Giao Trinh Giai Tich Da
Total Page:16
File Type:pdf, Size:1020Kb
BỘ SÁCH TOÁN CAO CẤP - VIỆN TOÁN HỌC NGUYỄN ĐÔNG YÊN GIÁO TRÌNH GIẢI TÍCH ĐA TRỊ nhà xuất bản khoa học tự nhiên và công nghệ SÁCH Đà IN TRONG BỘ NÀY: 2000: Phương trình vi phân ₫ạo hàm riêng (Tập 1) Trần Đức Vân 2001: Giáo trình Đại số tuyến tính Ngô Việt Trung Phương trình vi phân ₫ạo hàm riêng (Tập 2) Trần Đức Vân Nhập môn Lý thuyết ₫iều khiển Vũ Ngọc Phát 2002: Giải tích các hàm nhiều biến Đ.T. Lục, P.H. Điển,T.D. Phượng Lý thuyết Hệ ₫ộng lực Nguyễn Đình Công 2003: Lôgic toán và Cơ sở toán học Phan Đình Diệu Giáo trình Đại số hiện ₫ại Nguyễn Tự Cường Lý thuyết không gian Orlicz Hà Huy Bảng Đại số máy tính: Cơ sở Groebner Lê Tuấn Hoa Hàm thực và Giải tích hàm Hoàng Tụy Số học thuật toán H.H. Khoái, P.H. Điển 2004: Mã hóa thông tin: Cơ sở toán học và ứng dụng P.H. Điển, H.H. Khoái Lý thuyết Tổ hợp và Đồ thị Ngô Đắc Tân Xác suất và Thống kê Trần Mạnh Tuấn 2005: Giải tích Toán học: Hàm số một biến Đ.T. Lục, P.H. Điển, T.D. Phượng Lý thuyết Phương trình vi phân ₫ạo hàm riêng (Toàn tập) Trần Đức Vân Công thức kiểu Hopf-Lax-Oleinik cho phương trình Hamilton-Jacobi Trần Đức Vân Đại số tuyến tính qua các ví dụ và bài tập Lê Tuấn Hoa Lý thuyết Galois Ngô Việt Trung 2007: Lý thuyết tối ưu không trơn N.X. Tấn, N.B. Minh Giáo trình Giải tích ₫a trị Nguyễn Đông Yên Có thể đặt mua sách trực tiếp tại Viện Toán học, 18 Hoàng Quốc Việt, Hà Nội Điện thoại 84-4-7563474/205 (Văn phòng); 84-4-7563474/302 (Thư viện) Fax: 84-4-7564303 E-mail: [email protected] (VP), [email protected] (TV) Lời giới thiệu rong những năm gần đây, nhu cầu sách tham khảo tiếng Việt về toán của sinh viên các trường Ðại học, nghiên cứu sinh, cán bộ nghiên cứu Tvà ứng dụng toán học tăng lên rõ rệt. Bộ sách "Toán cao cấp" của Viện Toán h ọc ra đời nhằm góp phần đáp ứng yêu cầu đó, làm phong phú thêm nguồn sách tham khảo và giáo trình đại học vốn có. Bộ sách Toán cao cấp sẽ bao gồm nhiều tập, đề cập đến hầu hết các lĩnh vực khác nhau của toán học cao cấp, đặc biệt là các lĩnh vực liên quan đến các hướng đang phát triển mạnh của toán học hiện đại, có tầm quan trọng trong sự phát triển lý thuyết và ứng dụng thực tiễn. Các tác giả của bộ sách này là những người có nhiều kinh nghiệm trong công tác giảng dạy đại học và sau đại học, đồng thời là những nhà toán học đang tích