There Are Strict Rules for Naming New Stuff in Space; Here's Why by Washington Post, Adapted by Newsela Staff on 03.13.19 Word Count 1,084 Level 1220L

Total Page:16

File Type:pdf, Size:1020Kb

There Are Strict Rules for Naming New Stuff in Space; Here's Why by Washington Post, Adapted by Newsela Staff on 03.13.19 Word Count 1,084 Level 1220L There are strict rules for naming new stuff in space; here's why By Washington Post, adapted by Newsela staff on 03.13.19 Word Count 1,084 Level 1220L Image 1. This still image and set of animations show NASA's Voyager 1 spacecraft exploring a new region. Photo by: NASA/JPL-Caltech Take heed, aspiring lunar explorers. Any newly discovered ridges on the moon must be named for a geoscientist. If you want to name a landform on Saturn's moon Titan, you'd better be a fantasy or science fiction fan. Mountains and plains on the lake-covered moon are styled after places in J.R. R. Tolkien's "Lord of the Rings" series and Frank Herbert's "Dune" series. Almost everything on Io, a moon of Jupiter, must have a name associated with fire, volcanoes or Dante's "Inferno." So says the International Astronomical Union, the authority on planetary and satellite names since 1919. As more powerful telescopes and new missions add to the identified real estate of the solar system, the IAU's brilliant and sometimes nerdy naming guidelines help bring order. The IAU's rules are in the news this month after the Carnegie Institution for Science announced it needed help naming several moons of Jupiter discovered last year. Carnegie astronomer Scott Sheppard, who spotted the new moons using a giant telescope in Chile, said suggestions should be This article is available at 5 reading levels at https://newsela.com. made on Twitter. They can be tweeted to the handle @JupiterLunacy using the hashtag #NameJupitersMoons. However, Sheppard is limited to names that meet a few key criteria. Names Tied To Political Activities Are Off Limits A name must come from a character in Greek or Roman mythology who was a descendant or lover of the god known as Zeus in Greek, or Jupiter in Latin. It must be 16 characters or fewer, preferably one word. The name can't be offensive, too commercial, or closely tied to any political, military or religious activities of the past 100 years. It can't belong to a living person and can't be too similar to the names of existing moons or asteroids. If the moon is prograde, meaning it circles in the same direction as its planet rotates, the name must end in an "a." If it is retrograde, circling in the opposite direction, the name must end in an "e." "Jupiter is one of the more restrictive ones," Sheppard said. There is a limit to the number of mythological characters who meet the IAU criteria. "The 'ends in e' scenario is actually running out of names," he said. There Were Many Names For One Rocky Body Gareth Williams, an astronomer at the Harvard Smithsonian Center for Astrophysics who serves on IAU groups, said that these guidelines are necessary to avoid confusion. Before the union came along in the early 20th century, the solar system was a mess. Disputes occasionally broke out over the names of new planets. Uranus was nearly called "George's star" after England's King George III awarded money and a plush home in Windsor Castle to the planet's discoverer, William Herschel. Improvements to telescopes made it possible to identify the inhabitants of the asteroid belt and resulted in scores of new rocky bodies being discovered every year. However, few researchers took the time to cross-check whether their supposed "discovery" had been seen before. Maps of Mars and the moon were similarly full of conflicts. A given crater or dome could have three different names, and a name might describe two different objects. The Official Lunar List Makes Its Debut It wasn't until 1913 that anyone published a definite list of every known feature on the moon, which was the solar system's most-studied object then. Work by Mary Adela Blagg, an English astronomer who tracked each discovery and mismatched name, led to the creation of the IAU's first formal list of lunar landmarks in 1935. With the arrival of the Space Age, "people were making new discoveries by the bucketload," Williams said. The IAU established a Working Group for Planetary System Nomenclature (WGPSN) to oversee the naming process. This article is available at 5 reading levels at https://newsela.com. The spacecraft team of a mission typically proposes categories and themes for naming landforms, said Rita Schulz, chairwoman of the WGPSN. When It Comes To Naming, Themes Are Important After NASA's New Horizons probe flew past Pluto in 2015, scientists on the team and at the IAU devised a naming scheme focused on stories of the underworld and voyages of discovery. As a result, we have the Tenzing Montes on Pluto, which are ice mountains named for Nepalese mountaineer Tenzing Norgay, and a macula, or dark spot, on the moon Charon called "Mordor." Space is full of "Lord of the Rings" references. Once themes are decided, suggestions are reviewed and, once approved, are published in the Gazetteer of Planetary Nomenclature. Among