BMC Genomics Biomed Central
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PUF60 Variants Cause a Syndrome of ID, Short Stature, Microcephaly, Coloboma, Craniofacial, Cardiac, Renal and Spinal Features
European Journal of Human Genetics (2017) 25, 552–559 Official journal of The European Society of Human Genetics www.nature.com/ejhg ARTICLE PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features Karen J Low1,2, Morad Ansari3, Rami Abou Jamra4, Angus Clarke5, Salima El Chehadeh6, David R FitzPatrick3, Mark Greenslade7, Alex Henderson8, Jane Hurst9, Kory Keller10, Paul Kuentz11, Trine Prescott12, Franziska Roessler4, Kaja K Selmer12, Michael C Schneider13, Fiona Stewart14, Katrina Tatton-Brown15, Julien Thevenon11, Magnus D Vigeland12, Julie Vogt16, Marjolaine Willems17, Jonathan Zonana10, DDD Study18 and Sarah F Smithson*,1,2 PUF60 encodes a nucleic acid-binding protein, a component of multimeric complexes regulating RNA splicing and transcription. In 2013, patients with microdeletions of chromosome 8q24.3 including PUF60 were found to have developmental delay, microcephaly, craniofacial, renal and cardiac defects. Very similar phenotypes have been described in six patients with variants in PUF60, suggesting that it underlies the syndrome. We report 12 additional patients with PUF60 variants who were ascertained using exome sequencing: six through the Deciphering Developmental Disorders Study and six through similar projects. Detailed phenotypic analysis of all patients was undertaken. All 12 patients had de novo heterozygous PUF60 variants on exome analysis, each confirmed by Sanger sequencing: four frameshift variants resulting in premature stop codons, three missense variants that clustered within the RNA recognition motif of PUF60 and five essential splice-site (ESS) variant. Analysis of cDNA from a fibroblast cell line derived from one of the patients with an ESS variants revealed aberrant splicing. The consistent feature was developmental delay and most patients had short stature. -
An Interface-Based Prediction of Membrane Protein-Protein Interactions
bioRxiv preprint doi: https://doi.org/10.1101/871590; this version posted July 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. TransINT: an interface-based prediction of membrane protein-protein interactions Khazen, G.1,*, Gyulkhandanian, A.2, Issa, T.1 and Maroun, R.C. 2,* 1 Computer Science and Mathematics Department, Lebanese American University, Byblos-Lebanon 2 Inserm U1204/ Université d’Evry/Université Paris-Saclay/ Structure-Activité des Biomolécules Normales et Pathologiques 91025 Evry France. ABSTRACT Membrane proteins account for about one-third of the proteomes of organisms and include structural proteins, channels, and receptors. The mutual interactions they establish in the membrane play crucial roles in organisms, as they are behind many processes such as cell signaling and protein function. Because of their number and diversity, these proteins and their macromolecular complexes, along with their physical interfaces represent potential pharmacological targets par excellence for a variety of diseases, with very important implications for the design and discovery of new drugs or peptides modulating or inhibiting the interaction. Yet, structural data coming from experiments is very scarce for this family of proteins and the study of those proteins at the molecular level goes necessarily through extraction from cell membranes, a step that reveals itself noxious/harmful for their structure and function. To overcome this problem, we propose a computational approach for the prediction of alpha-helical transmembrane protein higher-order structures through data mining, sequence analysis, motif search, extraction, identification and characterization of the amino acid residues at the interface of the complexes. -
