REVIEW the Role and Potential of Sialic Acid in Human Nutrition

Total Page:16

File Type:pdf, Size:1020Kb

REVIEW the Role and Potential of Sialic Acid in Human Nutrition European Journal of Clinical Nutrition (2003) 57, 1351–1369 & 2003 Nature Publishing Group All rights reserved 0954-3007/03 $25.00 www.nature.com/ejcn REVIEW The role and potential of sialic acid in human nutrition B Wang1* and J Brand-Miller1 1Human Nutrition Unit, School of Molecular and Microbial Biosciences, University of Sydney, NSW, Australia Sialic acids are a family of nine-carbon acidic monosaccharides that occur naturally at the end of sugar chains attached to the surfaces of cells and soluble proteins. In the human body, the highest concentration of sialic acid (as N-acetylneuraminic acid) occurs in the brain where it participates as an integral part of ganglioside structure in synaptogenesis and neural transmission. Human milk also contains a high concentration of sialic acid attached to the terminal end of free oligosaccharides, but its metabolic fate and biological role are currently unknown. An important question is whether the sialic acid in human milk is a conditional nutrient and confers developmental advantages on breast-fed infants compared to those fed infant formula. In this review, we critically discuss the current state of knowledge of the biology and role of sialic acid in human milk and nervous tissue, and the link between sialic acid, breastfeeding and learning behaviour. European Journal of Clinical Nutrition (2003) 57, 1351–1369. doi:10.1038/sj.ejcn.1601704 Keywords: sialic acid; ganglioside; sialyl-oligosaccharides; human milk; infant formula; breastfeeding Introduction promising new candidate is sialic acid (also known as The rapid growth and development of the newborn infant N-acetylneuraminic acid), a nine-carbon sugar that is a puts exceptional demands on the supply of nutrients. Any structural and functional component of brain gangliosides deficit has profound effects on somatic growth and organ and correlates with the amounts of DHA and total long- structural and functional development, especially the brain. chain polyunsaturated fatty acids in the ceramide tail of Brain growth, including cell number, organ structural and brain gangliosides. Sialic acid may be a conditionally synaptic connectivity, etc, reaches its peak at 26 weeks essential nutrient in infancy, if demand outstrips the rate gestation and then continues at a high rate throughout the of endogenous synthesis. first year of life (Uauy and Peirano, 1999; Uauy et al, 2001). The rapid initial growth of the brain exceeds that of other body tissues. At 6th month gestation, it comprises 21% of Breastfeeding and cognition total body weight and 15% at term (Friede, 1989). The brain Several studies show that children who were breast-fed as weight more than doubles during the first 9 postnatal babies attain higher scores on intelligence tests than those months to reach over 90% of the adult weight by the 6th who were bottle-fed (Rodgers, 1978; Fergusson et al, 1982; year. Once the time for the critical period of brain growth has Lucas et al, 1992, 1998). On average, scores are 2–9 points passed, it cannot be restarted. The challenge is accentuated higher, a difference that is considered biologically signifi- in the premature infants, particularly in relation to nutri- cant. The difference becomes more pronounced as the tional support for brain growth. duration of breastfeeding increases (Dewey et al, 1995). Recently, neurodevelopmental research has focused atten- Lucas et al (1992) reported that preterm infants fed human tion on the role of long-chain polyunsaturated fatty acids milk in the first month of life have an 8-point advantage in (LCPUFAs), and particularly docosahexaenoic acid (DHA) in verbal IQ at 7–8 y of age compared with infants fed standard improving visual acuity and cognitive ability in preterm infant formulas. In a large cohort study of several thousand infants (Carlson et al, 1996; Gibson, 1999). There are many adults, sentence completion, reading ability, and vocabulary factors, however, that may support brain growth. One were all related to patterns of infant feeding (Richards et al, 1998). In a retrospective study, Menkes (1977) found a significantly greater incidence of bottle feeding among *Correspondence: B Wang, Human Nutrition Unit, School of Molecular learning-disabled children than among controls being and Microbial Biosciences, G08 University of Sydney, NSW 2006, Australia. followed for other neurological symptoms. Rodgers (1978) E-mail: [email protected] described a large, stratified sample of British children. The role and potential of sialic acid B Wang and J Brand-Miller 1352 Covariates included social class, parental interest in educa- but also in physiological, biochemical, and psychological tion, material home conditions, parental education, family parameters, early nutrition may modulate nervous system size and birth rank, and age at weaning. After control of development. Infant formulas are the sole source of nutri- confounding variables, there was a significant advantage to tion for infants who are not breast-fed and differences breast-fed