Group Theory This Publication Forms Part of an Open University Module

Total Page:16

File Type:pdf, Size:1020Kb

Group Theory This Publication Forms Part of an Open University Module M303 Further pure mathematics Group theory This publication forms part of an Open University module. Details of this and other Open University modules can be obtained from the Student Registration and Enquiry Service, The Open University, PO Box 197, Milton Keynes MK7 6BJ, United Kingdom (tel. +44 (0)845 300 6090; email [email protected]). Alternatively, you may visit the Open University website at www.open.ac.uk where you can learn more about the wide range of modules and packs offered at all levels by The Open University. Note to reader Mathematical/statistical content at the Open University is usually provided to students in printed books, with PDFs of the same online. This format ensures that mathematical notation is presented accurately and clearly. The PDF of this extract thus shows the content exactly as it would be seen by an Open University student. Please note that the PDF may contain references to other parts of the module and/or to software or audio-visual components of the module. Regrettably mathematical and statistical content in PDF files is unlikely to be accessible using a screenreader, and some OpenLearn units may have PDF files that are not searchable. You may need additional help to read these documents. The Open University, Walton Hall, Milton Keynes, MK7 6AA. First published 2014. Second edition 2016. Copyright c 2014, 2016 The Open University All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted or utilised in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission from the publisher or a licence from the Copyright Licensing Agency Ltd. Details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS (website www.cla.co.uk). Open University materials may also be made available in electronic formats for use by students of the University. All rights, including copyright and related rights and database rights, in electronic materials and their contents are owned by or licensed to The Open University, or otherwise used by The Open University as permitted by applicable law. In using electronic materials and their contents you agree that your use will be solely for the purposes of following an Open University course of study or otherwise as licensed by The Open University or its assigns. Except as permitted above you undertake not to copy, store in any medium (including electronic storage or use in a website), distribute, transmit or retransmit, broadcast, modify or show in public such electronic materials in whole or in part without the prior written consent of The Open University or in accordance with the Copyright, Designs and Patents Act 1988. Edited, designed and typeset by The Open University, using the Open University TEX System. Printed in the United Kingdom by Halstan & Co. Ltd, Amersham, Bucks. ISBN 978 1 4730 2036 8 2.1 Contents Contents 1 Direct products 5 1.1 The external direct product of two groups 5 1.2 Internal direct products 8 2 Cyclic groups 18 2.1 The classification of cyclic groups 19 2.2 Subgroups and quotient groups of cyclic groups 20 2.3 Direct products of cyclic groups 24 3 Describing groups 32 3.1 Generators and relations 32 3.2 Dicyclic groups 38 Solutions and comments on 42 exercises Index 54 1 Direct products 1 Direct products This section describes how to construct a group called the direct product of two given groups, and then describes certain conditions under which a group can be regarded as the direct product of its subgroups. 1.1 The external direct product of two groups In this subsection, we introduce a method of constructing a new group from two existing ones: their external direct product. This method of construction will enable us to use existing groups as building blocks for larger ones. In turn, this will enable us to describe some groups in terms of smaller and possibly less complicated groups. This construction is, therefore, a key tool in our progress towards classifying groups. First we need the notion of the Cartesian product of two sets: if X and Y are two sets, then the Cartesian product X × Y is the set of all ordered pairs (x,y) with x ∈ X and y ∈ Y . For example, if X = {1, 2, 3} and Y = {a, b} then X × Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}. When X = Y , the Cartesian product