View Full Issue

Total Page:16

File Type:pdf, Size:1020Kb

View Full Issue Volume 31, Issue 2, December 2015 ISSN 0204-8809 ACTA MICROBIOLOGICA BULGARICA Bulgarian Society for Microbiology Union of Scientists in Bulgaria Acta Microbiologica Bulgarica The journal publishes editorials, original research works, research reports, reviews, short communications, letters to the editor, historical notes, etc from all areas of microbiology An Official Publication of the Bulgarian Society for Microbiology (Union of Scientists in Bulgaria) Volume 31 / 2 (2015) Editor-in-Chief Angel S. Galabov Press Product Line Sofia Editor-in-Chief Angel S. Galabov Editors Maria Angelova Hristo Najdenski Editorial Board I. Abrashev, Sofia S. Aydemir, Izmir, Turkey L. Boyanova, Sofia E. Carniel, Paris, France M. Da Costa, Coimbra, Portugal E. DeClercq, Leuven, Belgium S. Denev, Stara Zagora D. Fuchs, Innsbruck, Austria S. Groudev, Sofia I. Iliev, Plovdiv A. Ionescu, Bucharest, Romania L. Ivanova, Varna V. Ivanova, Plovdiv I. Mitov, Sofia I. Mokrousov, Saint-Petersburg, Russia P. Moncheva, Sofia M. Murdjeva, Plovdiv R. Peshev, Sofia M. Petrovska, Skopje, FYROM J. C. Piffaretti, Massagno, Switzerland S. Radulovic, Belgrade, Serbia P. Raspor, Ljubljana, Slovenia B. Riteau, Marseille, France J. Rommelaere, Heidelberg, Germany G. Satchanska, Sofia E. Savov, Sofia A. Stoev, Kostinbrod S. Stoitsova, Sofia T. Tcherveniakova, Sofia E. Tramontano, Cagliari, Italy A. Tsakris, Athens, Greece F. Wild, Lyon, France Vol. 31, Issue 2 December 2015 ACTA MICROBIOLOGICA BULGARICA CONTENTS Review Articles Biohydrometallurgy in Bulgaria - Achievements and Perspectives Stoyan Groudev 81 Enteroviruses and Perspectives for Etiotropic Therapy of Enteroviral Infections Adelina Stoyanova, Angel S. Galabov 93 Regular Papers Anti-Influenza Virus Activity of 1-(4-Morpholinomethyl)-tetrahydro-2(1H)- pyrimidinone (Mopyridone) Angel S. Galabov, Sergey Uzunov, Vessela Hadjiathanassova, Emilia Velichkova, Paulina Dosseva-Runevska, Galina Gegova 107 Reasons for Two Consecutive Helicobacter pylori Treatment Failures Lyudmila Boyanova, Naiden Kandilarov, Galina Gergova, Ivan Mitov 115 Monoclonal Antibody against Lipooligosaccharide of Moraxella catarrhalis Decreases Resistance to Aminopenicillins Raina T. Gergova, Rumiana D. Markovska, Ivan G. Mitov 118 Promotion of the Synthesis of a Concanavalin A-reactive Polysaccharide Upon Growth of Escherichia coli O157:H(-) on Solid Medium at 37oC Tsvetelina Paunova-Krasteva, Radka Ivanova, Cristina DeCastro, Antonio Molinaro, Stoyanka R. Stoitsova 122 Antioxidant Activity of Helix aspersa maxima (Gastropod) Hemocyanin Yuliana Raynova, Andrey Marchev, Lyuba Doumanova, Atanas Pavlov, Krassimira Idakieva 127 Temperature Pre-Treatment Modulates Oxidative Protection of Aspergillus niger Cells Stressed by Paraquat and Hydrogen Peroxide Radoslav Abrashev, Pavlina Dolashka, Maria Angelova 132 Purification of Arabinomannan Synthesized by Cryptococcus laurentii AL100 Snezhana Rusinova-Videva, Nadya Radchenkova, Georgi Dobrev, Kostantza Pavlova 141 Spread and Manifestations of Pear Rust (Gymnosporangium sabine) on Different Pear Cultivars Antoniy Stoev, Georgi Kostadinov 145 Chronicle 6th Congress of European Microbiologists, Maastricht, The Netherlands, June 7-11, 2015 Galina Satchanska 149 Ninth Balkan Congress of Microbiology, Thessaloniki, October 22-24, 2015 151 70 Years Anniversary of Department of Microbiology and Immunology, Medical University of Plovdiv Marianna Murdjeva 152 Forth Congress of Virology (Days of Virology in Bulgaria) with International Participation, Sofia, May 19-20, 2016 153 ACTA MICROBIOLOGICA BULGARICA Review Biohydrometallurgy in Bulgaria - Achievements and Perspectives Stoyan Groudev University of Mining and Geology “Saint Ivan Rilski”, Sofia, Bulgaria Abstract The past and current research and industrial activities in the field of biohydrometallurgy in Bulgaria cover a large number of problems: microflora of different mineral deposits (such as of ores of non-ferrous metals, uranium and gold; non-metallic mineral raw materials such as coal, oil, kaolins, quartz sands, etc.); physiology, biochemistry and genetics of the microorganisms participating