Transitional Fossil Earwigs - a Missing Link in Dermaptera Evolution Jingxia Zhao, Yunyun Zhao, Chungkun Shih, Dong Ren*, Yongjie Wang

Total Page:16

File Type:pdf, Size:1020Kb

Transitional Fossil Earwigs - a Missing Link in Dermaptera Evolution Jingxia Zhao, Yunyun Zhao, Chungkun Shih, Dong Ren*, Yongjie Wang Zhao et al. BMC Evolutionary Biology 2010, 10:344 http://www.biomedcentral.com/1471-2148/10/344 RESEARCH ARTICLE Open Access Transitional fossil earwigs - a missing link in Dermaptera evolution Jingxia Zhao, Yunyun Zhao, Chungkun Shih, Dong Ren*, Yongjie Wang Abstract Background: The Dermaptera belongs to a group of winged insects of uncertain relationship within Polyneoptera, which has expanded anal region and adds numerous anal veins in the hind wing. Evolutional history and origin of Dermaptera have been in contention. Results: In this paper, we report two new fossil earwigs in a new family of Bellodermatidae fam. nov. The fossils were collected from the Jiulongshan Formation (Middle Jurassic) in Inner Mongolia, northeast China. This new family, characterized by an unexpected combination of primitive and derived characters, is bridging the missing link between suborders of Archidermaptera and Eodermaptera. Phylogenetic analyses support the new family to be a new clade at the base of previously defined Eodermaptera and to be a stem group of (Eodermaptera +Neodermaptera). Conclusion: Evolutional history and origin of Dermaptera have been in contention, with dramatically different viewpoints by contemporary authors. It is suggested that the oldest Dermaptera might possibly be traced back to the Late Triassic-Early Jurassic and they had divided into Archidermaptera and (Eodermaptera+Neodermaptera) in the Middle Jurassic. Background Bellodermatidae fam. nov., from the Middle Jurassic The earwigs (Dermaptera) are familiar insects, often (Bathonian-Callovian) of the Jiulongshan Formation [5-7] unwelcomed, mainly due to their nocturnal habit, some in Daohugou (N41°18’30”, E119°13’00”)ofNingcheng feeding on decaying matters, emitting foul smell, and an County, Inner Mongolia, China. Our study of these two unfounded myth that earwigs would crawl into peoples’ earwigs and phylogenetic results provide new under- ears and penetrate into their brains during sleep. The standing of earwigs’ origin and evolutional process and Dermaptera belongs to a group of winged insects of enable us to update the phylogenetic and evolutional uncertain relationship within Polyneoptera, which has relationships among major lineages of earwigs. expanded anal region and adds numerous anal veins in the hind wing [1]. Earwigs are very scarce in the insect Methods fossil record. Nel et al. in 1994 listed only 73 taxa of The specimens were examined with a Leica MZ12.5 dis- Dermaptera described, figured or simply mentioned in secting microscope and illustrated with the aid of a literature [2]. Even with subsequent addition of 10 spe- drawing tube attached to the microscope. Line drawings cies, the fossil record of the Dermaptera stands at 83 were made with photoshop9.0 graphics software. Mor- species [3,4]. Evolutional history and origin of Dermap- phological terms used here follow those by Michael S. tera have been in contention, especially for the fossil Engel and Fabian Haas [8]. earwigs. Here we report a new genus with two new species (Bel- Phylogenetic Analysis loderma arcuata gen. et sp. nov. (Figure 1) and Bello- The relationships of fossil Dermaptera is re-assessed, the derma ovata sp. nov. (Figure 2)) in a new family of fossil taxa used in the phylogenetic analyses of fossil Dermaptera are listed in Table 1. This study predomi- * Correspondence: [email protected] nantly used body characters, because wing characters Key Laboratory of Insect Evolution and Environmental changes, College of and male genitalia characters are almost always poorly Life Sciences, Capital Normal University, Beijing 100048, China © 2010 Zhao et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Zhao et al. BMC Evolutionary Biology 2010, 10:344 Page 2 of 10 http://www.biomedcentral.com/1471-2148/10/344 Figure 1 Belloderma arcuata gen. et sp. nov., holotype, No. CNU-Der-NN2008002.a,photo.b,Dorsalview.c,Ventralview.d,Enlarged drawing of foreleg tarsi. e, Enlarged drawing of mid-leg tarsi. Scale bar, 2 mm. scl, scutellum; p, pygidium; o, ovipositor; gl, glossae; mp, maxillary palpus; p, palpifer; mt, mentum; gu, gula; lp, labial palpus; dc and bc, disticardo