X × Y = X × X is also denoted by 2 X . More generally, the Cartesian product of n sets X1, X2,...,Xn is the set of all ordered n-tuples (x1,x2,...,xn) with xi ∈ Xi for all i = 1,...,n. In order to define the direct product of two groups, we need to specify the underlying set and a suitable binary operation. To understand how this is done, it will be useful to examine the familiar example of addition of vectors in the real plane R × R represented by the usual coordinate system. Example 1.1 Addition of vectors in R × R We know that the real numbers with addition are a group, which we denoted by (R, +) in Chapter 5. Each point in the plane is represented by an ordered pair (x,y) of real numbers. In other words, the coordinates of points in the plane are elements of the Cartesian product R × R = {(x,y) : x ∈ R, y ∈ R} . The familiar operation of vector addition on R × R is defined as follows: (x1,y1) + (x2,y2) = (x1 + x2,y1 + y2). Thus, vector addition is defined component by component in terms of addition in R. It turns out that R × R with addition defined as in Example 1.1 above is a group. 5 Towards classification Exercise 1.1 Prove that the set R × R with the operation of vector addition is a group. We can generalise the definitions of both the real plane as a Cartesian product and component-wise addition of real numbers. Given two groups (G, ◦) and (H, ∗), we define the underlying set of a new In Example 1.1, G = H = R. group to be the Cartesian product of the sets G and H; that is, the set G × H = {(g, h): g ∈ G, h ∈ H}. As with R × R, we can define an operation on this set by applying the original operations to the separate components. Generalising requires a little care because the operations for the two component groups may be different. As the first components come from G, with operation ◦, and the second components come from H, with operation ∗, the general definition In Example 1.1, • = ◦ = ∗ = +. of the new operation (which we call •) is (g1, h1) • (g2, h2) = (g1 ◦ g2, h1 ∗ h2). Definition 1.2 Direct product of two groups Let (G, ◦) and(H, ∗) be two groups. Their direct product (G × H, •) is the group defined as follows. Set The underlying set of the group is G × H, the Cartesian product of the underlying sets G and H; that is, G × H = {(g, h): g ∈ G, h ∈ H} . Operation If (g1, h1) and (g2, h2) are elements of G × H then (g1, h1) • (g2, h2) = (g1 ◦ g2, h1 ∗ h2). This definition does indeed produce a group. Before we prove this, the following exercise will give you some ‘hands-on’ experience of direct products of groups. Exercise 1.2 Write out the Cayley table of the group Z2 × Z3. Use + for the new operation. 6 1 Direct products We are now ready to prove that the direct product of any two groups is indeed a group. The proof for the general case is similar to the solution to Exercise 1.1. To verify that (G × H, •) is a group, we must check the four group axioms. To check that the above definition of • produces a closed binary operation on G × H (that is, it satisfies the closure axiom), we observe the following. Let (g1, h1) and (g2, h2) be any two elements of G × H. By the definition of G × H, we know that g1 and g2 are elements of G and that h1 and h2 are elements of H. Since G is a group, it is closed under the operation ◦, therefore g1 ◦ g2 is in G. Since H is a group, it is closed under the operation ∗, so h1 ∗ h2 is in H. Therefore, by the definition of •, we have (g1, h1) • (g2, h2) = (g1 ◦ g2, h1 ∗ h2) ∈ G × H. The following exercise asks you to check the remaining group axioms for (G × H, •). Exercise 1.3 (a) Prove that • is associative (that is, check the associativity axiom). (b) Let the identity of G be eG and the identity of H be eH . Prove that (eG, eH ) is the identity of G × H (that is, check the identity axiom). (c) Let (g, h) be an element of G × H, where g has inverse g−1 in G and h has inverse h−1 in H. Prove that (g−1, h−1) is the inverse of (g, h) in G × H (that is, check the inverses axiom). So far we have carefully distinguished the binary operations of the groups involved in the direct product construction. Now that we have shown that the direct product of two groups is a group, we revert to using either juxtaposition for the operations, or + when both the operations are addition. Some texts refer to the direct sum of two groups, rather than direct product, when the groups are abelian and additive notation is used.