in the transformations of the above-mentioned mineral substrates; bioleaching of copper and other non-ferrous metals and uranium by means of in situ, dump, heap and reactor techniques; pretreatment of gold and silver-bearing sulphide concentrates and ores by means of chemolithotrophic bacteria to expose these precious metals; combined microbial and chemical leaching of precious metals from oxide ores; microbial removal of iron from quartz sands and kaolins, of sulphur from coal, of silicon from low-grade bauxites, of phosphorus from iron ores; improvement of the ceramic properties of kaolins; microbial enhanced oil recovery; electricity production from organic wastes by means of microbial fuel cells. Several of the above-mentioned activities are connected with the solution of essential environmental problems: prevention of the generation and/or treatment of toxic waters polluted by heavy metals, radionu- clides, arsenic, oil, organochemicals, etc. by means of active and/or passive systems, reactive zones, rock filters, etc.; treatment of soils polluted with the above-mentioned pollutants by different reactors, heap and in situ techniques; bioremediation of post-mining landscapes and wastes. Keywords: biohydrometallurgy, bioleaching, bioremediation, chemolithotrophic bacteria, mineral biotech- nology Резюме Научните и промишлени дейнсоти в областта на биохидрометалургията в миналото и понастоящем в България обхващат голям брой проблеми: микрофлора на различни минерални находища (на руди на цветни метали, уран и злато; неметални минерални суровини като въглища, нефт, каолини, кварцови пясъщи и т.н.); физиология биохимия и генетика на микроорганизм,и участващи в трансформациите на посочените минерални субстрати; биологично излугване на мед и други цветни метали и уран посредством техники, приложенени in situ, в насипища и реактори; предварително третиране на златни и сребърни сулфидни концентрати и руди чрез хемолитотрофни бактерии за разкриване на тези благородни метали от минералните структури; комбинирано микробно и химично излугване на благородни метали от окисни руди; микробно отстраняване на желязо от кварцови пясъци и каолини, на сяра от въглища, на силиций от нискокачествени боксити, на фосфор от железни руди; подобряване на керамичните свойства на каолини; микробно повишаване на добива на нефт; получаване на електричество от органични отпадъци чрез микробни горивни клетки. Редица от горепосочените дейности са свързани с решаването на съществени екологични проблеми: предотвратяване на генерирането и/или третиране на токсични води, замърсени от тежки метали, радионуклиди, арсен, нефт, органохимикали и т.н., посредством активни и/или пасивни системи, действащи in situ зони, скални филтри и т.н.; третиране на почви, замърсени с горепосочените замърсители, чрез техники, приложени в реактори, конструирани насипища и in situ; биоремедиация на ландшафти и отпадъци след рудодобив. 81 Introduction 1978; Karavaiko and Groudev, 1985; Karavaiko et The first studies in the field of biohydromet- al., 1988). The data from these studies made possi- allurgy in Bulgaria were started in 1967 by a joint ble the efficient application of the relevant process- group of investigators and students from the Uni- es under real commercial-scale conditions. versity of Mining and Geology “Saint Ivan Rilski” Until now, there were five commercial-scale - Sofia and the University of Sofia “Saint Kliment operations for dump bioleaching of copper from Ohridski”. In the course of time, engineers from low-grade ores and mining wastes. One of them, the then-existing institute NIPRORUDA and from located near to the Vlaikov Vrah copper mine, for some industrial enterprises were involved in these a long period of time (1972 - 2003) was the larg- activities. est operation of this type in Europe. More than The realization of efficient large-scale bio- forty million tons of ore with an average copper technologies for processing different mineral raw content of about 0.15 % were leached by indige- materials and recovery of the relevant valuable nous populations of acidophilic chemolithotroph- components required preliminary studies on the ic bacteria, mainly of the species