and basicardo; po, postocciput; c, cercus; acs, anterior cervical sclerites; pcs, posterior cervical sclerites; pro-s, pro-sternum; meso-s, meso-sternum; meta-s, meta-sternum. preserved in fossils. We followed the original descrip- All characters were treated as unordered and tions because these fossils were not available to us. Our weighted equally. The data matrices were subjected to phylogenetic analyses of Dermaptera used limited char- the parsimony analyses in NONA and PAUP* (version acters to study the reliability and position of the new 4.0b10) [12]. The two programs implement heuristic family Bellodermatidae fam. nov. rather than the inter- searches somewhat differently, and so both were relationships of Dermaptera. Thus, if a fossil earwig employed. Because program NONA can be only genus contains several species, only one representative defined one outgroup, so weconductedthecladistic species was chosen to keep the number of taxa low for analyses by each outgroups respectively. Heuristic computational reasons. The character matrix for this search in WinClada/NONA used multiple random dataset is shown in Table 2 and Table 3. We con- additions of taxa and tree-bisection resection branch structed matrices with 17 taxa, 20 characters and 20 swapping (options set to hold 10000 trees, perform taxa, 20 characters separately. The two matrices are the 1000 replications with one starting tree replication, same for the fossil species, but they are different in and the multiple TBR+TBR search strategy). Heuristic three additional extant taxa in Table 3. Three species of search in PAUP* (version 4.0b10) employed a heuristic Blattodea (Leucophaea maderae, Polyphaga aegyptiaca, parsimony analyses, with 1000 random stepwise addi- Periplaneta americana) and a species of Plecoptera (Iso- tions of taxa (TBR branch swapping) under ACCTRAN perla obscura) [9-11] are used as outgroup. optimization. Zhao et al. BMC Evolutionary Biology 2010, 10:344 Page 3 of 10 http://www.biomedcentral.com/1471-2148/10/344 Figure 2 Belloderma ovata sp. nov., holotype, No. CNU-Der-NN2008003. a, photo. b, Dorsal view. c, Ventral view. d, Enlarged drawing of foreleg tarsi. e, Enlarged drawing of mid-leg tarsi. Scale bar, 2 mm. gl, glossa; ap, apical papilla. To comply with regulations of the International Code margin of head is strongly notched in Isoperla, Archider- of Zoological Nomenclature (ICZN), we have deposited mapteron, Belloderma gen. nov, Semenoviola, Semeno- paper copies of the above article at the Natural History violoides,*Forficula and *Anechura; the hind margin of Museum, London; the American Museum of Natural head in all other taxa is relatively straight. This charac- History, New York; the Muséum National d’Histoire ter state is uncertain in blattodean species. Naturelle, Paris; the Russian Academy of Sciences, 4. Neck. Blattoid-type (0) or forficuloid-type (1) Moscow; and the Academia Sinica, Taipei. [13,14]. The three blattodean species possess a blattoid- type neck; all other examined dermapterans possess a List of characters and character states for phylogenetic forficuloid-type neck. analysis (*: only present in matrix of Table 3) 5. Shape of pronotum. Disc-like, large, Blattodea-type 1. Head. Opisthognathous (0) or prognathous (1) [13]. (0) or disc-like, small, Dermaptera-type (1) [13]. All der- The three blattodean species have opisthognathous mapteran species have disc-like, small, Dermaptera-type head, while all other taxa possess a prognathous head. pronotum, while being large in three blattodean species. 2. Antennomere. 1st longer than 2nd (0) or 1st shorter 6. Venation of tegmina. Present (0) or absent (1) (Own than or equal to 2nd (1) (Own observation). Character observation). Veins are absent in *Archaeosoma, *Forfi- state 1 is present in Archidermapteron, Asiodiplatys, cula and *Anechura; while all other species have veins Protodiplatys, Microdiplatys, Longicerciata; all other spe- in their tegmina. cies have character state 0. 7. Shape of tegmina. Long, outer margin produced 3. Hind margin of head. Relatively straight (0) or into a point (0) or short, apically blunt (1) (Own obser- strongly notched (1) (Own observation). The hind vation). The tegmina are long and outer margin Zhao et al. BMC Evolutionary Biology 2010, 10:344 Page 4 of 10 http://www.biomedcentral.com/1471-2148/10/344 Table 1 Extant and fossil taxa used in this study Table 2 Character matrix for fossil Dermaptera Taxon Taxon/character 0 1 2 Blattodea Brunner, 1882 123456789 0123456789 0 Leucophaea maderae (Fabricius, 1775) Leucophaea 00?000000 0000000000 1 Periplaneta americana (Linnaeus, 1758) Periplaneta 00?000000 0000000000 1 Polyphaga aegyptiaca (Linnaeus, 1758) Polyphaga 00?000000 0000000000 1 Perlodidae Isoperla 101110000 0010000000 1 Isoperla obscura (Zetterstedt, 1840) Archidermapteron 111110111 1100101000 0 Dermaptera Kirby, 1815 Belloderma gen. nov 10111001? 