children on a picture vocabulary test at 8 y of age between them may be important. In a randomised multi- and on nonverbal ability, mathematics, and sentence center study (Lucas et al, 1990), preterm infants fed a completion at 15 y. A few studies have examined reading standard term formula for 1 month performed more poorly ability or school attainment, and breast-fed children tended at 18 months than those given a nutrient-enriched preterm to do better (Ounsted et al, 1984; Rogan & Gladen, 1993; formula. Those infants given the enriched formula had 15 Horwood & Fergusson, 1998). The most recent follow-up points higher score than those infants given standard term study in a New Zealand cohort of 1000 children reported formula. Recently, neurodevelopmental research has focused that breastfeeding is associated with small but detectable on the role of LCPUFAs, and particularly, docosahexaenoic increases in cognitive ability and academic achievement, acid (DHA) (Makrides et al, 1994, 1995; Lanting & Boersma, extending from 8 to 18 y (Horwood & Fergusson, 1998). The 1996). Clinical studies in which infant formula was supple- difference was significant after adjustment for social and mented with DHA suggested possible improvements in family history, including maternal age, education, social visual acuity and cognitive ability in preterm infants economic status, marital status, smoking during pregnancy, (Carlson et al, 1994, 1996). Infants fed with formula family living conditions, and family income, and perinatal containing DHA had significantly better visual-evoked factors, including gender, birth weight, child’s estimated potential scores than infants fed with control formula gestational age, and birth order in the family. Not all studies without DHA at both 16 and 30 weeks (Makrides et al, yield significant differences after adjustment (Sandra et al, 1995). DHA may be the limiting factor in milk formula 1999). A meta-analysis of 20 controlled studies showed that because the brain, in particular the visual cortex, lays down breastfeeding was associated with a 3.2 point higher large amounts in the first year of life. However, if diet is a key cognitive development score than formula feeding after to mental development, then there are many factors besides adjusting for significant covariates. The IQ advantage DHA that may be important, such as enzymes, hormones, increased with duration of breastfeeding, reaching a plateau growth factors, and sialic acid, which are found in human at 4–6 months of age. Low birth weight infants received the milk but poorly represented in the milk of other species and greatest benefits (Anderson et al, 1999). More recently, in infant formulas (Goldman & Garza, 1987). Of these, sialic Mortensen et al (2002) also reported that duration of acid is most intriguing because of its simultaneous presence breastfeeding was associated with significantly higher scores in large amounts in both human milk and human grey on all components of the Wechsler adult intelligence scale. matter. There is little direct evidence for a causative mechanism whereby breastfeeding might enhance or, conversely, bottle feeding might impair cognitive growth. Rodgers (1978) Structure and state of sialic acid in nature suggested possible mediating factors might be differences It is now known that sialic acids comprise a family of 43 between breast and bottle milk osmotic load or protein and naturally occurring derivatives of the nine-carbon sugar lipid concentrations or differences in the feeding situation neuraminic acid (5-amino-3,5-dideoxy-D-glycero-D-galacto- such as infection risk and psychological effects. Menkes nonulsonic acid) (Schauer et al, 1995; Schauer & Kamerling, (1977) proposed that tyrosinemia due to increased protein 1997). One branch of the sialic acid family is N-acetylated to levels in formula milk might produce an increased incidence form N-acetylneuraminic acids (Neu5Ac, NANA, Sia), which of learning disabilities in bottle-fed children. Improved are the most widespread form of sialic acid and almost the maternal–child interaction and reduced morbidity could only form found in humans (Figure 1). The other branch is account for the effect or contribute to it (Grantham- based on N-glycolylneuraminic acids (Neu5Gc) which are McGregor et al, 2000). Interpretation is further complicated common in many animal species (best investigated in by associations between breastfeeding, social status and porcine tissues), but not found in humans except in the education of parents. Women who make a decision to case of a particular cancer (Schauer et al, 1995) (Figure 1). breastfeed are often better educated with positive health Sialic acid molecules can be substituted in more than one attitudes concerning immunisation and smoking, and may position. O-substitution at C4, -7, -8 and -9 (O-acetyl, O- provide a more desirable environment for their young to methyl, O-sulphate, and phosphate groups) or the introduc- develop intellectually (Lucas et al, 1990, 1992). Statistical tion of a double bond between C-2 and C-3 can give rise to a adjustment for these associations may not remove the full wide variety of possible isomers (Varki & Diaz, 1984).