Nuclear PTEN Safeguards Pre-Mrna Splicing to Link Golgi Apparatus for Its Tumor Suppressive Role
ARTICLE DOI: 10.1038/s41467-018-04760-1 OPEN Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role Shao-Ming Shen1, Yan Ji2, Cheng Zhang1, Shuang-Shu Dong2, Shuo Yang1, Zhong Xiong1, Meng-Kai Ge1, Yun Yu1, Li Xia1, Meng Guo1, Jin-Ke Cheng3, Jun-Ling Liu1,3, Jian-Xiu Yu1,3 & Guo-Qiang Chen1 Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are 1234567890():,; largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers. 1 Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China. -
Signal Adaptor DAP10 Associates with MDL-1 and Triggers Osteoclastogenesis in Cooperation with DAP12
Signal adaptor DAP10 associates with MDL-1 and triggers osteoclastogenesis in cooperation with DAP12 Masanori Inuia,1, Yuki Kikuchia,1, Naoko Aokib, Shota Endoa, Tsutomu Maedaa, Akiko Sugahara-Tobinaia, Shion Fujimuraa, Akira Nakamuraa, Atsushi Kumanogohc, Marco Colonnad, and Toshiyuki Takaia,2 aDepartment of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo 4-1, Sendai 980-8575, Japan; bDepartment of Pathology, Asahikawa Medical College, Higashi 2-1-1, Midorigaoka, Asahikawa 078-8510, Japan; cDepartment of Immunopathology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; and dDepartment of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110 Communicated by Jeffrey V. Ravetch, The Rockfeller University, New York, NY, January 22, 2009 (received for review May 14, 2008) Osteoclasts, cells of myeloid lineage, play a unique role in bone the Ig superfamily or C-type lectin family. They primarily mediate resorption, maintaining skeletal homeostasis in concert with bone- a Src-family kinase-initiated activation signal, leading to a series of producing osteoblasts. Osteoclast development and maturation (os- events including Syk kinase recruitment, triggering of calcium teoclastogenesis) is driven by receptor activator of NF-B ligand and signaling mediated by phospholipase C␥ (PLC␥), and activation of macrophage-colony stimulating factor and invariably requires a sig- the MAPK cascade, culminating in cell proliferation and cytokine nal initiated by immunoreceptor tyrosine-based activation motif production as the output of cellular responses. In osteoclast pre- (ITAM)-harboring Fc receptor common ␥ chain or DNAX-activating cursor cells, FcR␥ and DAP12 associate with several cognate protein (DAP)12 (also referred to as KARAP or TYROBP) that associates cell-surface immunoreceptors (9) such as osteoclast-associated with the cognate immunoreceptors. -
Control of Pre-Mrna Splicing by the General Splicing Factors PUF60 and U2AF 65 M Hastings, Eric Allemand, D Duelli, M
Control of Pre-mRNA Splicing by the General Splicing Factors PUF60 and U2AF 65 M Hastings, Eric Allemand, D Duelli, M. Myers, A. R. Krainer To cite this version: M Hastings, Eric Allemand, D Duelli, M. Myers, A. R. Krainer. Control of Pre-mRNA Splicing by the General Splicing Factors PUF60 and U2AF 65. PLoS ONE, Public Library of Science, 2007, 2 (6), pp.e538. 10.1371/journal.pone.0000538. hal-02462773 HAL Id: hal-02462773 https://hal.archives-ouvertes.fr/hal-02462773 Submitted on 31 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Control of Pre-mRNA Splicing by the General Splicing Factors PUF60 and U2AF65 Michelle L. Hastings, Eric Allemand¤, Dominik M. Duelli, Michael P. Myers, Adrian R. Krainer* Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America Pre-mRNA splicing is a crucial step in gene expression, and accurate recognition of splice sites is an essential part of this process. Splice sites with weak matches to the consensus sequences are common, though it is not clear how such sites are efficiently utilized. Using an in vitro splicing-complementation approach, we identified PUF60 as a factor that promotes splicing of an intron with a weak 39 splice-site. -