1011010001 0 Bellodermatidae fam. nov Asiodiplatys 110110111 1100101000 0 Belloderma arcuata gen. et sp. nov Dermapteron 100110011 1000100000 ? Dermapteridae Vishniakova, 1980 Jurassimedeola 100110011 1000100000 0 Dermapteron incertaes (Martynov,
Recommended publications
  • Taxonomy of Iberian Anisolabididae (Dermaptera)
    Acta Zoologica Academiae Scientiarum Hungaricae 63(1), pp. 29–43, 2017 DOI: 10.17109/AZH.63.1.29.2017 TAXONOMY OF IBERIAN ANISOLABIDIDAE (DERMAPTERA) Mario García-París Museo Nacional de Ciencias Naturales, MNCN-CSIC c/José Gutiérrez Abascal, 2, 28006, Madrid. Spain. E-mail: [email protected] An update on the taxonomy and geographic distribution of Iberian Anisolabididae (Der- maptera) is provided. Former catalogues reported in the Iberian Peninsula three genera of Anisolabididae: Aborolabis, Anisolabis, and Euborellia. A revision of 487 specimens of Iberian and North African Anisolabidoidea permit to exclude the genus Aborolabis from the Iberian fauna, the re-assignation of inland Euborellia annulipes Iberian records to Euborellia moesta, and the exclusion of Aborolabis angulifera from Northwestern Africa. Examination of type materials of Aborolabis mordax and Aborolabis cerrobarjai allows to propose the treatment of A. cerrobarjai as a junior synonym of A. mordax. The diagnostic characters of Euborellia his- panica are included within the local variability found in E. moesta. I propose that E. hispanica should be treated as a junior synonym of E. moesta. Key words: earwigs, systematics, Mediterranean region, Spain, Morocco, NW Africa. INTRODUCTION The Iberian fauna of Dermaptera, including Anisolabididae Verhoeff, 1902, has been the subject of diverse revisionary (Bolívar 1876, 1897, Lapeira & Pascual 1980, Herrera Mesa 1980, Bivar de Sousa 1997) and compilatory works (Herrera Mesa 1999). These revisions together with the monograph of the Fauna of France (Albouy & Caussanel 1990) and the on-line information included in Fauna Europaea (Haas 2010), rendered the image of Dermaptera as a well known group in continental western Europe.
    [Show full text]
  • Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence
    When the Body Hides the Ancestry: Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence Petr Kocarek1*, Vaclav John2, Pavel Hulva2,3 1 Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic, 2 Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic, 3 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Abstract Here, we present a study regarding the phylogenetic positions of two enigmatic earwig lineages whose unique phenotypic traits evolved in connection with ectoparasitic relationships with mammals. Extant earwigs (Dermaptera) have traditionally been divided into three suborders: the Hemimerina, Arixeniina, and Forficulina. While the Forficulina are typical, well-known, free-living earwigs, the Hemimerina and Arixeniina are unusual epizoic groups living on molossid bats (Arixeniina) or murid rodents (Hemimerina). The monophyly of both epizoic lineages is well established, but their relationship to the remainder of the Dermaptera is controversial because of their extremely modified morphology with paedomorphic features. We present phylogenetic analyses that include molecular data (18S and 28S ribosomal DNA and histone-3) for both Arixeniina and Hemimerina for the first time. This data set enabled us to apply a rigorous cladistics approach and to test competing hypotheses that were previously scattered in the literature. Our results demonstrate that Arixeniidae and Hemimeridae belong in the dermapteran suborder Neodermaptera, infraorder Epidermaptera, and superfamily Forficuloidea. The results support the sister group relationships of Arixeniidae+Chelisochidae and Hemimeridae+Forficulidae. This study demonstrates the potential for rapid and substantial macroevolutionary changes at the morphological level as related to adaptive evolution, in this case linked to the utilization of a novel trophic niche based on an epizoic life strategy.