Recommended publications
  • Complex Algebras of Semigroups Pamela Jo Reich Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1996 Complex algebras of semigroups Pamela Jo Reich Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mathematics Commons Recommended Citation Reich, Pamela Jo, "Complex algebras of semigroups " (1996). Retrospective Theses and Dissertations. 11765. https://lib.dr.iastate.edu/rtd/11765 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI fibns the text du-ectly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproductioii is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and unproper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., m^s, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • The Classification and the Conjugacy Classesof the Finite Subgroups of The
    Algebraic & Geometric Topology 8 (2008) 757–785 757 The classification and the conjugacy classes of the finite subgroups of the sphere braid groups DACIBERG LGONÇALVES JOHN GUASCHI Let n 3. We classify the finite groups which are realised as subgroups of the sphere 2 braid group Bn.S /. Such groups must be of cohomological period 2 or 4. Depend- ing on the value of n, we show that the following are the maximal finite subgroups of 2 Bn.S /: Z2.n 1/ ; the dicyclic groups of order 4n and 4.n 2/; the binary tetrahedral group T ; the binary octahedral group O ; and the binary icosahedral group I . We give geometric as well as some explicit algebraic constructions of these groups in 2 Bn.S / and determine the number of conjugacy classes of such finite subgroups. We 2 also reprove Murasugi’s classification of the torsion elements of Bn.S / and explain 2 how the finite subgroups of Bn.S / are related to this classification, as well as to the 2 lower central and derived series of Bn.S /. 20F36; 20F50, 20E45, 57M99 1 Introduction The braid groups Bn of the plane were introduced by E Artin in 1925[2;3]. Braid groups of surfaces were studied by Zariski[41]. They were later generalised by Fox to braid groups of arbitrary topological spaces via the following definition[16]. Let M be a compact, connected surface, and let n N . We denote the set of all ordered 2 n–tuples of distinct points of M , known as the n–th configuration space of M , by: Fn.M / .p1;:::; pn/ pi M and pi pj if i j : D f j 2 ¤ ¤ g Configuration spaces play an important roleˆ in several branches of mathematics and have been extensively studied; see Cohen and Gitler[9] and Fadell and Husseini[14], for example.
    [Show full text]
  • Group Isomorphisms MME 529 Worksheet for May 23, 2017 William J
    Group Isomorphisms MME 529 Worksheet for May 23, 2017 William J. Martin, WPI Goal: Illustrate the power of abstraction by seeing how groups arising in different contexts are really the same. There are many different kinds of groups, arising in a dizzying variety of contexts. Even on this worksheet, there are too many groups for any one of us to absorb. But, with different teams exploring different examples, we should { as a class { discover some justification for the study of groups in the abstract. The Integers Modulo n: With John Goulet, you explored the additive structure of Zn. Write down the addition table for Z5 and Z6. These groups are called cyclic groups: they are generated by a single element, the element 1, in this case. That means that every element can be found by adding 1 to itself an appropriate number of times. The Group of Units Modulo n: Now when we look at Zn using multiplication as our operation, we no longer have a group. (Why not?) The group U(n) = fa 2 Zn j gcd(a; n) = 1g ∗ is sometimes written Zn and is called the group of units modulo n. An element in a number system (or ring) is a \unit" if it has a multiplicative inverse. Write down the multiplication tables for U(6), U(7), U(8) and U(12). The Group of Rotations of a Regular n-Gon: Imagine a regular polygon with n sides centered at the origin O. Let e denote the identity transformation, which leaves the poly- gon entirely fixed and let a denote a rotation about O in the counterclockwise direction by exactly 360=n degrees (2π=n radians).