Recommended publications
  • Terminal Sialic Acid Linkages Determine Different Cell Infectivities of Human Parainfluenza Virus Type 1 and Type 3
    Virology 464-465 (2014) 424–431 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Terminal sialic acid linkages determine different cell infectivities of human parainfluenza virus type 1 and type 3 Keijo Fukushima a,1, Tadanobu Takahashi a,1, Seigo Ito a, Masahiro Takaguchi a, Maiko Takano a, Yuuki Kurebayashi a, Kenta Oishi a, Akira Minami a, Tatsuya Kato b,f, Enoch Y Park b,e,f, Hidekazu Nishimura c, Toru Takimoto d, Takashi Suzuki a,n a Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 4228526, Japan b Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 4228529, Japan c Virus Research Center, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Sendai, Miyagi 9838520, Japan d Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA e Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 4228529, Japan f Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 4228529, Japan article info abstract Article history: Human parainfluenza virus type 1 (hPIV1) and type 3 (hPIV3) initiate infection by sialic acid binding. Received 22 May 2014 Here, we investigated sialic acid linkage specificities for binding and infection of hPIV1 and hPIV3 by Returned to author for revisions using sialic acid linkage-modified cells treated with sialidases or sialyltransferases. The hPIV1 is bound to 8 July 2014 only α2,3-linked sialic acid residues, whereas hPIV3 is bound to α2,6-linked sialic acid residues in Accepted 11 July 2014 addition to α2,3-linked sialic acid residues in human red blood cells.
    [Show full text]
  • Sialic Acids and Their Influence on Human NK Cell Function
    cells Review Sialic Acids and Their Influence on Human NK Cell Function Philip Rosenstock * and Thomas Kaufmann Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany; [email protected] * Correspondence: [email protected] Abstract: Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function. Keywords: sialic acids; sialylation; NK cells; Siglecs; NCAM; CD56; sialyltransferases; NKp44; Nkp46; NKG2D 1. Introduction 1.1. Sialic Acids N-Acetylneuraminic acid (Neu5Ac) is the most common sialic acid in the human organism and also the precursor for all other sialic acid derivatives. The biosynthesis of Neu5Ac begins in the cytosol with uridine diphosphate-N-acetylglucosamine (UDP- Citation: Rosenstock, P.; Kaufmann, GlcNAc) as its starting component [1]. It is important to understand that sialic acid T. Sialic Acids and Their Influence on formation is strongly linked to glycolysis, since it results in the production of fructose-6- Human NK Cell Function. Cells 2021, phosphate (F6P) and phosphoenolpyruvate (PEP).