    [Show full text]
  • Dermaptera, Forficulidae)
    Dtsch. Entomol. Z. 68 (2) 2021, 235–248 | DOI 10.3897/dez.68.68020 The Pyrenean species of Chelidura (Dermaptera, Forficulidae) Pilar Jurado-Angulo1, Yolanda Jiménez-Ruiz1, Mario García-París1 1 Department of Biodiversity and Evolutionary Biology. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid. Spain http://zoobank.org/43AD7562-7AF5-426D-A7EF-17225DD9AD98 Corresponding author: Pilar Jurado-Angulo ([email protected]) Academic editor: Susanne Randolf ♦ Received 28 April 2021 ♦ Accepted 6 July 2021 ♦ Published 10 August 2021 Abstract The Pyrenees are inhabited by scattered populations of earwigs of the genus Chelidura Latreille, 1825. There is some controversy about the specific assignment of these populations: while most authors assign them toC. pyrenaica (Gené, 1832), other consider that C. aptera (Mégerlé, 1825) is also present in the Pyrenees. The main objective of this work was to revise the identity and synonyms of Pyrenean Chelidura. Specimens from recent fieldwork and collections (MNCN-CSIC) were used for morphological and molecular studies (cytochrome oxidase 1). All Pyrenean specimens shared similar cox1 sequences, very divergent from those of Alpine C. ap- tera. As a consequence, the variability observed in male cerci morphology from the Pyrenees, ranging from long and slightly curved to short and very curved, corresponded to C. pyrenaica, and the presence of C. aptera in the Pyrenees can be rejected. As previously suggested by Maccagno (1933) and Fontana et al. (2021), the revision of the synonymic list uncovered the misplacement of the name F. simplex Germar, 1825 under the synonymy of C. aptera, while it rather represents a synonym of C.
    [Show full text]
  • Download Article (PDF)
    46 Rec. zool. Sura. India Genus. Acrania Burr, 1915 Distribution: INDIA (Tamil Nadu, Himachal 1915. Acrania Burr. J.R. micro Soc., 1915: 432, 436 (Type­ Pradesh, West Bengal and Kashmir). Pygidicrana picta Guerin-Meneville) Elsewhere: Pakistan, Uganda and Zaire. 1993. Acrania; Srivastava, Rec. zool. Sura. India, 92(1-4): 44. Remarks : This species is recorded for the first time from Kashmir. 3. Acrania fletcheri (Bharadwaj and Kapoor, 1967) 5. Euborellia annulata (Fabricius, 1793) 1967. Cranopygia jletcheri Bharadwaj and Kapoor, Bull. Ent.,8(2) : 1(0"; India: Meghalaya; Shillong, 5000 1793. Forficula annulata Fabricius, Ent. Syst., II : 4 (sex; ft.) Americae meridionale). 1914. Kalocrania picta (nec.Guerin-Meneville); Burr, Rec. 1867. Anisolabis stali; Scudder, Proc. Boston soc. Nat. Hist., Indian Mus., 8(2): 136 (lO",l~, Kobo). 18: 308. 1993. Acrania jletcheri; Srivastava, Rec. zool. Sura. India, 1910. Borellia stali Burr, Fauna of British India, Dermaptera: 92(1-4): 45. 88. Material examined: INDIA: Manipur: Imphal, Material Examined : INDIA: Chennai, Elliots 16 miles North on Dimapur Road, Alt., 3500 ft., Beach, Radio Station, 10", 18.9.1961. 14.x.1945 (Major M.L. Roonwal). Measurements: (in mm): Male Measurements: (in mm): Male Length of body 10mm Length of body 20 Forceps l.5mm. Length of forceps 5.5 Distribution : INDIA (Kerala, Tamil Nadu, Distribution: INDIA: Meghalaya, (Shillong and Karnataka, Maharashtra, Orissa, West Bengal, Manipur) (Imphal district). Manipur and Lakshadweep islands). Elsewhere: Not yet recorded. Elsewhere: Sri Lanka, Pakistan and China. Remarks : It is reported for the first time from Sub family BRACHYLABIDINAE the state of Manipur. Genus Metisolabis Burr, 1910 Super family ANISOLABOIDEA 1910.