    [Show full text]
  • BLECHER • All Numbers Below Are Integers, Usually Positive. • Read Up
    MATH 4389{ALGEBRA `CHEATSHEET'{BLECHER • All numbers below are integers, usually positive. • Read up on e.g. wikipedia on the Euclidean algorithm. • Diophantine equation ax + by = c has solutions iff gcd(a; b) doesn't divide c. One may find the solutions using the Euclidean algorithm (google this). • Euclid's lemma: prime pjab implies pja or pjb. • gcd(m; n) · lcm(m; n) = mn. • a ≡ b (mod m) means mj(a − b). An equivalence relation (reflexive, symmetric, transitive) on the integers. • ax ≡ b (mod m) has a solution iff gcd(m; a)jb. • Division Algorithm: there exist unique integers q and r with a = bq + r and 0 ≤ r < b; so a ≡ r (mod b). • Fermat's theorem: If p is prime then ap ≡ a (mod p) Also, ap−1 ≡ 1 (mod p) if p does not divide a. • For definitions for groups, rings, fields, subgroups, order of element, etc see Algebra fact sheet" below. • Zm = f0; 1; ··· ; m−1g with addition and multiplication mod m, is a group and commutative ring (= Z =m Z) • Order of n in Zm (i.e. smallest k s.t. kn ≡ 0 (mod m)) is m=gcd(m; n). • hai denotes the subgroup generated by a (the smallest subgroup containing a). For example h2i = f0; 2; 2+2 = 4; 2 + 2 + 2 = 6g in Z8. (In ring theory it may be the subring generated by a). • A cyclic group is a group that can be generated by a single element (the group generator). They are abelian. • A finite group is cyclic iff G = fg; g + g; ··· ; g + g + ··· + g = 0g; so G = hgi.
    [Show full text]
  • Orders on Computable Torsion-Free Abelian Groups
    Orders on Computable Torsion-Free Abelian Groups Asher M. Kach (Joint Work with Karen Lange and Reed Solomon) University of Chicago 12th Asian Logic Conference Victoria University of Wellington December 2011 Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 1 / 24 Outline 1 Classical Algebra Background 2 Computing a Basis 3 Computing an Order With A Basis Without A Basis 4 Open Questions Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 2 / 24 Torsion-Free Abelian Groups Remark Disclaimer: Hereout, the word group will always refer to a countable torsion-free abelian group. The words computable group will always refer to a (fixed) computable presentation. Definition A group G = (G : +; 0) is torsion-free if non-zero multiples of non-zero elements are non-zero, i.e., if (8x 2 G)(8n 2 !)[x 6= 0 ^ n 6= 0 =) nx 6= 0] : Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 3 / 24 Rank Theorem A countable abelian group is torsion-free if and only if it is a subgroup ! of Q . Definition The rank of a countable torsion-free abelian group G is the least κ cardinal κ such that G is a subgroup of Q . Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 4 / 24 Example The subgroup H of Q ⊕ Q (viewed as having generators b1 and b2) b1+b2 generated by b1, b2, and 2 b1+b2 So elements of H look like β1b1 + β2b2 + α 2 for β1; β2; α 2 Z.
    [Show full text]
  • Direct Products and Homomorphisms
    Commuting properties Direct products and homomorphisms Simion Breaz logo Simion Breaz Direct products and homomorphisms Products and coproducts Commuting properties Contravariant functors Covariant functors Outline 1 Commuting properties Products and coproducts Contravariant functors Covariant functors logo Simion Breaz Direct products and homomorphisms Products and coproducts Commuting properties Contravariant functors Covariant functors Introduction Important properties of objects in particular categories (e.g. varieties of universal algebras) can be described using commuting properties of some canonical functors. For instance, in [Ad´amek and Rosicki: Locally presentable categories] there are the following examples: If V is a variety of finitary algebras and A ∈ V then A is finitely generated iff the functor Hom(A, −): V → Set preserves direct unions (i.e. directed colimits of monomorphisms); A is finitely presented (i.e. it is generated by finitely many generators modulo finitely many relations) iff the functor Hom(A, −): V → Set preserves directed colimits. logo Simion Breaz Direct products and homomorphisms Products and coproducts Commuting properties Contravariant functors Covariant functors Introduction Important properties of objects in particular categories (e.g. varieties of universal algebras) can be described using commuting properties of some canonical functors. For instance, in [Ad´amek and Rosicki: Locally presentable categories] there are the following examples: If V is a variety of finitary algebras and A ∈ V then A is finitely generated iff the functor Hom(A, −): V → Set preserves direct unions (i.e. directed colimits of monomorphisms); A is finitely presented (i.e. it is generated by finitely many generators modulo finitely many relations) iff the functor Hom(A, −): V → Set preserves directed colimits.