    [Show full text]
  • The Chemical Isomerization of Lactose to Lactulose by Using Sodium Hydroxide As Batch Reaction
    Pak. J. Chem. 5(3): 24-30, 2016 Full Paper ISSN (Print): 2220-2625 ISSN (Online): 2222-307X DOI: 10.15228/2016.v06.i01-2.p04 The Chemical Isomerization of Lactose to Lactulose by Using Sodium Hydroxide as Batch Reaction *Nahla T. K. Department of Food Sciences, College of Agriculture, University of Baghdad, Iraq E-mail: *[email protected] ABSTRACT Lactulose is a synthetic and non-absorbable disaccharide sugar containing glucose and fructose units. It is used for the treatment of constipation and hepatic encephalopathy. The purpose of this experiment was to synthesized lactulose in the presence of sodium hydroxide as a catalyst. The evaluation of lactulose synthesis was carried out at different concentration of sodium hydroxide (1, 2 and 3M) and the study was also conducted at different temperatures (30, 50, 70, and 90 °C). In addition, the kinetics of lactose isomerization with respect to the time also studied. Finally, it was concluded that the lactulose formation was determined by spectrophotometric method. The lactulose isomerization increased about more than 30.9% at 90 °C in the presence of 1M sodium hydroxide and 20 % lactose concentration. Keywords: Lactose, isomerization, lactulose, sodium hydroxide. 1. INTRODUCTION Lactulose is a synthetic sugar, which is not adsorbed by humans or rodents due to the lack of enzymes which catalyzes the disaccharide sugars. It can be generated by either alkaline isomerization of lactose via the Lobry de Bruyn - Alberda van Ekenstein rearrangement or by enzyme-catalyzed synthesis. Based on the first reaction, different process schemes for the preparation of lactulose have been developed. The enzymatic synthesis of lactulose can be carried out using different pathways with the transgalactosylation reaction being the most promising1.
    [Show full text]
  • Concentration and Distribution of Sialic Acid in Human Milk and Infant Formulas1–3
    Concentration and distribution of sialic acid in human milk and infant formulas1–3 Bing Wang, Janette Brand-Miller, Patricia McVeagh, and Peter Petocz Downloaded from https://academic.oup.com/ajcn/article/74/4/510/4737459 by guest on 23 September 2021 ABSTRACT 2- to 4-fold higher than those of other mammals, including chim- Background: In animal studies, sialic acid supplementation is panzees (4). Sialic acid is thought to play a role in the structural associated with increases of gangliosides in the brain and and functional establishment of synaptic pathways: >40% of improved learning ability. Only limited data are available on the sialic acid in the brain is found in the synaptosomal fraction and sialic acid content of human milk and infant formulas. contributes to the negative charge of the membrane (3). Because Objective: We compared the concentrations of oligosaccharide- most neurotransmitters are positively charged, sialic acid may bound, protein-bound, and free sialic acid in milk from mothers of assist neurotransmission by facilitating the binding of transmit- full-term and preterm infants and in a range of infant formulas. ter molecules to the synaptic membrane. Design: The milk from 20 and 14 mothers of full-term and Morgan and Winick (2) showed that exogenous sialic acid preterm infants (mean gestational age: 31 ± 3 wk), respectively, administered by intraperitoneal injection increased the produc- was collected at 4 stages of lactation (colostrum, transition, 1 mo, tion of ganglioside sialic acid in the brain and improved learning and 3 mo) and compared with 21 different infant formulas. ability in well-nourished and malnourished rat pups.
    [Show full text]
  • Review Sialic Acid-Specific Lectins: Occurrence, Specificity and Function
    Cell. Mol. Life Sci. 63 (2006) 1331–1354 1420-682X/06/121331-24 DOI 10.1007/s00018-005-5589-y Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2006 Review Sialic acid-specific lectins: occurrence, specificity and function F. Lehmanna, *, E. Tiralongob and J. Tiralongoa a Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre Australia 9726 (Australia), Fax: +61 7 5552 8098; e-mail: [email protected] b School of Pharmacy, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre Australia 9726 (Australia) Received 13 December 2005; received after revision 9 February 2006; accepted 15 February 2006 Online First 5 April 2006 Abstract. Sialic acids consist of a family of acidic nine- through specific interactions with lectins, a family of carbon sugars that are typically located at the terminal po- proteins that recognise and bind sugars. This review will sitions of a variety of glycoconjugates. Naturally occur- present a detailed overview of our current knowledge re- ring sialic acids show an immense diversity of structure, garding the occurrence, specificity and function of sialic and this reflects their involvement in a variety of biologi- acid-specific lectins, particularly those that occur in vi- cally important processes. One such process involves the ruses, bacteria and non-vertebrate eukaryotes. direct participation of sialic acids in recognition events Keywords. Sialic acid, lectin, sialoglycoconjugate, sialic acid-specific lectin, adhesin, infectious disease, immunology. Introduction [1, 2]. The largest structural variations of naturally occurring Sia are at carbon 5, which can be substituted with either an Sialic acids (Sia) are a family of nine-carbon a-keto acids acetamido, hydroxyacetamido or hydroxyl moiety to form (Fig.