    [Show full text]
  • European Earwig, Forficula Auricularia Linnaeus (Insecta: Dermaptera: Forficulidae)1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-032 European Earwig, Forficula auricularia Linnaeus (Insecta: Dermaptera: Forficulidae)1 H. V. Weems, Jr., and P. E. Skelley2 Introduction Distribution The European earwig, Forficula auricularia This earwig is found throughout Europe, but it Linnaeus 1758, is intercepted in Florida frequently in seldom is present in great numbers. Quantities of bundles of plants and shrubbery, in cut flowers, and nursery stock arrive from the western United States in florists' equipment arriving from the western annually that are infested with this earwig, but it has United States. This insect is spread largely by man. not successfully established in Florida. While it has Spread by natural means is limited because earwigs not been considered of great economic importance in seldom fly and cannot maintain flight very long. It Europe, it has become a serious pest in parts of the has not yet become established in Florida, but it has United States. the potential to do so, at least in the northern part of the state. This earwig was recorded first in the United The European earwig is widespread in cooler States at Newport, Rhode Island in 1911 (Jones parts of the world. Originally known from the 1917). Jones (1917) reported a small colony from Palearctic Region, the European earwig has been Seattle, Washington in 1915. Later evidence indicated recorded from Canada (British Columbia, Manitoba, that it first invaded North America somewhere on the Newfoundland, Nova Scotia, Ontario, Quebec, and west coast in the early 1900s. Eventually it became Saskatchewan) and the United States (Arizona, widespread in the New England and Middle Atlantic California, Colorado, Idaho, Maine, Massachusetts, states and throughout most of the western states, Montana, New York, North Carolina, Oregon, Rhode especially where there is abundant rainfall or Island, Utah, and Washington).
    [Show full text]
  • THE EARWIGS of CALIFORNIA (Order Dermaptera)
    BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 20 THE EARWIGS OF CALIFORNIA (Order Dermaptera) BY ROBERT L. LANGSTON and J. A. POWELL UNIVERSITY OF CALIFORNIA PRESS THE EARWIGS OF CALIFORNIA (Order Dermaptera) BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 20 THE EARWIGS OF CALIFORNIA (Order Dermaptera) BY ROBERT L. LANGSTON and J. A. POWELL UNIVERSITY OF CALIFORNIA PRESS BERKELEY LOS ANGELES LONDON 1975 BULLETIN OF THE CALIFORNIA INSECT SURVEY Advisory Editors: H. V. Daly, J. A. Powell; J. N. Belkin, R. M. Bohart, R. L. Doutt, D. P. Furman, J. D. Pinto, E. I. Schlinger, R. W. Thorp VOLUME 20 Approved for publication September 20,1974 Issued August 15, 1975 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES UNIVERSITY OF CALIFORNIA PRESS, LTD. LONDON, ENGLAND ISBN 0-520-09524-3 LIBRARY OF CONGRESS CATALOG CARD NUMBER: 74-22940 0 1975 BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA PRINTED BY OFFSET IN THE UNITED STATES OF AMERICA CONTENTS Introduction .................................................. 1 California fauna ............................................. 1 Biology ................................................... 1 History of establishment and spread of introduced species in California ........ 2 Analysis of data ............................................. 4 Acknowledgments ............................................ 4 Systematic Treatment Classification ............................................... 6 Key to California species ........................................ 6 Anisolabis maritima (Ght5) ...................................