the most recent additions are Hippocamp, a tiny moon of Neptune discovered with the Hubble Space Telescope, and Statio Tainhe, the landing site where the Chinese spacecraft Chang'e 4 touched down on the far side of the moon, a first. "Hippocampi" are the sea monsters that drove Neptune's chariot in ancient myth. "Tianhe" comes from the ancient Chinese name for the Milky Way. Having themes "minimizes the chance that someone will want to give the same name to two different features on two different bodies because the themes will be different," Williams said. As secretary for the Working Group for Small Body Nomenclature, Williams said he has sought to broaden the themes for asteroids and other small objects. He is proud of asteroids named for popular musicians, such as Jimi Hendrix, Billie Holiday and David Bowie. The Beatles And Monty Python Have Their Own Space Rocks Minor planets include any body in orbit around the sun that is not a planet or comet. With a few exceptions, most new asteroids can have any name that is not offensive or commercial or political. These space rocks carry the names of mathematicians, chemists, engineers, high school teachers, the members of the Beatles and the British comedy group Monty Python, runner Jesse Owens, actress Zsa Zsa Gabor and activist Malala Yousafzai. However, even the minor planet community has its limits. In the 1980s, when astronomer James Gibson gave a newly discovered asteroid the name of his cat, Mr. Spock, some people "felt that was inappropriate," Williams said. "So now that is strongly discouraged." Yet the IAU does not change names once they are chosen. The asteroid 2309 Mr. Spock still circles the sun. This article is available at 5 reading levels at https://newsela.com..
Recommended publications
  • Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur
    Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur To cite this version: Alex Soumbatov-Gur. Phobos, Deimos: Formation and Evolution. [Research Report] Karpov institute of physical chemistry. 2019. hal-02147461 HAL Id: hal-02147461 https://hal.archives-ouvertes.fr/hal-02147461 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur The moons are confirmed to be ejected parts of Mars’ crust. After explosive throwing out as cone-like rocks they plastically evolved with density decays and materials transformations. Their expansion evolutions were accompanied by global ruptures and small scale rock ejections with concurrent crater formations. The scenario reconciles orbital and physical parameters of the moons. It coherently explains dozens of their properties including spectra, appearances, size differences, crater locations, fracture symmetries, orbits, evolution trends, geologic activity, Phobos’ grooves, mechanism of their origin, etc. The ejective approach is also discussed in the context of observational data on near-Earth asteroids, main belt asteroids Steins, Vesta, and Mars. The approach incorporates known fission mechanism of formation of miniature asteroids, logically accounts for its outliers, and naturally explains formations of small celestial bodies of various sizes.
    [Show full text]
  • Planetary Nomenclature: an Overview and Update
    3rd Planetary Data Workshop 2017 (LPI Contrib. No. 1986) 7119.pdf PLANETARY NOMENCLATURE: AN OVERVIEW AND UPDATE. T. Gaither1, R. K. Hayward1, J. Blue1, L. Gaddis1, R. Schulz2, K. Aksnes3, G. Burba4, G. Consolmagno5, R. M. C. Lopes6, P. Masson7, W. Sheehan8, B.A. Smith9, G. Williams10, C. Wood11, 1USGS Astrogeology Science Center, Flagstaff, Ar- izona ([email protected]); 2ESA Scientific Support Office, Noordwijk, The Netherlands; 3Institute for Theoretical Astrophysics, Oslo, Norway; 4Vernadsky Institute, Moscow, Russia; 5Specola Vaticana, Vati- can City State; 6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California; 7Uni- versite de Paris-Sud, Orsay, France; 8Lowell Observatory, Flagstaff, Arizona; 9Santa Fe, New Mexico; 10Minor Planet Center, Cambridge, Massachusetts; 11Planetary Science Institute, Tucson, Arizona. Introduction: The task of naming planetary Asteroids surface features, rings, and natural satellites is Ceres 113 managed by the International Astronomical Un- Dactyl 2 ion’s (IAU) Working Group for Planetary System Eros 41 Nomenclature (WGPSN). The members of the Gaspra 34 WGPSN and its task groups have worked since the Ida 25 early 1970s to provide a clear, unambiguous sys- Itokawa 17 tem of planetary nomenclature that represents cul- Lutetia 37 tures and countries from all regions of Earth. Mathilde 23 WGPSN members include Rita Schulz (chair) and Steins 24 9 other members representing countries around the Vesta 106 globe (see author list). In 2013, Blue et al. [1] pre- Jupiter sented an overview of planetary nomenclature, and Amalthea 4 in 2016 Hayward et al. [2] provided an update to Thebe 1 this overview. Given the extensive planetary ex- Io 224 ploration and research that has taken place since Europa 111 2013, it is time to update the community on the sta- Ganymede 195 tus of planetary nomenclature, the purpose and Callisto 153 rules, the process for submitting name requests, and the IAU approval process.