    [Show full text]
  • INTEGRAL CAYLEY GRAPHS and GROUPS 3 of G on W
    INTEGRAL CAYLEY GRAPHS AND GROUPS AZHVAN AHMADY, JASON P. BELL, AND BOJAN MOHAR Abstract. We solve two open problems regarding the classification of certain classes of Cayley graphs with integer eigenvalues. We first classify all finite groups that have a “non-trivial” Cayley graph with integer eigenvalues, thus solving a problem proposed by Abdollahi and Jazaeri. The notion of Cayley integral groups was introduced by Klotz and Sander. These are groups for which every Cayley graph has only integer eigenvalues. In the second part of the paper, all Cayley integral groups are determined. 1. Introduction A graph X is said to be integral if all eigenvalues of the adjacency matrix of X are integers. This property was first defined by Harary and Schwenk [9] who suggested the problem of classifying integral graphs. This problem ignited a signifi- cant investigation among algebraic graph theorists, trying to construct and classify integral graphs. Although this problem is easy to state, it turns out to be extremely hard. It has been attacked by many mathematicians during the last forty years and it is still wide open. Since the general problem of classifying integral graphs seems too difficult, graph theorists started to investigate special classes of graphs, including trees, graphs of bounded degree, regular graphs and Cayley graphs. What proves so interesting about this problem is that no one can yet identify what the integral trees are or which 5-regular graphs are integral. The notion of CIS groups, that is, groups admitting no integral Cayley graphs besides complete multipartite graphs, was introduced by Abdollahi and Jazaeri [1], who classified all abelian CIS groups.
    [Show full text]
  • Generalized Quaternions
    GENERALIZED QUATERNIONS KEITH CONRAD 1. introduction The quaternion group Q8 is one of the two non-abelian groups of size 8 (up to isomor- phism). The other one, D4, can be constructed as a semi-direct product: ∼ ∼ × ∼ D4 = Aff(Z=(4)) = Z=(4) o (Z=(4)) = Z=(4) o Z=(2); where the elements of Z=(2) act on Z=(4) as the identity and negation. While Q8 is not a semi-direct product, it can be constructed as the quotient group of a semi-direct product. We will see how this is done in Section2 and then jazz up the construction in Section3 to make an infinite family of similar groups with Q8 as the simplest member. In Section4 we will compare this family with the dihedral groups and see how it fits into a bigger picture. 2. The quaternion group from a semi-direct product The group Q8 is built out of its subgroups hii and hji with the overlapping condition i2 = j2 = −1 and the conjugacy relation jij−1 = −i = i−1. More generally, for odd a we have jaij−a = −i = i−1, while for even a we have jaij−a = i. We can combine these into the single formula a (2.1) jaij−a = i(−1) for all a 2 Z. These relations suggest the following way to construct the group Q8. Theorem 2.1. Let H = Z=(4) o Z=(4), where (a; b)(c; d) = (a + (−1)bc; b + d); ∼ The element (2; 2) in H has order 2, lies in the center, and H=h(2; 2)i = Q8.
    [Show full text]
  • Lecture 1.3: Direct Products and Sums
    Lecture 1.3: Direct products and sums Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 8530, Advanced Linear Algebra M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 1 / 5 Overview In previous lectures, we learned about vectors spaces and subspaces. We learned about what it meant for a subset to span, to be linearly independent, and to be a basis. In this lecture, we will see how to create new vector spaces from old ones. We will see several ways to \multiply" vector spaces together, and will learn how to construct: the complement of a subspace the direct sum of two subspaces the direct product of two vector spaces M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 2 / 5 Complements and direct sums Theorem 1.5 (a) Every subspace Y of a finite-dimensional vector space X is finite-dimensional. (b) Every subspace Y has a complement in X : another subspace Z such that every vector x 2 X can be written uniquely as x = y + z; y 2 Y ; z 2 Z; dim X = dim Y + dim Z: Proof Definition X is the direct sum of subspaces Y and Z that are complements of each other. More generally, X is the direct sum of subspaces Y1;:::; Ym if every x 2 X can be expressed uniquely as x = y1 + ··· + ym; yi 2 Yi : We denote this as X = Y1 ⊕ · · · ⊕ Ym. M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 3 / 5 Direct products Definition The direct product of X1 and X2 is the vector space X1 × X2 := (x1; x2) j x1 2 X1; x2 2 X2 ; with addition and multiplication defined component-wise.