Far Upstream Element Binding Protein 1: a Commander of Transcription, Translation and Beyond
Oncogene (2013) 32, 2907–2916 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc REVIEW Far upstream element binding protein 1: a commander of transcription, translation and beyond J Zhang and QM Chen The far upstream binding protein 1 (FBP1) was first identified as a DNA-binding protein that regulates c-Myc gene transcription through binding to the far upstream element (FUSE) in the promoter region 1.5 kb upstream of the transcription start site. FBP1 collaborates with TFIIH and additional transcription factors for optimal transcription of the c-Myc gene. In recent years, mounting evidence suggests that FBP1 acts as an RNA-binding protein and regulates mRNA translation or stability of genes, such as GAP43, p27 Kip and nucleophosmin. During retroviral infection, FBP1 binds to and mediates replication of RNA from Hepatitis C and Enterovirus 71. As a nuclear protein, FBP1 may translocate to the cytoplasm in apoptotic cells. The interaction of FBP1 with p38/ JTV-1 results in FBP1 ubiquitination and degradation by the proteasomes. Transcriptional and post-transcriptional regulations by FBP1 contribute to cell proliferation, migration or cell death. FBP1 association with carcinogenesis has been reported in c-Myc dependent or independent manner. This review summarizes biochemical features of FBP1, its mechanism of action, FBP family members and the involvement of FBP1 in carcinogenesis. Oncogene (2013) 32, 2907–2916; doi:10.1038/onc.2012.350; published online 27 August 2012 Keywords: FBP1; FUSE; cancer INTRODUCTION IDENTIFICATION OF FBP1 The far upstream element binding protein 1 (FBP1) was first FBP1 was first cloned from a cDNA library generated from the discovered as a transcriptional regulator of the proto-oncogene undifferentiated human monoblastic line U937.6 Such an c-Myc. -
Disturbed Alternative Splicing of FIR (PUF60) Directed Cyclin E Overexpression in Esophageal Cancers
www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 33), pp: 22929-22944 Research Paper Disturbed alternative splicing of FIR (PUF60) directed cyclin E overexpression in esophageal cancers Yukiko Ogura1, Tyuji Hoshino2, Nobuko Tanaka3, Guzhanuer Ailiken4, Sohei Kobayashi1,3, Kouichi Kitamura3,4, Bahityar Rahmutulla5, Masayuki Kano1, Kentarou Murakami1, Yasunori Akutsu1, Fumio Nomura3, Sakae Itoga3, Hisahiro Matsubara1 and Kazuyuki Matsushita3 1Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan 2Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan 3Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan 4Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan 5Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan Correspondence to: Kazuyuki Matsushita, email: [email protected] Keywords: esophageal squamous cell carcinoma (ESCC); alternative splicing (AS); FBW7; FIR (PUF60); cyclin E Received: May 25, 2017 Accepted: March 22, 2018 Published: May 01, 2018 Copyright: Ogura et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Overexpression of alternative splicing of far upstream element binding protein 1 (FUBP1) interacting repressor (FIR; poly(U) binding splicing factor 60 [PUF60]) and cyclin E were detected in esophageal squamous cell carcinomas (ESCC). Accordingly, the expression of FBW7 was examined by which cyclin E is degraded as a substrate via the proteasome system. Expectedly, FBW7 expression was decreased significantly in ESCC. -
NKG2D Ligands in Tumor Immunity