Acidithiobacillus chemical and mineral composition and structure of ferrooxidans, Acidithiobacillus thiooxidans and the raw materials, the composition of the indige- Leptospirillum ferrooxidans. The growth and ac- nous microflora of the relevant deposits, as well as tivity of these bacteria were stimulated by suitable on the real participation and potential of this mi- changes in the levels of some essential environ- croflora in the processes of mineral transformations mental factors such as humidity, pH and content and leaching of different components. Initially, spe- of air and nutrients (mainly of ammonium and cial attention was paid to the oxidation of sulphide phosphate ions) in the ore dumps. Initially, cop- minerals, ferrous iron and elemental sulphur by dif- per was recovered from the pregnant leach solu- ferent acidophilic chemolithotrophic bacteria, the tions by cementation with metallic iron (Fe0) but mechanisms and the optimum conditions for these later solvent extraction followed by electrolysis processes, which were essential for the leaching was used for this purpose (Groudev and Genchev, of copper, other non-ferrous metals and uranium 1976; Groudev et al., 1978; Groudev and Groud- from the relevant mineral
Recommended publications
  • Arxiv:1903.01048V1 [Stat.AP] 4 Mar 2019 Author Summary
    Early Detection of Influenza outbreaks in the United States Kai Liu1,3*, Ravi Srinivasan2, Lauren Ancel Meyers1,4 1 Departments of Integrative Biology and Statistics & Data Sciences, The University of Texas at Austin, Austin, TX, US 2 Applied Research Laboratories, The University of Texas at Austin, Austin, TX, US 3 Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, US 4 Santa Fe Institute, Santa Fe, NM, US * [email protected] Abstract Public health surveillance systems often fail to detect emerging infectious diseases, particularly in resource limited settings. By integrating relevant clinical and internet-source data, we can close critical gaps in coverage and accelerate outbreak detection. Here, we present a multivariate algorithm that uses freely available online data to provide early warning of emerging influenza epidemics in the US. We evaluated 240 candidate predictors and found that the most predictive combination does not include surveillance or electronic health records data, but instead consists of eight Google search and Wikipedia pageview time series reflecting changing levels of interest in influenza-related topics. In cross validation on 2010-2016 data, this algorithm sounds alarms an average of 16.4 weeks prior to influenza activity reaching the Center for Disease Control and Prevention (CDC) threshold for declaring the start of the season. In an out-of-sample test on data from the rapidly-emerging fall wave of the 2009 H1N1 pandemic, it recognized the threat five weeks in advance of this surveillance threshold. Simpler algorithms, including fixed week-of-the-year triggers, lag the optimized alarms by only a few weeks when detecting seasonal influenza, but fail to provide early warning in the 2009 pandemic scenario.
    [Show full text]
  • Dectova, INN-Zanamivir
    28 February 2019 EMA/CHMP/851480/2018 Committee for Medicinal Products for Human Use (CHMP) Assessment report DECTOVA International non-proprietary name: zanamivir Procedure No. EMEA/H/C/004102/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 7 1.1. Submission of the dossier ...................................................................................... 7 1.2. Steps taken for the assessment of the product ......................................................... 9 2. Scientific discussion .............................................................................. 12 2.1. Problem statement ............................................................................................. 12 2.1.1. Disease or condition ......................................................................................... 12 2.1.2. Epidemiology .................................................................................................. 12 2.1.3. Biologic features .............................................................................................