    [Show full text]
  • Sovraccoperta Fauna Inglese Giusta, Page 1 @ Normalize
    Comitato Scientifico per la Fauna d’Italia CHECKLIST AND DISTRIBUTION OF THE ITALIAN FAUNA FAUNA THE ITALIAN AND DISTRIBUTION OF CHECKLIST 10,000 terrestrial and inland water species and inland water 10,000 terrestrial CHECKLIST AND DISTRIBUTION OF THE ITALIAN FAUNA 10,000 terrestrial and inland water species ISBNISBN 88-89230-09-688-89230- 09- 6 Ministero dell’Ambiente 9 778888988889 230091230091 e della Tutela del Territorio e del Mare CH © Copyright 2006 - Comune di Verona ISSN 0392-0097 ISBN 88-89230-09-6 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior permission in writing of the publishers and of the Authors. Direttore Responsabile Alessandra Aspes CHECKLIST AND DISTRIBUTION OF THE ITALIAN FAUNA 10,000 terrestrial and inland water species Memorie del Museo Civico di Storia Naturale di Verona - 2. Serie Sezione Scienze della Vita 17 - 2006 PROMOTING AGENCIES Italian Ministry for Environment and Territory and Sea, Nature Protection Directorate Civic Museum of Natural History of Verona Scientifi c Committee for the Fauna of Italy Calabria University, Department of Ecology EDITORIAL BOARD Aldo Cosentino Alessandro La Posta Augusto Vigna Taglianti Alessandra Aspes Leonardo Latella SCIENTIFIC BOARD Marco Bologna Pietro Brandmayr Eugenio Dupré Alessandro La Posta Leonardo Latella Alessandro Minelli Sandro Ruffo Fabio Stoch Augusto Vigna Taglianti Marzio Zapparoli EDITORS Sandro Ruffo Fabio Stoch DESIGN Riccardo Ricci LAYOUT Riccardo Ricci Zeno Guarienti EDITORIAL ASSISTANT Elisa Giacometti TRANSLATORS Maria Cristina Bruno (1-72, 239-307) Daniel Whitmore (73-238) VOLUME CITATION: Ruffo S., Stoch F.
    [Show full text]
  • Dermaptera Hindwing Structure and Folding: New Evidence for Familial, Ordinal and Superordinal Relationships Within Neoptera (Insecta)
    Eur. J. Entorno!. 98: 445-509, 2001 ISSN 1210-5759 Dermaptera hindwing structure and folding: New evidence for familial, ordinal and superordinal relationships within Neoptera (Insecta) Fabian HAAS1 and Jarmila KUKALOVÂ-PECK2 1 Section ofBiosystematic Documentation, University ofUlm, Helmholtzstr. 20, D-89081 Ulm, Germany; e-mail: [email protected] 2Department ofEarth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; e-mail: [email protected] Key words.Dermaptera, higher phylogenetics, Pterygota, insect wings, wing folding, wing articulation, protowing Abstract. The Dermaptera are a small order of insects, marked by reduced forewings, hindwings with a unique and complicated folding pattern, and by pincer-like cerci. Hindwing characters of 25 extant dermapteran species are documented. The highly derived hindwing venation and articulation is accurately homologized with the other pterygote orders for the first time. The hindwing base of Dermaptera contains phylogenetically informative characters. They are compared with their homologues in fossil dermapteran ancestors, and in Plecoptera, Orthoptera (Caelifera), Dictyoptera (Mantodea, Blattodea, Isoptera), Fulgoromorpha and Megaloptera. A fully homologized character matrix of the pterygote wing complex is offered for the first time. The wing venation of the Coleo- ptera is re-interpreted and slightly modified . The all-pterygote character analysis suggests the following relationships: Pterygota: Palaeoptera + Neoptera; Neoptera: [Pleconeoptera + Orthoneoptera] +
    [Show full text]
  • Washington Geology, V, 22, No. 1, March 1994
    LIi u ::, 0 WASHINGTON LIi VOL.MA.RCH 22, NO. 1994 I GEO·L '0G"I • INSIDE THIS ISSUE I Washington's mineral industry-1993, p. 3: WASHINGTON STATE DEPARTMENTOF Metallic mineral deposits. p. 16; Industrial minerals, p. 19 I Coal activity in Washington-1993, p. 23 Natural Resources 1 Hot springs and ore deposition on the sea floor, p. 24 Jennifer M . Belcher - Commissioner of Pub I ic Lands Kaleen Cottingham - Supervisor 1 Late Triassic volcanic arc setting for the Holden mine. p. 28 1 Middle Eocene earwigs from Republic, Washington, p. 39 Division of Geology and Earth Resources WASHINGTON Developments in GEOLOGY Environmental Regulation Vol. 22, No. I by Ray Lasmanis, State Geologist March 1994 Washington Geology (ISSN 1058-2134) is published four times each year by the Washington State Department of Natural During its 1994 Session, the State Legislature passed bills af­ Resources, Div is ion of Geology and Earth Resources. This pub­ fecting the environmental regulation of petroleum, geother­ lication is free upon request. The Division also publishes bulle­ mal resources, underground gas storage, and metals mining in tins, information circulars, reports of investigations, geologic Washington. Of these bills, Engrossed Substitute House Bill maps, and open-file reports. A list of these publications will be (ESHB) 2521, the Metals Mining and Milling Act, is the most sent upon request. important. The Metals Mining and Milling Act is based partly on the DEPARTMENT OF NATURAL RESOURCES findings of a task force of industry, environmental, and com­ Jennifer M. Belcher, Commissioner of Public Lands munity voices, as well as those of the Departments of Ecology Kaleen Cottingham, Supervisor (DOE) and Natural Resources (DNR).