cực nghiên cứu. Vì thế, mục tiêu của các cuốn sách trong bộ sách này là, ngoài việc cung cấp cho người đọc những kiến thức cơ bản nhất, còn cố gắng hướng họ vào các vấn đề thời sự liên quan đến lĩnh vực mà cuốn sách đề cập đến. Bộ sách Toán cao cấp có được là nhờ sự ủng hộ quý báu của Viện Khoa học và Công nghệ Việt Nam, đặc biệt là sự cổ vũ của Giáo sư Ðặng Vũ Minh và Giáo sư Nguyễn Khoa Sơn. Trong việc xuất bản Bộ sách, chúng tôi cũng nhận được sự giúp đỡ tận tình của Nhà xuất bản Ðại học quốc gia Hà Nội và của Nhà xuất bản Khoa học Tự nhiên và Công nghệ. Nhiều nhà toán học trong và ngoài Viện Toán học đã tham gia viết, thẩm định, góp ý cho bộ sách. Viện Toán học xin chân thành cám ơn các cơ quan và cá nhân kể trên. Do nhiều nguyên nhân khác nhau, Bộ sách Toán cao cấp chắc chắn còn rất nhiều thiếu sót. Chúng tôi mong nhận được ý kiến đóng góp của độc giả để bộ sách được hoàn thiện hơn. Chủ tịch Hội ₫ồng biên tập GS-TSKH Hà Huy Khoái BỘ SÁCH TOÁN CAO CẤP - VIỆN TOÁN HỌC HỘI ĐỒNG BIÊN TẬP Hà Huy Khoái (Chủ tịch) Ngô Việt Trung Phạm Huy Ðiển (Thư ký) GIÁO TRÌNH GIẢI TÍCH ĐA TRỊ Nguyễn Đông Yên Viện Toán học, Viện KH&CN Việt Nam NHÀ XUẤT BẢN KHOA HỌC TỰ NHIÊN VÀ CÔNG NGHỆ Môc lôc Lêi nãi ®Çu 3 C¸c ký hiÖu vµ ch÷ viÕt t¾t 6 1 TÝnh liªn tôc cña ¸nh x¹ ®a trÞ 9 1.1 ¸nhx¹®atrÞ............................ 9 1.2 TÝnh nöa liªn tôc trªn vµ tÝnh nöa liªn tôc d−íi cña ¸nh x¹ ®a trÞ 18 1.3 §Þnh lý Kakutani . ......................... 27 1.4 C¸c qu¸ tr×nh låi . ......................... 37 1.5 C¸c tÝnh chÊt Lipschitz cña ¸nh x¹ ®a trÞ ............. 45 2 §¹o hµm cña ¸nh x¹ ®a trÞ 47 2.1 Nguyªn lý biÕn ph©n Ekeland ................... 47 2.2 Nãn tiÕp tuyÕn . ......................... 53 2.3 §¹ohµm.............................. 71 3 TÝch ph©n cña ¸nh x¹ ®a trÞ 77 3.1 ¸nh x¹ ®a trÞ ®o ®−îc, l¸t c¾t ®o ®−îc.............. 77 3.2 TÝch ph©n cña ¸nh x¹ ®a trÞ .................... 91 3.3 L¸t c¾t liªn tôc vµ l¸t c¾t Lipschitz . .............. 95 3.4 TÝch ph©n Aumann cña ¸nh x¹ d−íi vi ph©n Clarke ....... 98 4 §èi ®¹o hµm cña ¸nh x¹ ®a trÞ 103 4.1 Sù ph¸t triÓn cña lý thuyÕt ®èi ®¹o hµm ..............104 4.2 C¸c kh¸i niÖm c¬ b¶n cña lý thuyÕt ®èi ®¹o hµm .........106 4.3 VÊn ®Ò ®¸nh gi¸ d−íi vi ph©n cña hµm gi¸ trÞ tèi −u.......116 4.4 TÝnh comp¾c ph¸p tuyÕn theo d·y . ..............118 4.5 D−íi vi ph©n FrÐchet cña hµm gi¸ trÞ tèi −u ...........120 4.6 D−íi vi ph©n Mordukhovich cña hµm gi¸ trÞ tèi −u........136 4.7 D−íi vi ph©n Mordukhovich cña phiÕm hµm tÝch ph©n . 