A Comparison of Action Selection Learning Methods

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison of Action Selection Learning Methods From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. A Comparison of Action Selection Learning Methods Diana F. Gordon Devika Subramanian Naval Research Laboratory, Code 5510 Department of Computer Science 4555 Overlook Avenue, S.W. Rice University Washington, D.C. 20375 Houston, TX 77005 [email protected] [email protected] Abstract man subjects performing the task. Then, two learning methods are described: our model-based method and a Our goal is to develop a hybrid cognitive model benchmark reinforcement learning algorithm that does of howhumans acquire skills on complexcogni- tive tasks. Weare pursuing this goal by designing not have an explicit model. Prior results reported hybrid computational architectures for the NRL in the literature of empirical comparisons of action Navigation task, which requires competentsenso- models versus reinforcement learning are mixed (Lin, rimotor coordination. In this paper, we empiri- 1992; Mahadevan,1992); they do not clearly indicate cally comparetwo methodsfor control knowledge that one method is superior. Here we compare these acquisition (reinforcement learning and a novel two methods empirically on the Navigation task us- variant of action models), as well as a hybrid ing a large collection of execution traces. Our pri- of these methods, with humanlearning on this mary goal in this comparison is to determine which task. Our results indicate that the performance performs more like humanlearning on this task. Both of our action models approach more closely ap- methods include sensor relevance knowledge from the proximates the rate of humanlearning on the task than does reinforcement learning or the hy- verbal protocols. The results of this empirical com- brid. Wealso experimentally explore the impact parison indicate that our action models method more of backgroundknowledge on system performance. closely approximates the time-scales and trends in hu- By adding knowledgeused by the action models manlearning behavior on this task. Nevertheless, nei- system to the benchmarkreinforcement learner, ther algorithm performs as well as the humansubject. we elevate its performanceabove that of the ac- We next explore a multistrategy variant that com- tion models system. bines the two methods for the purpose of better ap- proximating the humanlearning, and present empirical Introduction results with this method. Although the multistrategy approach is unsuccessful, an alternative is highly suc- Our goal is to develop a hybrid cognitive model of how cessful. This alternative consists of modifying the ar- humansacquire skills by explicit instruction and re- chitecture of the reinforcement learner to incorporate peated practice on complex cognitive tasks. We are knowledge used by the action models method. pursuing this goal by designing hybrid (multistrategy) computational architectures for the NRLNavigation The NRL Navigation and Mine task, which requires sensorimotor coordination skill. In this paper, we develop a novel method based on para- Avoidance Domain metric action models for actively learning visual-motor The NRLnavigation and mine avoidance domain, de- coordination. Although similar to previous work on ac- veloped by Alan Schultz at the Naval Research Labora- tion models, our method is novel because it capitalizes tory and hereafter abbreviated the "Navigation task," on available background knowledge regarding sensor is a simulation that can be run either by humans relevance. We have confirmed the existence and use through a graphical interface, or by an automated of such knowledge with extensive verbal protocol data agent. The task involves learning to navigate through collected from human subjects. In our action models obstacles in a two-dimensional world. A single agent approach, the agent actively interacts with its envi- controls an autonomous underwater vehicle (AUV) ronment by gathering ezecution traces (time-indexed that has to avoid mines and rendezvous with a sta- streams of visual inputs and motor outputs) and by tionary target before exhausting its fuel. The mines learning a compact representation of an effective pol- may be stationary, drifting, or seeking. Time is di- icy for action choice guided by the action model. vided into episodes. An episode begins with the agent This paper begins by describing the NRLNavigation on one side of the mine field, the target placed ran- task, as well as the types of data collected from hu- domly on the other side of the mine field, and random 90 MSL-96 From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. mine locations within a bounded region. An episode by collecting answers to questions posed at the end of ends with one of three possible outcomes: the agent the individual sessions. reaches the goal (success), hits a mine (failure), or hausts its fuel (failure). Reinforcement, in the form Methods for Modeling Action Selection a binary reward dependent on the outcome, is received Learning at the end of each episode. An episode is further sub- divided into decision cycles corresponding to actions Our goal is to build a model that most closely dupli- (decisions) taken by the agent. cates the humansubject data in learning performance. The agent has a limited capacity to observe the In particular, subjects becomeproficient at this task world it is in; in particular, it obtains information (assuming no noise in the sensors and only 25 mines) about its proximal environs through a set of seven con- after