    [Show full text]
  • Feline Calicivirus Ulcer on Tongue Unilateral Conjunctivitis Typical of Early Chlamydophila Felis Infection Feline Chronic Lymphocytic Plasmacytic Gingivostomatitis
    £5.00, $9.00, €7.50 Melchizedek publications www.catvirus.com If you print this book out – please do so on recycled paper! Cover photos – feline calicivirus ulcer on tongue unilateral conjunctivitis typical of early Chlamydophila felis infection feline chronic lymphocytic plasmacytic gingivostomatitis © Diane D. Addie PhD BVMS MRCVS Sep 2006 2 Contents Page Introduction ………………………………………………………………………. 4 Feline calicivirus………………………………………………………………….. 4 Feline chronic gingivostomatitis ………………………………………….. .….. 7 Feline herpesvirus (viral rhinotracheitis)……………………………………….. 10 Chlamydophila felis……………………………………………………………….. 13 Bordetella bronchiseptica ……………………………………………………….. 16 Avian influenza virus H5N1 …………………………………………………….. 17 Poxvirus …………………………………………………………………………… 19 Feline coronavirus ……………………………………………………………….. 19 Haemophilus felis ………………………………………………………………… 19 Aelurostrongylus abstrusus …………………………………………………….. 19 Mycoplasma felis ………………………………………………………………… 20 Corynebacterium spp ……………………………………………………………. 20 Cryptococcus spp ……………………………..…………………………………. 20 Capillaria aerophila ………………………………………………………………. 21 Cuterebra larval migrans ………………………………………………………… 21 Differential diagnoses …………………………………………………………… 22 acute oral ulceration …………………………………… 22 chronic gingivostomatitis……………………………….. 22 chronic rhinitis ………………………………………….. 22 conjunctivitis ……………………………………………. 23 coughing ………………………………………………… 23 fading kittens ……………………………………………. 23 bronchopneumonia of kittens …………………………. 24 Preventing respiratory infection 25 hygiene ………………………………………. 25 barrier nursing
    [Show full text]
  • Efficacy of Baloxavir Marboxil on Household Transmission Of
    Umemura et al. Journal of Pharmaceutical Health Care and Sciences (2020) 6:21 https://doi.org/10.1186/s40780-020-00178-4 RESEARCH ARTICLE Open Access Efficacy of baloxavir marboxil on household transmission of influenza infection Takumi Umemura1,2* , Yoshikazu Mutoh2, Takato Kawamura1, Masayuki Saito1, Takahito Mizuno1, Aiko Ota1, Koji Kozaki1, Tetsuya Yamada1, Yoshiaki Ikeda3 and Toshihiko Ichihara2 Abstract Background: Baloxavir marboxil (baloxavir) is a new anti-influenza virus agent that is comparable to oseltamivir phosphate (oseltamivir). Since the efficacy of baloxavir in preventing household transmission of influenza is not well established, we compared the secondary household influenza virus transmission rates between patients on baloxavir vs oseltamivir. Methods: Between October 2018 and March 2019, we enrolled index patients (diagnosed with influenza and treated with baloxavir or oseltamivir) and household members. The secondary attack rate of household members was compared between index patients treated with baloxavir vs oseltamivir. Risk factors of household transmission were determined using multivariate logistic analyses. Results: In total, 169 index patients with influenza type A were enrolled. The median age was 27.0 (interquartile range; 11–57) years. The number of index patients treated with baloxavir and oseltamivir was 49 and 120, respectively. The secondary attack rate was 9.0% (95% confidence interval [CI]: 4.6–15.6) in the baloxavir group and 13.5% (95% CI: 9.8–17.9) in the oseltamivir group. In the multivariate analysis, independent risk factors were 0–6 years of age (odds ratio [OR] 2.78, 95% CI: 1.33–5.82, p < 0.01) and not being on baloxavir treatment.
    [Show full text]
  • Pdf Files/WHA58- 6
    Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 527–680 EDITOR-IN-CHIEF D. Peter Drotman EDITORIAL STAFF EDITORIAL BOARD Founding Editor Dennis Alexander, Addlestone Surrey, United Kingdom Joseph E. McDade, Rome, Georgia, USA Barry J. Beaty, Ft. Collins, Colorado, USA Managing Senior Editor Martin J. Blaser, New York, New York, USA Polyxeni Potter, Atlanta, Georgia, USA David Brandling-Bennet, Washington, D.C., USA Associate Editors Donald S. Burke, Baltimore, Maryland, USA Paul Arguin, Atlanta, Georgia, USA Arturo Casadevall, New York, New York, USA Charles Ben Beard, Ft. Collins, Colorado, USA Kenneth C. Castro, Atlanta, Georgia, USA David Bell, Atlanta, Georgia, USA Thomas Cleary, Houston, Texas, USA Jay C. Butler, Anchorage, Alaska, USA Anne DeGroot, Providence, Rhode Island, USA Charles H. Calisher, Ft. Collins, Colorado, USA Vincent Deubel, Shanghai, China Paul V. Effler, Honolulu, Hawaii, USA Stephanie James, Bethesda, Maryland, USA Ed Eitzen, Washington, D.C., USA Brian W.J. Mahy, Atlanta, Georgia, USA Duane J. Gubler, Honolulu, Hawaii, USA Nina Marano, Atlanta, Georgia, USA Richard L. Guerrant, Charlottesville, Virginia, USA Martin I. Meltzer, Atlanta, Georgia, USA Scott Halstead, Arlington, Virginia, USA David Morens, Bethesda, Maryland, USA David L. Heymann, Geneva, Switzerland J. Glenn Morris, Baltimore, Maryland, USA Daniel B. Jernigan, Atlanta, Georgia, USA Marguerite Pappaioanou, St. Paul, Minnesota, USA Charles King, Cleveland, Ohio, USA Tanja Popovic, Atlanta, Georgia, USA Keith Klugman, Atlanta, Georgia, USA Patricia M. Quinlisk, Des Moines, Iowa, USA Takeshi Kurata, Tokyo, Japan Jocelyn A. Rankin, Atlanta, Georgia, USA S.K. Lam, Kuala Lumpur, Malaysia Didier Raoult, Marseilles, France Bruce R. Levin, Atlanta, Georgia, USA Pierre Rollin, Atlanta, Georgia, USA Myron Levine, Baltimore, Maryland, USA David Walker, Galveston, Texas, USA Stuart Levy, Boston, Massachusetts, USA David Warnock, Atlanta, Georgia, USA John S.
    [Show full text]
  • Oseltamivir, Zanamivir and Amantadine in the Prevention of Influenza: a Systematic Review
    Journal of Infection (2011) 62,14e25 www.elsevierhealth.com/journals/jinf Oseltamivir, zanamivir and amantadine in the prevention of influenza: A systematic review Rachel J. Jackson a,*, Katy L. Cooper a, Paul Tappenden a, Angie Rees b, Emma L. Simpson a, Robert C. Read c, Karl G. Nicholson d a Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Regent Court, 30 Regent Street, Sheffield, S1 4DA, UK b School of Health and Related Research, University of Sheffield, Regent Court, 30 Regent Street, Sheffield, S1 4DA, UK c Department of Infection & Immunity, School of Medicine, University of Sheffield, Beech Hill Rd, Sheffield, S10 2RX, UK d Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE2 7LX, UK Accepted 5 October 2010 Available online 13 October 2010 KEYWORDS Summary Objective: To systematically review evidence relating to the clinical efficacy of Influenza; oseltamivir, zanamivir and amantadine in the prevention of influenza. Prophylaxis; Methods: RCTs evaluating these interventions in seasonal prophylaxis and post-exposure pro- Prevention; phylaxis were identified using electronic bibliographic databases and handsearching of Amantadine; retrieved articles. Oseltamivir; Results: Oseltamivir was effective in preventing symptomatic laboratory-confirmed influenza Zanamivir; (SLCI) in seasonal prophylaxis in healthy adults and at-risk elderly subjects and in post-expo- Neuraminidase sure prophylaxis within households of mixed composition. Post-exposure prophylaxis using inhibitor; oseltamivir for paediatric contacts was observed to prevent SLCI. Zanamivir prevented M2 inhibitor; SLCI in seasonal prophylaxis in healthy adults, at-risk adults and adolescents and in post-expo- Systematic review sure prophylaxis within mixed households, with a trend for seasonal and post-exposure preven- tative effects in elderly subjects.