    [Show full text]
  • Direct Determination of Sialic Acids in Glycoprotein Hydrolyzates by HPAE-PAD
    Application Update 180 Update Application Direct Determination of Sialic Acids in Glycoprotein Hydrolyzates by HPAE-PAD Thermo Fisher Scientific, Inc. INTRODUCTION In this work, sialic acids are determined in five Sialic acids are critical in determining glycoprotein representative glycoproteins by acid hydrolysis followed bioavailability, function, stability, and metabolism.1 by HPAE-PAD. Sialic acid determination by HPAE-PAD Although over 50 natural sialic acids have been identified,2 on a Thermo Scientific™ Dionex™ CarboPac™ PA20 two forms are commonly determined in glycoprotein column is specific and direct, eliminating the need for products: N-acetylneuraminic acid (Neu5Ac) and sample derivatization after sample preparation. The use N-glycolylneuraminic acid (Neu5Gc). Because humans of a disposable gold on polytetrafluoroethylene (Au on do not generally produce Neu5Gc and have been shown PTFE) working electrode simplifies system maintenance to possess antibodies against Neu5Gc, the presence of this compared to conventional gold electrodes while providing sialic acid in a therapeutic agent can potentially lead to an consistent response with a four-week lifetime. The rapid immune response.3 Consequently, glycoprotein sialylation, gradient method discussed separates Neu5Ac and Neu5Gc and the identity of the sialic acids, play important roles in under 10 min with a total analysis time of 16.5 min, in therapeutic protein efficacy, pharmacokinetics, and compared to 27 min using the Dionex CarboPac PA10 potential immunogenicity. column by a previously published method.6,7 By using the Dionex CarboPac PA20 column, the total analysis time is Sialic acid determination can be performed by many reduced, eluent consumption and waste generation are methods. Typically, sialic acids are released from glyco- reduced, and sample throughput is improved.
    [Show full text]
  • Xorox Univerelty Microfilms
    INFORMATION TO USERS This material was producad from a microfilm copy of the original document. While the moit advanced technological meant to photograph and reproduce thii document have been used, the quality it heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help ou understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to ob tain the mining page(s) or section, they are spliced into the film along w ith: adjacent pages, This may have necessitated cutting thru an image and dupli eating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image, fou will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning” the material. It is customary to begin photoi ig at the upper left hand comer of a large dieet and to continue photoi ig from left to right in equal sections with a small overlap. If necessary, sectioning is continued agein — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Lactulose Solution, Usp
    LACTULOSE- lactulose solution VistaPharm, Inc ---------- LACTULOSE SOLUTION, USP Rx Only VP2051 04/10 DESCRIPTION Lactulose is a synthetic disaccharide in solution form for oral administration. Each 15 mL of lactulose solution contains: 10 g lactulose (and less than 1.6 g galactose, less than 1.2 g lactose, and 1.2 g of other sugars). Also contains FD&C Yellow No. 6, purified water, USP and wild cherry flavoring. A minimal quantity of sodium hydroxide, NF is used to adjust pH when necessary. The pH range is 2.5 to 6.5. Lactulose is a colonic acidifier which promotes laxation.The chemical name for lactulose is 4-O-β-D- galactopyranosyl-D-fructofuranose. It has the following structural formula: C12H22O11 The molecular weight is 342.30. It is freely soluble in water. CLINICAL PHARMACOLOGY Lactulose is poorly absorbed from the gastrointestinal tract and no enzyme capable of hydrolysis of this disaccharide is present in human gastrointestinal tissue. As a result, oral doses of lactulose reach the colon virtually unchanged. In the colon, lactulose is broken down primarily to lactic acid, and also to small amounts of formic and acetic acids, by the action of colonic bacteria, which results in an increase in osmotic pressure and slight acidification of the colonic contents. This in turn causes an increase in stool water content and softens the stool. Since lactulose does not exert its effect until it reaches the colon, and since transit time through the colon may be slow, 24 to 48 hours may be required to produce the desired bowel movement.