only a few episodes. Modeling such an extremely secutive sonar segments that give it a 90 degree forward rapid learning rate presents a challenge. In develop- field of view for a short distance. Obstacles in the field ing our learning methods, we have drawn from both of view cause a reduction in sonar segment length (seg- the machine learning and cognitive science literature. ment length is proportional to obstacle distance); one By far the most widely used machine learning method mine may appear in multiple segments. The agent also for tasks like ours is reinforcement learning. Reinforce- has a range sensor that provides the current distance ment learning is mathematically sufficient for learning to the target, a bearing sensor (in clock notation) that policies for our task, yet has no explicit world model. indicates the direction in which the target lies, and a More commonin the cognitive science literature are ac- time sensor that measures the remaining fuel. A hu- tion models, e.g., (Arbib, 1972), which require building man subject performing this task sees visual gauges explicit representations of the dynamicsof the world to corresponding to each of these sensors. The turn and choose actions. speed actions are controlled by joystick motions. The turn and speed chosen on the previous decision cycle Reinforcement learning are additionally available to the agent. Given its de- layed reward structure and the fact that the world is Reinforcement learning has been studied extensively in presented to the agent via sensors that are inadequate the psychological literature, e.g., (Skinner, 1984), and to guarantee correct identification of the current state, has recently becomevery popular in the machine learn- the Navigation world is a partially observable Markov ing literature, e.g., (Sutton, 1988; Lin, 1992; Gordon decision process (POMDP). Subramanian, 1993). Rather than using only the dif- An example of a few snapshots from an execution ference between the prediction and the true reward for trace (with only a subset of the sensors shown) is the the error, as in traditional supervised learning, (tempo- following: ral difference) reinforcement learning methods use the difference between successive predictions for errors to time range bearing sonarl turn speed improve the learning. Reinforcement learning provides 4 lOOO 1 220 32 - 20 a method for modeling the acquisition of the policy 5 1000 12 220 -32 20 function: 6 1000 11 220 0 20 F : sensors --* actions 7 1000 11 90 0 20 Currently, the most popular type of reinforcement A trace file records the binary success/failure for each learning is q-learning, developed by Watkins, which is episode. based on ideas from temporal difference learning, as well as conventional dynamic programming (Watkins, Data from Human Subjects 1989). It requires estimating the q-value of a sensor In the experiments with humans, seven subjects were configuration s, i.e., q(s, a) is a prediction of the util- used, and each ran for two or three 45-minute sessions ity of taking action a in a world state represented by with the simulations. We instrumented I the simula- s. The q-values are updated during learning based on tion to gather execution traces for subsequent analysis minimizing a temporal difference error. Action choice (Gordon et al., 1994). Wealso obtained verbal proto- is typically stochastic, where a higher q-value implies cols by recording subject utterances during play and a higher probability that action will be chosen in that 1 Note that although humansubjects use a joystick for state. While q-learning with explicit state representations actions, we do not model the joystick but instead model addresses the temporal credit assignment problem, it actions at the level of discrete turns and speeds (e.g., turn 32 degrees to the left at speed 20). Humanjoystick mo- is standard practice to use input generalization and tions are ultimately translated to these turn and speed val- neural networks to also address the structural credit ues before~being passed to the simulated task. Likewise, assignment problem, e.g., (Lin, 1992). The q-value out- the learning agents we construct do not ~see~ gauges but put node of the control neural network corresponding instead get the numericsensor values directly from the sim- to the chosen action u is given an error that reflects the ulation (e.g., rangeis 500). difference betweenthe current prediction of the utility, Gordon 91 From: Proceedings of the Third International Conference on Multistrategy Learning.
Recommended publications
  • Quantum Reinforcement Learning During Human Decision-Making
    ARTICLES https://doi.org/10.1038/s41562-019-0804-2 Quantum reinforcement learning during human decision-making Ji-An Li 1,2, Daoyi Dong 3, Zhengde Wei1,4, Ying Liu5, Yu Pan6, Franco Nori 7,8 and Xiaochu Zhang 1,9,10,11* Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforce- ment learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smok- ers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels. riginating from early behavioural psychology, reinforce- explained well by quantum probability theory9–16. For example, one ment learning is now a widely used approach in the fields work showed the superiority of a quantum random walk model over Oof machine learning1 and decision psychology2. It typi- classical Markov random walk models for a modified random-dot cally formalizes how one agent (a computer or animal) should take motion direction discrimination task and revealed quantum-like actions in unknown probabilistic environments to maximize its aspects of perceptual decisions12.