    [Show full text]
  • Hubblecast 128: 30 Years of Science with the Hubble Visual Notes ​ Space Telescope
    Hubblecast 128: 30 Years of Science with the Hubble Visual notes ​ Space Telescope 00:00-00:32 On 24 April 1990 the NASA/ESA Hubble Space Telescope was sent into orbit aboard the space shuttle Discovery — the ​ ​ first space telescope of its kind. It offered a new view of the Universe and has, for 30 years, surpassed all expectations, beaming back data and images that have changed scientists’ understanding of the Universe and the public’s perception of it. 00:33-00:54 Hubble’s discoveries have revolutionised nearly all areas of current astronomical research, from planetary science to cosmology, and its pictures are unmistakably out of this world. This video will revisit some of Hubble’s biggest science discoveries throughout its three decades of operation. 00:55-01:04 [Intro Screen] 01:05-03:13 An early and memorable result is the Hubble Deep Fields. These are extended observations of a particular region of the ​ sky intended to reveal faint objects by collecting the light from them for an appropriately long time. These images fascinated scientists and the general public alike, as the thousands of galaxies captured in single images spawned widespread fascination and amazement. The original and now famous Hubble Deep Field image released in 1996 consisted of an area of sky with a width equal to just one-twelfth that of the full Moon. In it Hubble found almost 3000 distant galaxies. The Hubble Ultra Deep Field from 2004 was the deepest portrait of the visible universe ever achieved by humankind. The 2012 Hubble eXtreme Deep Field was an impressive combination of many existing exposures — over 2000 of them — into one image.
    [Show full text]
  • Mapping of Inner and Outer Celestial Bodies Using New Global and Local Topographic Data Derived from Photogrammetric Image Processing
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic Mapping of inner and outer celestial bodies using new global and local topographic data derived from photogrammetric image processing I.P. Karachevtsevaa*, A.A. Kokhanova, J.F. Rodionovaa,b, A.Yu. Zharkovaa,, M.S. Lazarevaa aMoscow State University of Geodesy and Cartography (MIIGAiK), MIIGAiK Extraterrestrial laboratory (MExLab), 105064. Gorokhovsky per., Moscow, Russia [email protected] bSternberg State Astronomical Institute, 1198993, Moscow, Russia Commission IV, WG IV/8 KEY WORDS: Planetary cartography, DEM, geomorphology study, Phobos, the Moon, Mercury, Ganymede and Enceladus ABSTRACT: New estimation of fundamental geodetic parameters and global and local topography of planets and satellites provide basic coordinate systems for mapping as well as opportunities for studies of processes on their surfaces. The main targets of our study are Europa, Ganymede, Calisto and Io (satellites of Jupiter), Enceladus (a satellite of Saturn), terrestrial planetary bodies, including Mercury, the Moon and Phobos, one of the Martian satellites. In particular, based on new global shape models derived from three-dimensional control point networks and processing of high-resolution stereo images, we have carried out studies of topography and morphology. As a visual representation of the results, various planetary maps with different scale and thematic direction were created. For example, for Phobos we have produced a new atlas with 43 maps, as well as various wall maps (different from the maps in the atlas by their format and design): basemap, topography and geomorphological maps. In addition, we compiled geomorphologic maps of Ganymede on local level, and a global hypsometric Enceladus map.
    [Show full text]
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 33: AUGUST 9-15 Presented by The Earthrise Institute # 33 Authored by Alan Hale About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets.