    [Show full text]
  • Forficulidae Fauna of Olive Orchards in the Southeastern Anatolia and Eastern Mediterranean Regions of Turkey (Dermaptera)
    J. Entomol. Res. Soc., 16(1): 27-35, 2014 ISSN:1302-0250 Forficulidae Fauna of Olive Orchards in the Southeastern Anatolia and Eastern Mediterranean Regions of Turkey (Dermaptera) Gülay KAÇAR1* Masaru NISHIKAWA2 1* Laboratory of Entomology, Biological Control Research Station, Koprukoyu, 01321 Adana, TURKEY, *Corresponding author’s e-mail: [email protected] 2 Laboratory of Entomology, Faculty of Agriculture, Ehime University, Matsuyama, 790-8566 JAPAN ABSTRACT In this study, we aimed to determine the occurrence of Forficulidae earwigs on olive trees in the eastern Mediterrenean and southeastern Anatolia regions of Turkey. Seasonal changes in occurrence and abundance of earwigs were monitored in olive orchards in (Tarsus) Mersin and Erzin (Hatay) for two successive years. Samples were collected by using aspirator, handing, knocking and with twigs plucked from olive trees and separated in the laboratory. Six species from Forficulidae family in altogether 98 specimens were collected. Forficula aetolica Brunner, 1882 (2 specimens), F. auricularia Linnaeus, 1758 (13), F. decipiens Géné, 1832 (1), F. lurida Fischer, 1853 (41), Guanchia brignolii (Vigna Taglianti, 1974) (22), G. hincksi (Burr, 1947) (1), Guanchia sp. (14) and Forficula sp. (4) were determined in olive orchards (Oleae europae L.) in Adana, Hatay, Kahramanmaraş, Mersin, Osmaniye provinces (eastern Mediterrenean region), Gaziantep and Kilis provinces (southeastern Anatolia region) of Turkey between the years 2008 and 2010. F. lurida was detected as the most abundant species. The results of this study also revelead that Forficulidae species were appeared on the trees at the middle of April and after become adults, they migrated to the soil at the end of December.
    [Show full text]
  • Curaçao and Other
    STUDIES ON THE FAUNA OF CURAÇAO AND OTHER CARIBBEAN ISLANDS: No. 131. The Dermapteraof theCaribbean by A. Brindle (Manchester Museum) Page Figure Introduction 3 Composition of the fauna 5 Genitalia 11 DIPLATYIDAE 15 1. Cylindrogaster occidentalis (Burr) 16 1-2 PYGIDICRANIDAE Pyragrinae 16 2. Pyragropsis buscki (Caudell) 17 3-4 CARCINOPHORIDAE 17 Carcinophorinae 18 3. Carcinophora americana (Beauvois) 19 7-8 4. Carcinophora percheroni (Guérin & Percheron) 21 5. Carcinophora nigra (Caudell) 22 6. Carcinophora waddyi Burr 23 7. Anisolabis maritima (Bonelli) 23 5-6 8. Euborelliacaraibea Hebard 24 9-11 9. Euborellia stali (Dohrn) 26 12-13 10. Euborellia annulipes (Lucas) 28 Brachylabiinae 29 11. allardi 31 17-19 Brachylabis sp. n LABIDURIDAE 32 Labidurinae 32 12. Labidura riparia (Pallas) 34 14, 16 13. Labidura xanthopus (Stal) 36 15 LABIIDAE 37 Labiinae 37 14. Labia curvicauda (Motschulsky) 38 22-23 15. Labia pilicornis (Motschulsky) 39 20-21,26 2 Page Figure 16. Labia dorsalis (Burmeister) 40 24, 28 17. Labia arcuata Scudder 41 25,27 18. Labia annulata (Fabricius) 42 Spongiphorinae 42 19. Spongiphora croceipennis Serville 44 29-30 20. Vostox cabrerae Rehn 45 31 21. Vostox insularis (Bruner) 45 32 22. Spongovostox ghilianii (Dohrn) 46 33 23. Marava arachidis (Yersin) 47 38-39 24. Marava unidentata (Beauvois) 48 37, 41 25. Marava pulchella (Serville) 49 40 26. Marava modesta (Bruner) 50 36 27. Marava dominicae (Rehn & Hebard) 51 43 28. Marava jamaicana (Rehn & Hebard) 52 44 29. Marava quadrata sp. n 52 34-35 30. Formicilabia caribea Rehn & Hebard 54 47 Sparattinae 54 31. Parasparatta dominicana Brindle 55 42 32.