    [Show full text]
  • Protocols for Breath Tests Interpretation Help Standard Dosages and Sampling Intervals for Hydrogen/Methane Breath Tests
    PROTOCOLS FOR BREATH TESTS INTERPRETATION HELP STANDARD DOSAGES AND SAMPLING INTERVALS FOR HYDROGEN/METHANE BREATH TESTS Breath Test Dosage Mixing Sample Intervals LACTOSE, FRUCTOSE OR SUCROSE INTOLERANCE: Lactose Intolerance • Max Dose = 25g Mix dose of Lactose in Collect Baseline, drink SUSPECTED POSITIVE: 8-10 ounces of water. mixed Lactose and collect a • Hydrogen (H ) Production Only: 20 ppm delta increase in Hydrogen from the lowest preceding value in the test. • Patients 55 lbs (24.9kg) or greater = 25g Lactose single breath sample each 2 hour for 3 hours. • Patients less than 55 lbs (24.9kg) = 1g of Lactose for • Methane (CH4) Production Only: 12 ppm delta increase in Methane from the lowest preceding value in the test. (4 Samples Total) each 2.2 lbs (1kg) of patient weight. • Hydrogen/Methane Both Produced: Add both H2 and CH4 values together in each sample. Review for a 15 ppm delta increase from the lowest preceding value. Fructose Intolerance • Max Dose = 25g Mix dose of Fructose in Collect Baseline, drink 8-10 ounces of water. mixed Fructose and collect • Patients 55 lbs (24.9kg) or greater = 25g Fructose a single breath sample each hour for 3 hours. SMALL INTESTINAL BACTERIAL OVERGROWTH (SIBO): • Patients less than 55 lbs (24.9kg) = 1g of Fructose (4 Samples Total) for each 2.2 lbs (1kg) of patient weight. SUSPECTED POSITIVE: Sucrose Intolerance • Max Dose = 50g Mix dose of Sucrose in Collect Baseline, drink OPTION 1: GLUCOSE (DEXTROSE) 8-10 ounces of water. mixed Sucrose and collect • Patients 110 lbs (50kg) or greater = 50g Sucrose • Hydrogen (H ) Production Only: 12 ppm delta increase in a single breath sample 2 every 30 minutes for Hydrogen from the lowest preceding value in the test.
    [Show full text]
  • A Structure-Based Rationale for Sialic Acid Independent Host-Cell Entry of Sosuga Virus
    A structure-based rationale for sialic acid independent host-cell entry of Sosuga virus Alice J. Stelfoxa and Thomas A. Bowdena,1 aDivision of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved September 9, 2019 (received for review April 23, 2019) The bat-borne paramyxovirus, Sosuga virus (SosV), is one of many myxoviral RBPs consist of an N-terminal cytoplasmic region, paramyxoviruses recently identified and classified within the transmembrane domain, stalk region, and C-terminal six-bladed newly established genus Pararubulavirus, family Paramyxoviridae. β-propeller receptor-binding domain. Paramyxoviral RBPs The envelope surface of SosV presents a receptor-binding protein organize as dimer-of-dimers on the viral envelope, with the (RBP), SosV-RBP, which facilitates host-cell attachment and entry. receptor-binding heads forming dimers and the stalk regions driving Unlike closely related hemagglutinin neuraminidase RBPs from tetramization through disulphide bonding (18–24). Paramyxoviral other genera of the Paramyxoviridae, SosV-RBP and other para- RBPs functionally categorize into three groups: hemagglutinin- rubulavirus RBPs lack many of the stringently conserved residues neuraminidase (HN), hemagglutinin (H), and glycoprotein (G) required for sialic acid recognition and hydrolysis. We determined (25). Unlike HN RBPs, which recognize and hydrolyze sialic the crystal structure of the globular head region of SosV-RBP, acid presented on host cells, H and G RBPs attach to proteinous revealing that while the glycoprotein presents a classical para- receptors, such as SLAMF1 (26–28) and ephrin receptors (29, myxoviral six-bladed β-propeller fold and structurally classifies 30), respectively.