148 1 2 5 HÖ bÊt ®¼ng thøc suy réng 153 5.1 Giíi thiÖu chung . .........................154 5.2 C¸c ®Þnh nghÜa vµ kÕt qu¶ bæ trî . ..............155 5.3 TÝnh æn ®Þnh . .........................160 5.4 Quy t¾c nh©n tö Lagrange . ....................174 5.5 TÝnh liªn tôc vµ tÝnh Lipschitz cña hµm gi¸ trÞ tèi −u.......178 5.6 Chøng minh MÖnh ®Ò 5.2.1 ....................183 5.7 D−íi vi ph©n Mordukhovich vµ d−íi vi ph©n J-L .........186 5.8 §èi ®¹o hµm Mordukhovich vµ Jacobian xÊp xØ .........194 Phô lôc A 201 Phô lôc B 203 Tµi liÖu tham kh¶o 205 Danh môc tõ khãa 215 3 Lêi nãi ®Çu Gi¶i tÝch ®a trÞ lµ mét h−íng nghiªn cøu t−¬ng ®èi míi trong To¸n häc, mÆc dï tõ nh÷ng n¨m 30 cña thÕ kû XX c¸c nhµ to¸n häc ®· thÊy cÇn ph¶i nghiªn cøu ¸nh x¹ ®a trÞ, tøc lµ ¸nh x¹ nhËn gi¸ trÞ lµ c¸c tËp hîp con cña mét tËp hîp nµo ®ã. Sù ra ®êi cña t¹p chÝ quèc tÕ “Set-Valued Analysis” vµo n¨m 1993 lµ mét mèc lín trong qu¸ tr×nh ph¸t triÓn cña h−íng nghiªn cøu nµy. Vai trß cña gi¶i tÝch ®a trÞ trong To¸n häc vµ c¸c øng dông to¸n häc ®· ®−îc c«ng nhËn réng r·i. Gi¶i tÝch ®a trÞ cã nhiÒu øng dông trong lý thuyÕt ph−¬ng tr×nh vi ph©n, ph−¬ng tr×nh ®¹o hµm riªng, bÊt ®¼ng thøc biÕn ph©n vµ ph−¬ng tr×nh suy réng, lý thuyÕt tèi −u, lý thuyÕt ®iÒu khiÓn, tèi −u ®a môc tiªu, khoa häc qu¶n lý, vµ to¸n kinh tÕ. HiÖn nay hÇu nh− tÊt c¶ c¸c kÕt qu¶ nghiªn cøu vÒ tÝnh æn ®Þnh vµ ®é nh¹y nghiÖm cña c¸c bµi to¸n tèi −u phô thuéc tham sè vµ cña c¸c bµi to¸n bÊt ®¼ng thøc biÕn ph©n phô thuéc tham sè ®Òu ®−îc viÕt b»ng ng«n ng÷ gi¶i tÝch ®a trÞ. Nh÷ng ng−êi ViÖt Nam ®Çu tiªn ®i s©u nghiªn cøu gi¶i tÝch ®a trÞ lµ Gi¸o s− Hoµng Tôy (víi nh÷ng c«ng tr×nh vÒ ®iÓm bÊt ®éng cña ¸nh x¹ ®a trÞ, tÝnh æn ®Þnh cña hÖ bÊt ®¼ng thøc suy réng, ¸nh x¹ ®a trÞ låi, ¸nh x¹ tíi h¹n), Gi¸o s− Ph¹m H÷u S¸ch (víi nh÷ng c«ng tr×nh vÒ ¸nh x¹ ®a trÞ låi, ®¹o hµm cña ¸nh x¹ ®a trÞ vµ øng dông trong lý thuyÕt tèi −u vµ ®iÒu khiÓn) vµ cè Gi¸o s− Phan V¨n Ch−¬ng (víi nh÷ng c«ng tr×nh vÒ ¸nh x¹ ®a trÞ ®o ®−îc, lý thuyÕt bao hµm thøc vi ph©n). Sau ®©y lµ danh s¸ch kh«ng ®Çy ®ñ nh÷ng ng−êi ViÖt Nam ®· hoÆc ®ang cã c«ng tr×nh nghiªn cøu vÒ gi¶i tÝch ®a trÞ vµ c¸c øng dông: Th.S. Ph¹m Ngäc Anh, Th.S.