    [Show full text]
  • Latest Snapshot.” to Modify an Algo So It Does Produce Multiple Snapshots, find the Following Line (Which Is Present in All of the Algorithms)
    Spinning Up Documentation Release Joshua Achiam Feb 07, 2020 User Documentation 1 Introduction 3 1.1 What This Is...............................................3 1.2 Why We Built This............................................4 1.3 How This Serves Our Mission......................................4 1.4 Code Design Philosophy.........................................5 1.5 Long-Term Support and Support History................................5 2 Installation 7 2.1 Installing Python.............................................8 2.2 Installing OpenMPI...........................................8 2.3 Installing Spinning Up..........................................8 2.4 Check Your Install............................................9 2.5 Installing MuJoCo (Optional)......................................9 3 Algorithms 11 3.1 What’s Included............................................. 11 3.2 Why These Algorithms?......................................... 12 3.3 Code Format............................................... 12 4 Running Experiments 15 4.1 Launching from the Command Line................................... 16 4.2 Launching from Scripts......................................... 20 5 Experiment Outputs 23 5.1 Algorithm Outputs............................................ 24 5.2 Save Directory Location......................................... 26 5.3 Loading and Running Trained Policies................................. 26 6 Plotting Results 29 7 Part 1: Key Concepts in RL 31 7.1 What Can RL Do?............................................ 31 7.2
    [Show full text]
  • The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-Based Policy Naoto Yoshida
    The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-based Policy Naoto Yoshida To cite this version: Naoto Yoshida. The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy- based Policy. 2015. hal-01138709v2 HAL Id: hal-01138709 https://hal.archives-ouvertes.fr/hal-01138709v2 Preprint submitted on 19 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-based Policy Naoto Yoshida School of Biomedical Engineering Tohoku University Sendai, Aramaki Aza Aoba 6-6-01 Email: [email protected] Abstract—Learning and acting in a high dimensional state- when the actions are represented by binary vector actions action space are one of the central problems in the reinforcement [4][5][6][7][8]. Energy-based RL algorithms represent a policy learning (RL) communities. The recent development of model- based on energy-based models [9]. In this approach the prob- free reinforcement learning algorithms based on an energy- based model have been shown to be effective in such domains. ability of the state-action pair is represented by the Boltzmann However, since the previous algorithms used neural networks distribution and the energy function, and the policy is a with stochastic hidden units, these algorithms required Monte conditional probability given the current state of the agent.
    [Show full text]
  • Dalle Banche Dati Bibliografiche Pag. 2 60 70 80 94 102 Segnalazioni
    Indice: Dalle banche dati bibliografiche pag. 2 Bonati M, et al. WAITING TIMES FOR DIAGNOSIS OF ATTENTION-DEFICIT HYPERACTIVITY DISORDER IN CHILDREN AND ADOLESCENTS REFERRED TO ITALIAN ADHD CENTERS MUST BE REDUCED BMC Health Serv Res. 2019 Sep;19:673 pag. 60 Fabio RA, et al. INTERACTIVE AVATAR BOOSTS THE PERFORMANCES OF CHILDREN WITH ATTENTION DEFICIT HYPERACTIVITY DISORDER IN DYNAMIC MEASURES OF INTELLIGENCE Cyberpsychol Behav Soc Netw. 2019 Sep;22:588-96 pag. 70 Capodieci A, et al. THE EFFICACY OF A TRAINING THAT COMBINES ACTIVITIES ON WORKING MEMORY AND METACOGNITION: TRANSFER AND MAINTENANCE EFFECTS IN CHILDREN WITH ADHD AND TYPICAL DEVELOPMENT J Clin Exp Neuropsychol. 2019 Dec;41:1074-87 pag. 80 Capri T, et al. MULTI-SOURCE INTERFERENCE TASK PARADIGM TO ENHANCE AUTOMATIC AND CONTROLLED PROCESSES IN ADHD. Res Dev Disabil. 2020;97 pag. 94 Faedda N, et al. INTELLECTUAL FUNCTIONING AND EXECUTIVE FUNCTIONS IN CHILDREN AND ADOLESCENTS WITH ATTENTION DEFICIT HYPERACTIVITY DISORDER (ADHD) AND SPECIFIC LEARNING DISORDER (SLD). Scand J Psychol. 2019 Oct;60:440-46 pag. 102 Segnalazioni Bonati M – Commento a: LA PILLOLA DELL’OBBEDIENZA DI JULIEN BRYGO Le Monde Diplomatique Il Manifesto; n. 12, anno XXVI, dicembre 2019 pag. 109 Newsletter – ADHD dicembre 2019 BIBLIOGRAFIA ADHD DICEMBRE 2019 Acta Med Port. 2019 Mar;32:195-201. CLINICAL VALIDATION OF THE PORTUGUESE VERSION OF THE CHILDREN'S SLEEP HABITS QUESTIONNAIRE (CSHQ- PT) IN CHILDREN WITH SLEEP DISORDER AND ADHD. Parreira AF, Martins A, Ribeiro F, et al. INTRODUCTION: The Portuguese version of the Children's Sleep Habits Questionnaire showed adequate psychometric properties in a community sample but the American cut-off seemed inadequate.