    [Show full text]
  • LACTULOSE SOLUTION USP - Lactulose Solution Hi-Tech Pharmacal Co., Inc
    LACTULOSE SOLUTION USP - lactulose solution Hi-Tech Pharmacal Co., Inc. DESCRIPTION Lactulose is a synthetic disaccharide in solution form for oral administration. Each 15 mL of lactulose solution contains: 10 g lactulose (and less than 1.6 g galactose, less than 1.2 g lactose, and 1.2 g or less of other sugars). Lactulose solution contains potassium sorbate as an inactive ingredient. Lactulose is a colonic acidifier which promotes laxation. The chemical name for lactulose is 4-O-β-D-galactopyranosyl-D-fructofuranose. It has the following structural formula: The molecular weight is 342.30. It is freely soluble in water. CLINICAL PHARMACOLOGY Lactulose is poorly absorbed from the gastrointestinal tract and no enzyme capable of hydrolysis of this disaccharide is present in human gastrointestinal tissue. As a result, oral doses of lactulose reach the colon virtually unchanged. In the colon, lactulose is broken down primarily to lactic acid, and also to small amounts of formic and acetic acids, by the action of colonic bacteria, which results in an increase in osmotic pressure and slight acidification of the colonic contents. This in turn causes an increase in stool water content and softens the stool. Since lactulose does not exert its effect until it reaches the colon, and since transit time through the colon may be slow, 24 to 48 hours may be required to produce the desired bowel movement. Lactulose given orally to man and experimental animals resulted in only small amounts reaching the blood. Urinary excretion has been determined to be 3% or less and is essentially complete within 24 hours.
    [Show full text]
  • Defining Virus–Sialic Acid Interactions
    REVIEWS The sweet spot: defining virus–sialic acid interactions Jennifer E. Stencel-Baerenwald1,2*, Kerstin Reiss3,4*, Dirk M. Reiter3,5, Thilo Stehle3,6 and Terence S. Dermody1,2,6 Abstract | Viral infections are initiated by attachment of the virus to host cell surface receptors, including sialic acid-containing glycans. It is now possible to rapidly identify specific glycan receptors using glycan array screening, to define atomic-level structures of virus–glycan complexes and to alter the glycan-binding site to determine the function of glycan engagement in viral disease. This Review highlights general principles of virus–glycan interactions and provides specific examples of sialic acid binding by viruses with stalk-like attachment proteins, including influenza virus, reovirus, adenovirus and rotavirus. Understanding virus–glycan interactions is essential to combating viral infections and designing improved viral vectors for therapeutic applications. Viral attachment to receptors that are expressed on host has yielded general principles of virus–glycan interac- cells initiates infection and therefore, viral receptors are tions that may aid in the design of antiviral drugs and determinants of host range and govern host cell suscep- viral vectors. 1Department of Pathology, tibility. Various cell surface carbohydrates, including Microbiology, and sialylated glycans1–6, glycosaminoglycans7–10 and human Virus–sialic acid interactions Immunology, Vanderbilt 11,12 University School of Medicine. blood group antigens (HBGAs) , function as host cell Sialic acids are derivatives of neuraminic acid, which 2Elizabeth B. Lamb Center receptors for viral attachment and entry. is a nine-carbon monosaccharide that is ubiquitously for Pediatric Research, Although viruses have been known for some time expressed in higher vertebrates15.
    [Show full text]