    [Show full text]
  • State of Connecticut-Department of Social Services
    STATE OF CONNECTICUT-DEPARTMENT OF SOCIAL SERVICES 55 FARMINGTON AVENUE, HARTFORD, CONNECTICUT 06105 Connecticut AIDS Drug Assistance Program (CADAP) Formulary Effective: March 1, 2018 Antiretroviral: Multiclass Single Tablet Regimens Abacavir/ Lamivudine/ Dolutegravir Efavirenz/Emtricitabine/ Tenofovir Disoproxil Elvitegravir/Cobicistat/ Emtricitabine/Tenofovir ( Triumeq ) Fumarate (Atripla ) Disoproxil Fumarate (Stribild ) Bictegravir/ Emtricitabine/Tenofovir Elvitegravir, Cobicistat, Emtricitabine/Tenofovir Emtricitabine/Rilpivirine/ Tenofovir Disoproxil Alafenamide (Biktarvy) Alafenamide (Genvoya ) Fumarate (Complera ) Antiretroviral: Combination Medications Abacavir /Lamivudine (Epzicom) Atazanavir/Cobicistat (Evotaz) Lamivudine/Zidovudine (Combivir) Abacavir/Lamivudine/ Zidovudine Darunavir/Cobicistat (Prezcobix) Lopinavir/Ritonavir (Kaletra) (Trizivir) Emtricitabine/Tenofovir (Truvada) Antiretrovirals: Nucleoside Reverse Transcriptase Inhibitor (NRTIs) Medications Abacavir (Ziagen) Emtricitabine (Emtriva) Tenofovir DF (Viread) Didanosine (ddI, Videx, Videx EC) Lamivudine (3TC, Epivir, Epivir HBV ) Zidovudine (AZT, Retrovir ) Stavudine (Zerit) Antiretrovirals: Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTIs) Medications Delavirdine Mesylate (Rescriptor) Etravirine (Intelence) Rilpivirine (Edurant) Efavirenz (Sustiva) Nevirapine ( Viramune/Viramune XR ) Antiretrovirals: Protease Inhibitor (PIs) Medications Atazanavir Sulfate (Reyataz) Indinavir (Crixivan) Ritonavir (Norvir) Darunavir (Prezista) Lopinavir/Ritonavir (Kaletra)
    [Show full text]
  • Peramivir (Rapivab®) National Drug Monograph March 2015
    Peramivir (RAPIVAB)Monograph Peramivir (Rapivab®) National Drug Monograph March 2015 VA Pharmacy Benefits Management Services, Medical Advisory Panel, and VISN Pharmacist Executives The purpose of VA PBM Services drug monographs is to provide a comprehensive drug review for making formulary decisions. Updates will be made when new clinical data warrant additional formulary discussion. Documents will be placed in the Archive section when the information is deemed to be no longer current. FDA Approval Information Description/Mechanism of Peramivir is a neuraminidase inhibitor with activity against influenza A and B Action viruses. Indication(s) Under Review in Peramivir is indicated for the treatment of acute, uncomplicated influenza in this document (may include patients 18 years and older who have been symptomatic for no more than two off label) days. Please note the prescribing information states the following limitations of use: • Efficacy based on clinical trials in which the predominant influenza virus type was influenza A; a limited number of subjects infected with influenza B virus were enrolled. • Consider available information on influenza drug susceptibility patterns and treatment effects when deciding whether to use. • Efficacy could not be established in patients with serious influenza requiring hospitalization. Dosage Form(s) Under 200mg single-use 20 mL vial (10mg/mL) for injection Review REMS REMS No REMS Postmarketing Requirements Pregnancy Rating Pregnancy Category C Executive Summary Efficacy Approval of peramivir was based upon a single pivotal Phase 2 trial, two supporting Phase 2 trials, and one supporting Phase 3 trial (refer to Table 1) evaluating adult patients with acute, uncomplicated influenza who presented within 48 hours of symptom onset; all trials were randomized, multicentered, double-blind, and placebo-controlled.
    [Show full text]
  • Influenza Antiviral Medications: Summary for Clinicians
    Influenza Antiviral Medications: Summary for Clinicians The information on this page should be considered current for the 2014-2015 influenza season for clinical practice regarding the use of influenza antiviral medications. This page contains excerpts from Antiviral Agents for the Treatment and Chemoprophylaxis of Influenza - Recommendations of the Advisory Committee on Immunization Practices (ACIP). PDF Version[1 MB, 28 pages] Antiviral medications with activity against influenza viruses are an important adjunct to influenza vaccine in the control of influenza. Influenza antiviral prescription drugs can be used to treat influenza or to prevent influenza. Four licensed prescription influenza antiviral agents are available in the United States. o Two FDA-approved influenza antiviral medications are recommended for use in the United States during the 2014-2015 influenza season: oral oseltamivir (Tamiflu®) and inhaled zanamivir (Relenza®). Oseltamivir and zanamivir are chemically related antiviral medications known as neuraminidase inhibitors that have activity against both influenza A and B viruses. o Amantadine and rimantadine are antiviral drugs in a class of medications known as adamantanes. These medications are active against influenza A viruses, but not influenza B viruses. As in recent past seasons, there continues to be high levels of resistance (>99%) to adamantanes among influenza A (H3N2) and influenza A (H1N1) pdm09 ("2009 H1N1") viruses. Therefore, amantadine and rimantadine are not recommended for antiviral treatment or chemoprophylaxis of currently circulating influenza A viruses. Antiviral resistance to oseltamivir and zanamivir among circulating influenza viruses is currently low, but this can change. Also, antiviral resistance can emerge during or after treatment in some patients (e.g., immunosuppressed).