    [Show full text]
  • Macro Action Selection with Deep Reinforcement Learning in Starcraft
    Proceedings of the Fifteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-19) Macro Action Selection with Deep Reinforcement Learning in StarCraft Sijia Xu,1 Hongyu Kuang,2 Zhuang Zhi,1 Renjie Hu,1 Yang Liu,1 Huyang Sun1 1Bilibili 2State Key Lab for Novel Software Technology, Nanjing University {xusijia, zhuangzhi, hurenjie, liuyang01, sunhuyang}@bilibili.com, [email protected] Abstract StarCraft (SC) is one of the most popular and successful Real Time Strategy (RTS) games. In recent years, SC is also widely accepted as a challenging testbed for AI research be- cause of its enormous state space, partially observed informa- tion, multi-agent collaboration, and so on. With the help of annual AIIDE and CIG competitions, a growing number of SC bots are proposed and continuously improved. However, a large gap remains between the top-level bot and the pro- fessional human player. One vital reason is that current SC bots mainly rely on predefined rules to select macro actions during their games. These rules are not scalable and efficient enough to cope with the enormous yet partially observed state space in the game. In this paper, we propose a deep reinforce- ment learning (DRL) framework to improve the selection of macro actions. Our framework is based on the combination of the Ape-X DQN and the Long-Short-Term-Memory (LSTM). We use this framework to build our bot, named as LastOrder. Figure 1: A screenshot of StarCraft: Brood War Our evaluation, based on training against all bots from the AI- IDE 2017 StarCraft AI competition set, shows that LastOrder achieves an 83% winning rate, outperforming 26 bots in total 28 entrants.
    [Show full text]
  • Application of Newton's Method to Action Selection in Continuous
    ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440. Application of Newton’s Method to Action Selection in Continuous State- and Action-Space Reinforcement Learning Barry D. Nichols and Dimitris C. Dracopoulos School of Science and Technology University of Westminster, 115 New Cavendish St, London, W1W 6XH - England Abstract. An algorithm based on Newton’s Method is proposed for ac- tion selection in continuous state- and action-space reinforcement learning without a policy network or discretization. The proposed method is val- idated on two benchmark problems: Cart-Pole and double Cart-Pole on which the proposed method achieves comparable or improved performance with less parameters to tune and in less training episodes than CACLA, which has previously been shown to outperform many other continuous state- and action-space reinforcement learning algorithms. 1 Introduction When reinforcement learning (RL) [1] is applied to problems with continuous state- and action-space it is impossible to compare the values of all possible actions; thus selecting the greedy action a from the set of all actions A available from the currents state s requires solving the optimization problem: arg max Q(s, a), ∀a ∈A (1) a Although it has been stated that if ∇aQ(s, a) is available it would be possible to apply a gradient based method [2], it is often asserted that directly solving the optization problem would be prohibitively time-consuming [3, 4].