    [Show full text]
  • Novitates Paleoentomologicae No
    Novitates Paleoentomologicae No. 6, pp. 1–16 29 January 2014 ȱȬȱ ȱȱȱȱ¢ȱ ǻǼ ȱǯȱ1 & David A. Grimaldi2 Abstract.ȱȱ ȱ ȱȱȱȱȱȬȱ ȱȱȱȱęȱ ȱ ȱ ǻ¢Ǽȱ ǯȱ ȱ Zigrasolabis speciosa Engel & Grimaldi, new genus and ǰȱȱȱ¢ȱȱȱȱȱȱȱǰȱȱȱȱǯȱȱToxolabis zigrasi ȱǭȱ ǰȱ ȱȱȱǰȱȱȱȱȱȱǯȱȱ ȱęȬȱ¢ȱȱ ȱȱȱȱT. zigrasi ¢ȱȱ¢ȱȱȱȱǯȱȱ ȱǰȱ ȱȱ ȱȱȱ¢ȱȱǯȱȱȱȱȱȱȱȱȱȱ ȱǻZigrasolabisȱȱǰȱToxolabisȱ¢ȱȱǼȱȱȱȱ¡ȱ ȱȱȱǰȱȱĴȱȱ ȱ¢ȱȱȱęȱȱȱ¢ȱ ¢ȱȱȱǯ ȱȱȱǰȱȱȱǻ ¢ȱȱ¢Ǽǰȱȱȱ¢ȱ ǯȱȱȱ ȱǻǼȱȱȱȱȱȱȱ¢ȱȬ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱ ȱȱȱȱȱȱȱȱ ȱȱȱȱȱ¢ȱ ǰȱȱȱȱȱȱȱǻȱǰȱȃ¾Ȅȱȱȃ Ȅǰȱȱ ȃȄȱȱȃȄDZȱǰȱŘŖŖŝǰȱŘŖŖşǼǯȱȱ¢ǰȱȱȱ¢ȱȱ¢ȱȱ ȱȱ ȱȱ¢ȱȱȱȱȱȱȱȱ ȱȱ 1ȱȱȱ ȱ¢ǰȱȱȱȱȱ ¢ǰȱȱȱȱ at 79thȱǰȱ ȱǰȱ ȱȱŗŖŖŘŚȬśŗşŘǰȱȱȱȱ¢ǰȱȱ ¢ȱ ȱȱȱȱ¢ȱǭȱ¢ȱ¢ǰȱŗśŖŗȱȱȱȮȱȱŗŚŖǰȱ ¢ȱȱ ǰȱ ǰȱ ȱŜŜŖŚśȱǻȓǯDzȱȓǯǼǯ 2ȱȱȱ ȱ¢ǰȱȱȱȱȱ ¢ǰȱȱȱȱ at 79thȱǰȱ ȱǰȱ ȱȱŗŖŖŘŚȬśŗşŘȱǻȓǯǼǯ Copyright © M.S. Engel & D.A. Grimaldi. ȱȱĴȬȬȱřǯŖȱȱȱǻȱȬȬȱřǯŖǼǯ ȱŘřŘşȬśŞŞŖ 2 Novitates Paleoentomologicae No. 6 the opening of the ear for warmth (e.g., Taylor, 1978; Fisher, 1986), as do many differ- ent small arthropods, they do not lay eggs, damage the brain, or cause insanity. Aside from being a nuisance in warm, dark, and damp places in human habitats, earwigs are at most moderately destructive to some crops as they will feed on foliage as well as small arthropods and such feeding can be detrimental to seedlings or soft-fleshed fruits (e.g., Bower, 1992; Alford, 2007). In fact, earwigs can be quite beneficial. For ex- ample, the common European earwig Forficula auricularia Linnaeus, a common tramp species, can be an effective biological control agent of woolly apple aphids [Eriosoma lanigerum (Hausmann)] in orchards (Carroll & Hoyt, 1984; Mueller et al., 2011), as well as other common pests (Suckling et al., 2006).
    [Show full text]