    [Show full text]
  • Bennett, Susan (2015) Development of Multiplex Real-Time PCR Screens for the Diagnosis of Feline and Canine Infectious Disease
    Bennett, Susan (2015) Development of multiplex real-time PCR screens for the diagnosis of feline and canine infectious disease. MSc(R) thesis. http://theses.gla.ac.uk/5971/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Development of Multiplex Real-Time PCR Screens for the Diagnosis of Feline and Canine Infectious Disease Susan Bennett BSc (Hons) Master of Science by Research University of Glasgow College of Medical, Veterinary & Life Sciences May 2014 Copyright Statement 24th May 2014 This thesis is submitted in partial fulfilment for the degree of Master of Science by Research. I declare that it has been composed by myself, and the work described is my own research. Susan Bennett BSc (Hons) i Abstract Infectious disease is a significant cause of morbidity and mortality in cats and dogs. The diagnosis of the causative agent is essential to allow for the appropriate clinical intervention, to reduce infection spread, and also to support epidemiological studies which in turn will better the understanding of infectious disease transmission and control.
    [Show full text]
  • AIRCURRENTS: Modeling a Modern- Day Spanish Flu Pandemic
    FEBRUARY 2013 AIRCURRENTS: MODELING A MODERN- DAY SPANISH FLU PanDEMIC BY NITA MADHAV, M.S.P.H. EDITED BY MOLLY J. MARKEY, PH.D. Editor’s NotE: The 1918 influenza pandemic killed tens of millions of people around the world, making it one of the deadliest infectious disease outbreaks in modern history. In this article, Nita Madhav, a Principal Analyst in AIR’s Research and Modeling Group, characterizes the historic 1918 pandemic and estimates the effects of a similar pandemic occurring today using the AIR Pandemic Flu Model (scheduled for release in Summer 2013). The 1918 “Spanish flu” pandemic was one of the greatest public health catastrophes of the past century. Although the start location THE ArticLE: Explores the effects of a is unknown, the first known cases appeared in Fort Riley, Kansas in modern-day influenza pandemic caused by a virus February of 1918. By the end of the pandemic, millions of people identical to the 1918 “Spanish flu” pathogen, and estimates worldwide had been killed. Global estimates of deaths range from the mortality rates and life insurance losses this event would 20 million to more than 100 million, at a time when the global inflict. population was approximately 1.8 billion. HIGHLIGHTS: The AIR Pandemic Flu Model reveals that the In the United States, the 1918 pandemic caused life insurance “Spanish flu” pandemic would have a much less dramatic impact losses of nearly USD 100 million (The Insurance Press, 1919), which today (in terms of mortality rates) than the actual Spanish flu corresponds to USD 19.9 billion today.1 In fact, during the seven- pandemic did in 1918.
    [Show full text]
  • Use of Vaccines and Antiviral Drugs in the Next Influenza Pandemic
    H. Grant Stiver MD, FRCPC Use of vaccines and antiviral drugs in the next influenza pandemic While waiting for the development of an effective vaccine during the early stages of a pandemic, physicians will be able to rely on the antiviral drugs of oseltamivir and zanamivir. ABSTRACT: In the event of an influ- tadine, may be less efficacious, as andemic influenza has been enza pandemic, vaccination will be resistance is now common among associated with both moder- the main way to prevent spread of influenza strains, including H3N2, ate and severe morbidity and the virus. Current techniques for H1N1, and H5N1 subtypes. A clinical 1 Pmortality. The develop- developing a vaccine against a novel diagnosis of influenza in a pandem- ment of a pandemic requires the in - virus use genetic engineering to ic situation is likely to be accurate in troduction of a novel influenza strain allow rapid adaptation to hens’ eggs, the vast majority of patients with that the population of the world has no the medium in which vaccine virus is influenza-like illness. To be effec- immunity to, and for that strain to mass-produced. The effectiveness tive, the drugs must be administered be spread throughout the world until of immunization depends on how within 48 hours of the onset of disease incidence reaches a certain closely the vaccine matches the pan- influenza-like illness. The earlier the threshold level of immunity in the demic strain, and how immunogenic intervention, the better the reduc- population and abates. In addition to it is in humans. In the initial stages tion of illness.
    [Show full text]