    [Show full text]
  • Resonant Moons of Neptune
    EPSC Abstracts Vol. 13, EPSC-DPS2019-901-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Resonant moons of Neptune Marina Brozović (1), Mark R. Showalter (2), Robert A. Jacobson (1), Robert S. French (2), Jack L. Lissauer (3), Imke de Pater (4) (1) Jet Propulsion Laboratory, California Institute of Technology, California, USA, (2) SETI Institute, California, USA, (3) NASA Ames Research Center, California, USA, (4) University of California Berkeley, California, USA Abstract We used integrated orbits to fit astrometric data of the 2. Methods regular moons of Neptune. We found a 73:69 inclination resonance between Naiad and Thalassa, the 2.1 Observations two innermost moons. Their resonant argument librates around 180° with an average amplitude of The astrometric data cover the period from 1981-2016, ~66° and a period of ~1.9 years. This is the first fourth- with the most significant amount of data originating order resonance discovered between the moons of the from the Voyager 2 spacecraft and HST. Voyager 2 outer planets. The resonance enabled an estimate of imaged all regular satellites except Hippocamp the GMs for Naiad and Thalassa, GMN= between 1989 June 7 and 1989 August 24. The follow- 3 -2 3 0.0080±0.0043 km s and GMT=0.0236±0.0064 km up observations originated from several Earth-based s-2. More high-precision astrometry of Naiad and telescopes, but the majority were still obtained by HST. Thalassa will help better constrain their masses. The [4] published the latest set of the HST astrometry GMs of Despina, Galatea, and Larissa are more including the discovery and follow up observations of difficult to measure because they are not in any direct Hippocamp.
    [Show full text]
  • New Type of Black Hole Detected in Massive Collision That Sent Gravitational Waves with a 'Bang'
    New type of black hole detected in massive collision that sent gravitational waves with a 'bang' By Ashley Strickland, CNN Updated 1200 GMT (2000 HKT) September 2, 2020 <img alt="Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image." class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190516104725-ngc-4485-nasa-super-169.jpg"> Photos: Wonders of the universe Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image. Hide Caption 98 of 195 <img alt="Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. " class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190502151952-0502-wonders-of-the-universe-super-169.jpg"> Photos: Wonders of the universe Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. Hide Caption 99 of 195 <img alt="A ground-based telescope's view of the Large Magellanic Cloud, a neighboring galaxy of our Milky Way.
    [Show full text]
  • Snapshots of Science
    365 days highlights from news & views 2019 Snapshots of science Neurodegeneration Planetary science Condensed-matter physics Selective clearance A new moon Superconductivity of mutant for Neptune near room huntingtin protein temperature In 1989, the NASA spacecraft Huntington’s disease is caused Voyager 2 detected six moons Materials known as by an abnormally long stretch of Neptune that are interior to superconductors transmit of glutamine amino-acid the orbit of the planet’s largest electrical energy with 100% residues in the huntingtin moon, Triton. Showalter et al. efficiency. They have a wide (HTT) protein. Cells degrade report the discovery of a seventh range of applications, such as the mutant huntingtin (mHTT) inner moon, Hippocamp. magnetic resonance imaging through autophagy — a Originally designated as in hospitals. However, these clearance mechanism that S/2004 N 1 and Neptune XIV, applications have been involves engulfment of this moon was found in images hampered, largely by the fact proteins by a vesicle called taken by NASA’s Hubble Space that the superconducting state the autophagosome. Li et al. Telescope in 2004–05 and exists only at temperatures hypothesized that compounds 2009, and then confirmed well below room temperature that bind to both the mutant in further images captured (295 kelvin). Drozdov et al. polyglutamine tract and the in 2016. Hippocamp is only report several key results protein LC3B, which resides in 34 kilometres wide, which that confirm that, when the autophagosome, would lead makes it diminutive compared compressed to pressures of to engulfment and enhanced with its larger siblings, and it more than one million times clearance of mHTT.