    [Show full text]
  • Quantum Inspired Algorithms for Learning and Control of Stochastic Systems
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Summer 2015 Quantum inspired algorithms for learning and control of stochastic systems Karthikeyan Rajagopal Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Aerospace Engineering Commons, Artificial Intelligence and Robotics Commons, and the Systems Engineering Commons Department: Mechanical and Aerospace Engineering Recommended Citation Rajagopal, Karthikeyan, "Quantum inspired algorithms for learning and control of stochastic systems" (2015). Doctoral Dissertations. 2653. https://scholarsmine.mst.edu/doctoral_dissertations/2653 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. QUANTUM INSPIRED ALGORITHMS FOR LEARNING AND CONTROL OF STOCHASTIC SYSTEMS by KARTHIKEYAN RAJAGOPAL A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in AEROSPACE ENGINEERING 2015 Approved by Dr. S.N. Balakrishnan, Advisor Dr. Jerome Busemeyer Dr. Jagannathan Sarangapani Dr. Robert G. Landers Dr. Ming Leu iii ABSTRACT Motivated by the limitations of the current reinforcement learning and optimal control techniques, this dissertation proposes quantum theory inspired algorithms for learning and control of both single-agent and multi-agent stochastic systems. A common problem encountered in traditional reinforcement learning techniques is the exploration-exploitation trade-off. To address the above issue an action selection procedure inspired by a quantum search algorithm called Grover’s iteration is developed.
    [Show full text]
  • Towards Learning in Probabilistic Action Selection: Markov Systems and Markov Decision Processes
    Towards Learning in Probabilistic Action Selection: Markov Systems and Markov Decision Processes Manuela Veloso Carnegie Mellon University Computer Science Department Planning - Fall 2001 Remember the examples on the board. 15-889 – Fall 2001 Veloso, Carnegie Mellon Different Aspects of “Machine Learning” Supervised learning • – Classification - concept learning – Learning from labeled data – Function approximation Unsupervised learning • – Data is not labeled – Data needs to be grouped, clustered – We need distance metric Control and action model learning • – Learning to select actions efficiently – Feedback: goal achievement, failure, reward – Search control learning, reinforcement learning 15-889 – Fall 2001 Veloso, Carnegie Mellon Search Control Learning Improve search efficiency, plan quality • Learn heuristics • (if (and (goal (enjoy weather)) (goal (save energy)) (state (weather fair))) (then (select action RIDE-BIKE))) 15-889 – Fall 2001 Veloso, Carnegie Mellon Learning Opportunities in Planning Learning to improve planning efficiency • Learning the domain model • Learning to improve plan quality • Learning a universal plan • Which action model, which planning algorithm, which heuristic control is the most efficient for a given task? 15-889 – Fall 2001 Veloso, Carnegie Mellon Reinforcement Learning A variety of algorithms to address: • – learning the model – converging to the optimal plan. 15-889 – Fall 2001 Veloso, Carnegie Mellon Discounted Rewards “Reward” today versus future (promised) reward • $100K + $100K + $100K + . • INFINITE!
    [Show full text]
  • Softmax Action Selection
    DISSERTATION OPTIMAL RESERVOIR OPERATIONS FOR RIVERINE WATER QUALITY IMPROVEMENT: A REINFORCEMENT LEARNING STRATEGY Submitted by Jeffrey Donald Rieker Department of Civil and Environmental Engineering In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2011 Doctoral Committee: Advisor: John W. Labadie Darrell G. Fontane Donald K. Frevert Charles W. Anderson Copyright by Jeffrey Donald Rieker 2011 All Rights Reserved ABSTRACT OPTIMAL RESERVOIR OPERATIONS FOR RIVERINE WATER QUALITY IMPROVEMENT: A REINFORCEMENT LEARNING STRATEGY Complex water resources systems often involve a wide variety of competing objectives and purposes, including the improvement of water quality downstream of reservoirs. An increased focus on downstream water quality considerations in the operating strategies for reservoirs has given impetus to the need for tools to assist water resource managers in developing strategies for release of water for downstream water quality improvement, while considering other important project purposes. This study applies an artificial intelligence methodology known as reinforcement learning to the operation of reservoir systems for water quality enhancement through augmentation of instream flow. Reinforcement learning is a methodology that employs the concepts of agent control and evaluative feedback to develop improved reservoir operating strategies through direct interaction with a simulated river and reservoir environment driven by stochastic hydrology.
