone regulator 2 Gene3D 1.20.58.890 CDD cd17282 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant splice region variant synonymous variant Scale bar 0 20 40 60 80 100 120 140 160 180 210 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC, VectorBuilder. Page 7 of 7.
Recommended publications
  • A Cell Line P53 Mutation Type UM
    A Cell line p53 mutation Type UM-SCC 1 wt UM-SCC5 Exon 5, 157 GTC --> TTC Missense mutation by transversion (Valine --> Phenylalanine UM-SCC6 wt UM-SCC9 wt UM-SCC11A wt UM-SCC11B Exon 7, 242 TGC --> TCC Missense mutation by transversion (Cysteine --> Serine) UM-SCC22A Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC22B Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC38 Exon 5, 132 AAG --> AAT Missense mutation by transversion (Lysine --> Asparagine) UM-SCC46 Exon 8, 278 CCT --> CGT Missense mutation by transversion (Proline --> Alanine) B 1 Supplementary Methods Cell Lines and Cell Culture A panel of ten established HNSCC cell lines from the University of Michigan series (UM-SCC) was obtained from Dr. T. E. Carey at the University of Michigan, Ann Arbor, MI. The UM-SCC cell lines were derived from eight patients with SCC of the upper aerodigestive tract (supplemental Table 1). Patient age at tumor diagnosis ranged from 37 to 72 years. The cell lines selected were obtained from patients with stage I-IV tumors, distributed among oral, pharyngeal and laryngeal sites. All the patients had aggressive disease, with early recurrence and death within two years of therapy. Cell lines established from single isolates of a patient specimen are designated by a numeric designation, and where isolates from two time points or anatomical sites were obtained, the designation includes an alphabetical suffix (i.e., "A" or "B"). The cell lines were maintained in Eagle's minimal essential media supplemented with 10% fetal bovine serum and penicillin/streptomycin.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Bag6 Complex Contains a Minimal Tail-Anchor–Targeting Module and a Mock BAG Domain
    Bag6 complex contains a minimal tail-anchor–targeting module and a mock BAG domain Jee-Young Mocka, Justin William Chartrona,Ma’ayan Zaslavera,YueXub,YihongYeb, and William Melvon Clemons Jr.a,1 aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and bLaboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 Edited by Gregory A. Petsko, Weill Cornell Medical College, New York, NY, and approved December 1, 2014 (received for review February 12, 2014) BCL2-associated athanogene cochaperone 6 (Bag6) plays a central analogous yeast complex contains two proteins, Get4 and Get5/ role in cellular homeostasis in a diverse array of processes and is Mdy2, which are homologs of the mammalian proteins TRC35 part of the heterotrimeric Bag6 complex, which also includes and Ubl4A, respectively. In yeast, these two proteins form ubiquitin-like 4A (Ubl4A) and transmembrane domain recognition a heterotetramer that regulates the handoff of the TA protein complex 35 (TRC35). This complex recently has been shown to be from the cochaperone small, glutamine-rich, tetratricopeptide important in the TRC pathway, the mislocalized protein degrada- repeat protein 2 (Sgt2) [small glutamine-rich tetratricopeptide tion pathway, and the endoplasmic reticulum-associated degrada- repeat-containing protein (SGTA) in mammals] to the delivery tion pathway. Here we define the architecture of the Bag6 factor Get3 (TRC40 in mammals) (19–22). It is expected that the complex, demonstrating that both TRC35 and Ubl4A have distinct mammalian homologs, along with Bag6, play a similar role (23– C-terminal binding sites on Bag6 defining a minimal Bag6 complex.