    [Show full text]
  • Abstract Algebra
    Abstract Algebra Paul Melvin Bryn Mawr College Fall 2011 lecture notes loosely based on Dummit and Foote's text Abstract Algebra (3rd ed) Prerequisite: Linear Algebra (203) 1 Introduction Pure Mathematics Algebra Analysis Foundations (set theory/logic) G eometry & Topology What is Algebra? • Number systems N = f1; 2; 3;::: g \natural numbers" Z = f:::; −1; 0; 1; 2;::: g \integers" Q = ffractionsg \rational numbers" R = fdecimalsg = pts on the line \real numbers" p C = fa + bi j a; b 2 R; i = −1g = pts in the plane \complex nos" k polar form re iθ, where a = r cos θ; b = r sin θ a + bi b r θ a p Note N ⊂ Z ⊂ Q ⊂ R ⊂ C (all proper inclusions, e.g. 2 62 Q; exercise) There are many other important number systems inside C. 2 • Structure \binary operations" + and · associative, commutative, and distributive properties \identity elements" 0 and 1 for + and · resp. 2 solve equations, e.g. 1 ax + bx + c = 0 has two (complex) solutions i p −b ± b2 − 4ac x = 2a 2 2 2 2 x + y = z has infinitely many solutions, even in N (thei \Pythagorian triples": (3,4,5), (5,12,13), . ). n n n 3 x + y = z has no solutions x; y; z 2 N for any fixed n ≥ 3 (Fermat'si Last Theorem, proved in 1995 by Andrew Wiles; we'll give a proof for n = 3 at end of semester). • Abstract systems groups, rings, fields, vector spaces, modules, . A group is a set G with an associative binary operation ∗ which has an identity element e (x ∗ e = x = e ∗ x for all x 2 G) and inverses for each of its elements (8 x 2 G; 9 y 2 G such that x ∗ y = y ∗ x = e).
    [Show full text]
  • SUMMARY of PART II: GROUPS 1. Motivation and Overview 1.1. Why
    SUMMARY OF PART II: GROUPS 1. Motivation and overview 1.1. Why study groups? The group concept is truly fundamental not only for algebra, but for mathematics in general, as groups appear in mathematical theories as diverse as number theory (e.g. the solutions of Diophantine equations often form a group), Galois theory (the solutions(=roots) of a polynomial equation may satisfy hidden symmetries which can be put together into a group), geometry (e.g. the isometries of a given geometric space or object form a group) or topology (e.g. an important tool is the fundamental group of a topological space), but also in physics (e.g. the Lorentz group which in concerned with the symmetries of space-time in relativity theory, or the “gauge” symmetry group of the famous standard model). Our task for the course is to understand whole classes of groups—mostly we will concentrate on finite groups which are already very difficult to classify. Our main examples for these shall be the cyclic groups Cn, symmetric groups Sn (on n letters), the alternating groups An and the dihedral groups Dn. The most “fundamental” of these are the symmetric groups, as every finite group can be embedded into a certain finite symmetric group (Cayley’s Theorem). We will be able to classify all groups of order 2p and p2, where p is a prime. We will also find structure results on subgroups which exist for a given such group (Cauchy’s Theorem, Sylow Theorems). Finally, abelian groups can be controlled far easier than general (i.e., possibly non-abelian) groups, and we will give a full classification for all such abelian groups, at least when they can be generated by finitely many elements.
    [Show full text]