Oncogene (2008) 27, 5944–5958 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc REVIEW NKG2D ligands in tumor immunity N Nausch and A Cerwenka Division of Innate Immunity, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany The activating receptor NKG2D (natural-killer group 2, activated NK cells sharing markers with dendritic cells member D) and its ligands play an important role in the (DCs), which are referred to as natural killer DCs NK, cd þ and CD8 þ T-cell-mediated immune response to or interferon (IFN)-producing killer DCs (Pillarisetty tumors. Ligands for NKG2D are rarely detectable on the et al., 2004; Chan et al., 2006; Taieb et al., 2006; surface of healthy cells and tissues, but are frequently Vosshenrich et al., 2007). In addition, NKG2D is expressed by tumor cell lines and in tumor tissues. It is present on the cell surface of all human CD8 þ T cells. evident that the expression levels of these ligands on target In contrast, in mice, expression of NKG2D is restricted cells have to be tightly regulated to allow immune cell to activated CD8 þ T cells (Ehrlich et al., 2005). In activation against tumors, but at the same time avoid tumor mouse models, NKG2D þ CD8 þ T cells prefer- destruction of healthy tissues. Importantly, it was recently entially accumulate in the tumor tissue (Gilfillan et al., discovered that another safeguard mechanism controlling 2002; Choi et al., 2007), suggesting that the activation via the receptor NKG2D exists. It was shown NKG2D þ CD8 þ T-cell population comprises T cells that NKG2D signaling is coupled to the IL-15 receptor involved in tumor cell recognition. -
Dominant Variants in the Splicing Factor PUF60 Cause a Recognizable Syndrome with Intellectual Disability, Heart Defects and Short Stature
European Journal of Human Genetics (2017) 25, 43–51 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg ARTICLE Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature Salima El Chehadeh*,1,2, Wilhelmina S Kerstjens-Frederikse3, Julien Thevenon1,4, Paul Kuentz1,4,5, Ange-Line Bruel4, Christel Thauvin-Robinet1,4, Candace Bensignor6, Hélène Dollfus2,7, Vincent Laugel7,8, Jean-Baptiste Rivière1,4,5, Yannis Duffourd1, Caroline Bonnet9, Matthieu P Robert10,11, Rodica Isaiko12, Morgane Straub12, Catherine Creuzot-Garcher12, Patrick Calvas13, Nicolas Chassaing13, Bart Loeys14, Edwin Reyniers14, Geert Vandeweyer14, Frank Kooy14, Miroslava Hančárová15, Marketa Havlovicová15, Darina Prchalová15, Zdenek Sedláček15, Christian Gilissen16, Rolph Pfundt16, Jolien S Klein Wassink-Ruiter3 and Laurence Faivre1,4 Verheij syndrome, also called 8q24.3 microdeletion syndrome, is a rare condition characterized by ante- and postnatal growth retardation, microcephaly, vertebral anomalies, joint laxity/dislocation, developmental delay (DD), cardiac and renal defects and dysmorphic features. Recently, PUF60 (Poly-U Binding Splicing Factor 60 kDa), which encodes a component of the spliceosome, has been discussed as the best candidate gene for the Verheij syndrome phenotype, regarding the cardiac and short stature phenotype. To date, only one patient has been reported with a de novo variant in PUF60 that probably affects function (c.505C4T leading to p.(His169Tyr)) associated with DD, microcephaly, craniofacial and cardiac defects. Additional patients were required to confirm the pathogenesis of this association and further delineate the clinical spectrum. Here we report five patients with de novo heterozygous variants in PUF60 identified using whole exome sequencing. -
Product Size GOT1 P00504 F CAAGCTGT