    [Show full text]
  • Senescence Inhibits the Chaperone Response to Thermal Stress
    SUPPLEMENTAL INFORMATION Senescence inhibits the chaperone response to thermal stress Jack Llewellyn1, 2, Venkatesh Mallikarjun1, 2, 3, Ellen Appleton1, 2, Maria Osipova1, 2, Hamish TJ Gilbert1, 2, Stephen M Richardson2, Simon J Hubbard4, 5 and Joe Swift1, 2, 5 (1) Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK. (2) Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK. (3) Current address: Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA, 22903, USA. (4) Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK. (5) Correspondence to SJH ([email protected]) or JS ([email protected]). Page 1 of 11 Supplemental Information: Llewellyn et al. Chaperone stress response in senescence CONTENTS Supplemental figures S1 – S5 … … … … … … … … 3 Supplemental table S6 … … … … … … … … 10 Supplemental references … … … … … … … … 11 Page 2 of 11 Supplemental Information: Llewellyn et al. Chaperone stress response in senescence SUPPLEMENTAL FIGURES Figure S1. A EP (passage 3) LP (passage 16) 200 µm 200 µm 1.5 3 B Mass spectrometry proteomics (n = 4) C mRNA (n = 4) D 100k EP 1.0 2 p < 0.0001 p < 0.0001 LP p < 0.0001 p < 0.0001 ) 0.5 1 2 p < 0.0001 p < 0.0001 10k 0.0 0 -0.5 -1 Cell area (µm Cell area fold change vs. EP fold change vs.
    [Show full text]
  • LOXL1 Confers Antiapoptosis and Promotes Gliomagenesis Through Stabilizing BAG2
    Cell Death & Differentiation (2020) 27:3021–3036 https://doi.org/10.1038/s41418-020-0558-4 ARTICLE LOXL1 confers antiapoptosis and promotes gliomagenesis through stabilizing BAG2 1,2 3 4 3 4 3 1 1 Hua Yu ● Jun Ding ● Hongwen Zhu ● Yao Jing ● Hu Zhou ● Hengli Tian ● Ke Tang ● Gang Wang ● Xiongjun Wang1,2 Received: 10 January 2020 / Revised: 30 April 2020 / Accepted: 5 May 2020 / Published online: 18 May 2020 © The Author(s) 2020. This article is published with open access Abstract The lysyl oxidase (LOX) family is closely related to the progression of glioma. To ensure the clinical significance of LOX family in glioma, The Cancer Genome Atlas (TCGA) database was mined and the analysis indicated that higher LOXL1 expression was correlated with more malignant glioma progression. The functions of LOXL1 in promoting glioma cell survival and inhibiting apoptosis were studied by gain- and loss-of-function experiments in cells and animals. LOXL1 was found to exhibit antiapoptotic activity by interacting with multiple antiapoptosis modulators, especially BAG family molecular chaperone regulator 2 (BAG2). LOXL1-D515 interacted with BAG2-K186 through a hydrogen bond, and its lysyl 1234567890();,: 1234567890();,: oxidase activity prevented BAG2 degradation by competing with K186 ubiquitylation. Then, we discovered that LOXL1 expression was specifically upregulated through the VEGFR-Src-CEBPA axis. Clinically, the patients with higher LOXL1 levels in their blood had much more abundant BAG2 protein levels in glioma tissues. Conclusively, LOXL1 functions as an important mediator that increases the antiapoptotic capacity of tumor cells, and approaches targeting LOXL1 represent a potential strategy for treating glioma.
    [Show full text]
  • CLIP2 As Radiation Biomarker in Papillary Thyroid Carcinoma
    Oncogene (2015) 34, 3917–3925 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc ORIGINAL ARTICLE CLIP2 as radiation biomarker in papillary thyroid carcinoma M Selmansberger1, A Feuchtinger2, L Zurnadzhy3, A Michna1, JC Kaiser4, M Abend5, A Brenner6, T Bogdanova3, A Walch2, K Unger1,7, H Zitzelsberger1,7 and J Hess1,7 A substantial increase in papillary thyroid carcinoma (PTC) among children exposed to the radioiodine fallout has been one of the main consequences of the Chernobyl reactor accident. Recently, the investigation of PTCs from a cohort of young patients exposed to the post-Chernobyl radioiodine fallout at very young age and a matched nonexposed control group revealed a radiation-specific DNA copy number gain on chromosomal band 7q11.23 and the radiation-associated mRNA overexpression of CLIP2. In this study, we investigated the potential role of CLIP2 as a radiation marker to be used for the individual classification of PTCs into CLIP2- positive and -negative cases—a prerequisite for the integration of CLIP2 into epidemiological modelling of the risk of radiation- induced PTC. We were able to validate the radiation-associated CLIP2 overexpression at the protein level by immunohistochemistry (IHC) followed by relative quantification using digital image analysis software (P = 0.0149). Furthermore, we developed a standardized workflow for the determination of CLIP2-positive and -negative cases that combines visual CLIP2 IHC scoring and CLIP2 genomic copy number status. In addition to the discovery cohort (n = 33), two independent validation cohorts of PTCs (n = 115) were investigated. High sensitivity and specificity rates for all three investigated cohorts were obtained, demonstrating robustness of the developed workflow.