    [Show full text]
  • Delay-Aware Model-Based Reinforcement Learning for Continuous Control Baiming Chen, Mengdi Xu, Liang Li, Ding Zhao*
    1 Delay-Aware Model-Based Reinforcement Learning for Continuous Control Baiming Chen, Mengdi Xu, Liang Li, Ding Zhao* Abstract—Action delays degrade the performance of reinforce- Recently, DRL has offered the potential to resolve this ment learning in many real-world systems. This paper proposes issue. The problems that DRL solves are usually modeled a formal definition of delay-aware Markov Decision Process and as Markov Decision Process (MDP). However, ignoring the proves it can be transformed into standard MDP with augmented states using the Markov reward process. We develop a delay- delay of agents violates the Markov property and results aware model-based reinforcement learning framework that can in partially observable MDPs, or POMDPs, with historical incorporate the multi-step delay into the learned system models actions as hidden states. From [26], it is shown that solving without learning effort. Experiments with the Gym and MuJoCo POMDPs without estimating hidden states can lead to arbitrarily platforms show that the proposed delay-aware model-based suboptimal policies. To retrieve the Markov property, the algorithm is more efficient in training and transferable between systems with various durations of delay compared with off-policy delayed system was reformulated as an augmented MDP model-free reinforcement learning methods. Codes available at: problem such as the work in [27], [28]. While the problem https://github.com/baimingc/dambrl. was elegantly formulated, the computational cost increases Index Terms—model-based reinforcement learning, robotic exponentially as the delay increases. Travnik et al. [29] showed control, model-predictive control, delay that the traditional MDP framework is ill-defined, but did not provide a theoretical analysis.
    [Show full text]
  • Action Selection for Composable Modular Deep Reinforcement Learning
    Main Track AAMAS 2021, May 3-7, 2021, Online Action Selection For Composable Modular Deep Reinforcement Learning Vaibhav Gupta∗ Daksh Anand∗ IIIT, Hyderabad IIIT, Hyderabad [email protected] [email protected] Praveen Paruchuri† Akshat Kumar† IIIT, Hyderabad Singapore Management University [email protected] [email protected] ABSTRACT In modular reinforcement learning (MRL), a complex decision mak- ing problem is decomposed into multiple simpler subproblems each solved by a separate module. Often, these subproblems have conflict- ing goals, and incomparable reward scales. A composable decision making architecture requires that even the modules authored sep- arately with possibly misaligned reward scales can be combined coherently. An arbitrator should consider different module’s action preferences to learn effective global action selection. We present a novel framework called GRACIAS that assigns fine-grained im- portance to the different modules based on their relevance ina Figure 1: Bunny World Domain given state, and enables composable decision making based on modern deep RL methods such as deep deterministic policy gra- dient (DDPG) and deep Q-learning. We provide insights into the convergence properties of GRACIAS and also show that previous as high sample complexity remain when scaling RL algorithms to MRL algorithms reduce to special cases of our framework. We ex- problems with large state spaces [8]. Fortunately, in several do- perimentally demonstrate on several standard MRL domains that mains, a significant structure exists that can be exploited to yield our approach works significantly better than the previous MRL scalable and sample efficient solution approaches. In hierarchical methods, and is highly robust to incomparable reward scales.
    [Show full text]
  • Reinforcement and Shaping in Learning Action Sequences with Neural Dynamics
    4th International Conference on TuDFP.4 Development and Learning and on Epigenetic Robotics October 13-16, 2014. Palazzo Ducale, Genoa, Italy Reinforcement and Shaping in Learning Action Sequences with Neural Dynamics Matthew Luciw∗, Yulia Sandamirskayay, Sohrob Kazerounian∗,Jurgen¨ Schmidhuber∗, Gregor Schoner¨ y ∗ Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Manno-Lugano, Switzerland y Institut fur¨ Neuroinformatik, Ruhr-Universitat¨ Bochum, Universitatstr,¨ Bochum, Germany Abstract—Neural dynamics offer a theoretical and compu- [3], we have introduced a concept of elementary behaviours tational framework, in which cognitive architectures may be (EBs) in DFT, which correspond to different sensorimotor developed, which are suitable both to model psychophysics of behaviours that the agent may perform [4], [5]. To the human behaviour and to control robotic behaviour. Recently, we have introduced reinforcement learning in this framework, contrary to purely reactive modules of the subsumption and which allows an agent to learn goal-directed sequences of other behavioural-robotics architectures, the EBs in DFT are behaviours based on a reward signal, perceived at the end of a endowed with representations. In particular, a representation sequence. Although stability of the dynamic neural fields and of the intention of the behaviour provides a control input to behavioural organisation allowed to demonstrate autonomous the sensorimotor system of the agent, activating the required learning in the robotic system, learning of longer sequences was taking prohibitedly long time. Here, we combine the neural coordination pattern between the perceptual and motor sys- dynamic reinforcement learning with shaping, which consists tems, and eventually triggers generation of the behaviour. in providing intermediate rewards and accelerates learning.
    [Show full text]