    [Show full text]
  • Current Affairs – 2019
    CURRENT AFFAIRS – 2019 SCIENCE AND TECHNOLOGY HEAD OFFICE TIRUNELVELI BRANCH TRICHY BRANCH PART – 2 INDEX S. No. Topic Page No. BIOTECHNOLOGY 1. Harpin biopesticide 1 2. Gene-edited babies in China 1 3. Mini Neanderthal brain grown in U.S. lab 2 4. DNA reveals first inter-species child 2 5. 100k Genome Asia project 3 6. Southeast Asians descended from four ancient populations 4 7. Stem cell proliferation 5 8. Scientists decode mustard plant’s salt toleration 5 9. Blue roses 6 10. Plants to create own fertilizer from thin air 6 11. What drives flowering, fruiting in Sikkim's rhododendrons? 7 12. Novel biomarkers for gastric cancer progression 7 13. Stem cells to be used to fight against parkinson’s disease 7 14. Scientists discover new cell shape 8 15. GM chickens 8 16. Mosquito population made extinct with genetic tweak 9 17. Big cat Machhli 10 18. New DNA analysis tool can help nab criminals 10 19. Computational methods to decode brain’s GPS 11 20. Domestication of rice molecule 11 21. Fish genes hold key to repairing damaged hearts 12 22. Finder of Rare Entities (FiRE) 12 23. New Delhi superbug gene reaches the Arctic 13 24. Kidneys grown in rats could pave way for human transplant 13 25. Japan approves stem cells trial to treat spinal cord injuries 14 26. Genes and quality of marriage 14 27. Leptospirosis bacteria and human proteins 14 28. Can we repair damaged retina like zebrafish do? 15 29. New study can help develop wheat varieties with high zinc levels 16 30.
    [Show full text]
  • Nomenclature for Lunar Features at the Chang'e-3 Landing Site
    Acta Geochim (2017) 36(2):213–223 DOI 10.1007/s11631-017-0159-1 ORIGINAL ARTICLE Nomenclature for lunar features at the Chang’e-3 landing site Zhoubin Zhang1,2 · Chunlai Li1,2,3 · Wei Zuo1,2,3 · Xingguo Zeng1,2 Received: 22 December 2016 / Revised: 15 February 2017 / Accepted: 9 April 2017 / Published online: 27 April 2017 © Science Press, Institute of Geochemistry, CAS and Springer-Verlag Berlin Heidelberg 2017 Abstract Nomenclatures for lunar features always published after some necessary approval procedures by the accompany the progresses of human lunar exploration, International Astronomical Union. which has an important dual meaning in culture and sci- ence. The naming of lunar features not only can Keywords Moon · Chang’e-3 · Landing site · Lunar commemorate the outstanding contributions of academics, feature nomenclature masters in various fields, and popularize the traditional cultures of ethnic groups all over the world, but also have a critical function of providing accurate indicative informa- 1 Introduction tion on features with special morphology, origin, nature and scientific value. However, nomenclature for features at Planetary nomenclature, like terrestrial nomenclature, is the Chang’e-3 landing site, which has a more arbitrary used to uniquely identify a feature on the surface of a form without many constrains posed by a uniformed sys- planet or satellite so that the feature can be easily located, tem, is unlike the features for other morphological units. described, and discussed. Nomenclature for lunar features This paper originated from the actual needs for the originated in the seventeenth century, as early scientists in description of scientific exploration activities, interpreta- that era used telescopes to observe the lunar surface, named tion of scientific research and dissemination of scientific the remarkable features on the lunar surface according to results.
    [Show full text]
  • Analysing the Region of the Rings and Small Satellites of Neptune
    Analysing the region of the rings and small satellites of Neptune D.M. Gaslac Gallardo1 • S.M. Giuliatti Winter1 • G. Madeira1 • M.A. Mu~noz-Guti´errez2 Abstract Larissa and Proteus (Smith et al. 1989). Proteus is The ring system and small satellites of Neptune were larger compared to the other five satellites, which have discovered during Voyager 2 flyby in 1989 (Smith et al. radius smaller than 100km. Triton, the largest satellite, 1989). In this work we analyse the diffusion maps which and Nereid completed the Neptune satellite system un- can give an overview of the system. As a result we til the discovery of Hippocamp, the smallest satellite found the width of unstable and stable regions close (about 17km in radius, Showalter et al. (2019)). to each satellite. The innermost Galle ring, which is Voyager 2 cameras also imaged a ring system formed further from the satellites, is located in a stable region, by Galle, Le Verrier, Lassel, Arago and Adams rings while Lassel ring (W = 4000 km) has its inner border (Smith et al. 1989). Adams ring is a narrow ring com- in a stable region depending on its eccentricity. The posed by a sample of arcs named Courag´e,Libert´e,Fra- same happens to the Le Verrier and Adams rings , they ternit´e,Egalit´e1 and 2. These arcs have shown varia- are stable for small values of the eccentricity. They tions in brightness. Le Verrier and Arago rings are also can survive to the close satellites perturbation only for narrow, while Lassel ring is larger and very faint.
    [Show full text]