    [Show full text]
  • Characterization of Slbag Genes from Solanum Lycopersicum and Its Function in Response to Dark-Induced Leaf Senescence
    plants Article Characterization of SlBAG Genes from Solanum lycopersicum and Its Function in Response to Dark-Induced Leaf Senescence Mingming He 1, Yu Wang 1,2, Mohammad Shah Jahan 1,3 , Weikang Liu 1, Abdul Raziq 1, Jin Sun 1,2, Sheng Shu 1,2 and Shirong Guo 1,2,* 1 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; [email protected] (M.H.); [email protected] (Y.W.); [email protected] (M.S.J.); [email protected] (W.L.); [email protected] (A.R.); [email protected] (J.S.); [email protected] (S.S.) 2 Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian 223800, China 3 Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh * Correspondence: [email protected] Abstract: The Bcl-2-associated athanogene (BAG) family is a group of evolutionarily conserved cochaperones involved in diverse cellular functions. Here, ten putative SlBAG genes were identified in tomato. SlBAG2 and SlBAG5b have the same gene structure and conserved domains, along with highly similar identity to their homologs in Arabidopsis thaliana, Oryza sativa, and Triticum aestivum. The qPCR data showed that BAG2 and BAG5b were highly expressed in stems and flowers. Moreover, both genes were differentially expressed under diverse abiotic stimuli, including cold stress, heat stress, salt treatment, and UV irradiation, and treatments with phytohormones, namely, ABA, SA, MeJA, and ETH. Subcellular localization showed that SlBAG2 and SlBAG5b were located in the cell membrane and nucleus. To elucidate the functions in leaf senescence of BAG2 and BAG5b, the full- Citation: He, M.; Wang, Y.; Jahan, length CDSs of BAG2 and BAG5b were cloned, and transgenic tomatoes were developed.
    [Show full text]
  • Mouse Bag2 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Bag2 Knockout Project (CRISPR/Cas9) Objective: To create a Bag2 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Bag2 gene (NCBI Reference Sequence: NM_145392 ; Ensembl: ENSMUSG00000042215 ) is located on Mouse chromosome 1. 3 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 3 (Transcript: ENSMUST00000044691). Exon 1~3 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 1 starts from about 0.16% of the coding region. Exon 1~3 covers 100.0% of the coding region. The size of effective KO region: ~12080 bp. The function of mouse Gm37905 will be affected by deleting this KO region.. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 Legends Exon of mouse Bag2 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Challenges of New Discoveries of Clinical Applications Into The
    Challenges of new discoveries of clinical applications into the management of cancer patients Tomáš Zima, Veronika Mikulová Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine in Prague Czech Republic TUMOR MARKERS Tumor markers are defined as qualitative or quantitative alteration or deviation from normal of a molecule, substances, or process that can be detected by some type of assay above and beyond routine clinical and pathological evaluation. Tumor markers may be detected within malignant cells or surrounding stroma of a primary cancer, or in metastases in local (such as lymph nodes) or distant tissues, or either cellular-based or as soluble products in blood, secretions or excretions. Tumor markers have a very long research history ….. Discoveries of the best known tumor markers 1928 - Ascheim- Zondek hCG 1936 - Gutman PAP 1957 - Bjorklund TPA 1963 - Abelev AFP 1965 - Gold CEA 1979 - Koprowski CA 19-9 1979 - Wang PSA 1981 - Best CA 125 1983 - Kufe CA 15-3 ….. with many thousands of publications in the last four decades ….. DEMONSTRATION OF TUMOR-SPECIFIC ANTIGENS IN HUMAN COLONIC CARCINOMATA BY IMMUNOLOGICAL TOLERANCE AND ABSORPTION TECHNIQUES* BY PHIL GOLD,$ M.D., AND SAMUEL O. FREEDMAN, M.D. (From the McGill University Medical Clinic, Montreal General Hospital, and the Department of Physiology, McGill University, Montreal, Canada) PLATES 35 TO 39 (Received for publication, November 16, 1964) ONLY A HANDFUL HAVE MOVED INTO CLINICAL PRACTICE TO DATE HER-2 CA 15-3