Table S1. List of primer sequences for RT-qPCR. Gene Product Uniprot ID F/R Sequence(5’-3’) name size GOT1 P00504 F CAAGCTGTCAAGCTGCTGTC 71 R CGTGGAGGAAAGCTAGCAAC OGDHL E1BTL0 F CCCTTCTCACTTGGAAGCAG 81 R CCTGCAGTATCCCCTCGATA UGT2A1 F1NMB3 F GGAGCAAAGCACTTGAGACC 93 R GGCTGCACAGATGAACAAGA GART P21872 F GGAGATGGCTCGGACATTTA 90 R TTCTGCACATCCTTGAGCAC GSTT1L E1BUB6 F GTGCTACCGAGGAGCTGAAC 105 R CTACGAGGTCTGCCAAGGAG IARS Q5ZKA2 F GACAGGTTTCCTGGCATTGT 148 R GGGCTTGATGAACAACACCT RARS Q5ZM11 F TCATTGCTCACCTGCAAGAC 146 R CAGCACCACACATTGGTAGG GSS F1NLE4 F ACTGGATGTGGGTGAAGAGG 89 R CTCCTTCTCGCTGTGGTTTC CYP2D6 F1NJG4 F AGGAGAAAGGAGGCAGAAGC 113 R TGTTGCTCCAAGATGACAGC GAPDH P00356 F GACGTGCAGCAGGAACACTA 112 R CTTGGACTTTGCCAGAGAGG Table S2. List of differentially expressed proteins during chronic heat stress. score name Description MW PI CC CH Down regulated by chronic heat stress A2M Uncharacterized protein 158 1 0.35 6.62 A2ML4 Uncharacterized protein 163 1 0.09 6.37 ABCA8 Uncharacterized protein 185 1 0.43 7.08 ABCB1 Uncharacterized protein 152 1 0.47 8.43 ACOX2 Cluster of Acyl-coenzyme A oxidase 75 1 0.21 8 ACTN1 Alpha-actinin-1 102 1 0.37 5.55 ALDOC Cluster of Fructose-bisphosphate aldolase 39 1 0.5 6.64 AMDHD1 Cluster of Uncharacterized protein 37 1 0.04 6.76 AMT Aminomethyltransferase, mitochondrial 42 1 0.29 9.14 AP1B1 AP complex subunit beta 103 1 0.15 5.16 APOA1BP NAD(P)H-hydrate epimerase 32 1 0.4 8.62 ARPC1A Actin-related protein 2/3 complex subunit 42 1 0.34 8.31 ASS1 Argininosuccinate synthase 47 1 0.04 6.67 ATP2A2 Cluster of Calcium-transporting -
Program in Human Neutrophils Fails To
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology Anaplasma phagocytophilum , 20 of which you can access for free at: 2005; 174:6364-6372; ; from submission to initial decision 4 weeks from acceptance to publication J Immunol doi: 10.4049/jimmunol.174.10.6364 http://www.jimmunol.org/content/174/10/6364 Insights into Pathogen Immune Evasion Mechanisms: Fails to Induce an Apoptosis Differentiation Program in Human Neutrophils Dori L. Borjesson, Scott D. Kobayashi, Adeline R. Whitney, Jovanka M. Voyich, Cynthia M. Argue and Frank R. DeLeo cites 28 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2005/05/03/174.10.6364.DC1 This article http://www.jimmunol.org/content/174/10/6364.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Insights into Pathogen Immune Evasion Mechanisms: Anaplasma phagocytophilum Fails to Induce an Apoptosis Differentiation Program in Human Neutrophils1 Dori L. -
Cancer-Associated Substitutions in RNA Recognition Motifs of PUF60 and U2AF65 Reveal Residues 0 Required for Correct Folding and 3 Splice-Site Selection
cancers Article Cancer-Associated Substitutions in RNA Recognition Motifs of PUF60 and U2AF65 Reveal Residues 0 Required for Correct Folding and 3 Splice-Site Selection 1,2, 2, 3 3 Jana Kralovicova y, Ivana Borovska y, Monika Kubickova , Peter J. Lukavsky and Igor Vorechovsky 1,* 1 Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; [email protected] 2 Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; [email protected] 3 CEITEC, Masaryk University, 625 00 Brno, Czech Republic; [email protected] (M.K.); [email protected] (P.J.L.) * Correspondence: [email protected]; Tel.: +44-2381-206425; Fax: +44-2381-204264 These authors contributed equally to this work. y Received: 15 June 2020; Accepted: 7 July 2020; Published: 11 July 2020 Abstract: U2AF65 (U2AF2) and PUF60 (PUF60) are splicing factors important for recruitment of the U2 small nuclear ribonucleoprotein to lariat branch points and selection of 30 splice sites (30ss). Both proteins preferentially bind uridine-rich sequences upstream of 30ss via their RNA recognition motifs (RRMs). Here, we examined 36 RRM substitutions reported in cancer patients to identify variants that alter 30ss selection, RNA binding and protein properties. Employing PUF60- and U2AF65-dependent 30ss previously identified by RNA-seq of depleted cells, we found that 43% (10/23) and 15% (2/13) of independent RRM mutations in U2AF65 and PUF60, respectively, conferred splicing defects. At least three RRM mutations increased skipping of internal U2AF2 (~9%, 2/23) or PUF60 (~8%, 1/13) exons, indicating that cancer-associated RRM mutations can have both cis- and trans-acting effects on splicing.