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • The Amazing Multi-Valency of the Hsp70 Chaperones
    Central JSM Cell & Developmental Biology Bringing Excellence in Open Access Review Article *Corresponding author Erik RP Zuiderweg, Department of Biological Chemistry, The University of Michigan Medical School, 1500 The Amazing Multi-Valency of Medical Center Drive, Ann Arbor, MI 48109, USA, Tel: 734-276-4463; Email: Submitted: 04 November 2016 the Hsp70 Chaperones Accepted: 20 November 2016 Erik RP Zuiderweg1* and Jason E. Gestwicki2 Published: 22 November 2016 1Department of Biological Chemistry, The University of Michigan Medical School, USA ISSN: 2379-061X 2Institute for Neurodegenerative Disease, University of California at San Francisco, Copyright USA © 2016 Zuiderweg et al. OPEN ACCESS Abstract Hsp70 proteins are keys to maintaining intra-cellular protein homeostasis. To carry Keywords out this task, they employ a large number of co-chaperones and adapter proteins. Here • Hsp70 proteins we review what is known about the interaction between the chaperones and partners, • Protein chaperones with a strong slant towards structural biology. Hsp70s in general and Hsc70 (HSPA8) in particular, display an amazing array of interfaces with their protein co-factors. We also reviewed the known interactions between Hsp70s and active compounds that may become leads towards Hsp70 modulation for treatment of a variety of diseases. INTRODUCTION misfolded proteins to favor protein (re)folding cycles [6]; (ii) transporting unfolded proteins through membranes to enable Hsp70 chaperones are highly conserved in all kingdoms; delivery of cargo to organelles [7]; (iii) recruiting proteins to in animals, they are an important member of the collection of the proteasome for turnover [8] and (iv) bringing proteins to protein chaperones including Hsp60, Hsp70, Hsp90 and small Hsps [1].
    [Show full text]
  • Investigations Into the Cellular Interactome of the PB2 Protein Expressed by Seasonal and Highly Pathogenic Avian Influenza Viruses
    Investigations into the cellular interactome of the PB2 protein expressed by seasonal and highly pathogenic avian influenza viruses D i s s e r t a t i o n zur Erlangung des akademischen Grades d o c t o r r e r u m n a t u r a l i u m (Dr. rer. nat.) im Fach Biologie eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von Ulrike Arnold Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät Prof. Dr. Bernhard Grimm Gutachter: 1. Prof. Andreas Herrmann 2. PD Thorsten Wolff 3. Dr. Benedikt Beckmann Tag der mündlichen Prüfung: 10.07.2018 Abstract Influenza virus replication relies on the functionality of its trimeric RNA dependent RNA polymerase complex under the conditions provided by the infected cell. PB2 is an essential component of this complex and is known to be a key factor for influenza virus host range. Given its importance, the interplay of PB2 with the cellular host proteome was investigated in several studies and various interaction partners such as protein phosphatase 6 (PP6) have been reported. However, these studies were mostly performed with laboratory/mouse- adapted strains or in the context of transiently transfected cells. Here, a combined affinity-purification/mass spectrometric approach was performed to identify novel interaction partners of PB2 of seasonal and highly pathogenic viral strains in infected human alveolar epithelial cells (A549). The subsequent analysis of selected cellular interaction partners aimed to determine the influence of these proteins on the replication cycle of these non-laboratory adapted viral strains.
    [Show full text]