Terminal Sialic Acid Linkages Determine Different Cell Infectivities of Human Parainfluenza Virus Type 1 and Type 3
Virology 464-465 (2014) 424–431 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Terminal sialic acid linkages determine different cell infectivities of human parainfluenza virus type 1 and type 3 Keijo Fukushima a,1, Tadanobu Takahashi a,1, Seigo Ito a, Masahiro Takaguchi a, Maiko Takano a, Yuuki Kurebayashi a, Kenta Oishi a, Akira Minami a, Tatsuya Kato b,f, Enoch Y Park b,e,f, Hidekazu Nishimura c, Toru Takimoto d, Takashi Suzuki a,n a Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 4228526, Japan b Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 4228529, Japan c Virus Research Center, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Sendai, Miyagi 9838520, Japan d Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA e Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 4228529, Japan f Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 4228529, Japan article info abstract Article history: Human parainfluenza virus type 1 (hPIV1) and type 3 (hPIV3) initiate infection by sialic acid binding. Received 22 May 2014 Here, we investigated sialic acid linkage specificities for binding and infection of hPIV1 and hPIV3 by Returned to author for revisions using sialic acid linkage-modified cells treated with sialidases or sialyltransferases. The hPIV1 is bound to 8 July 2014 only α2,3-linked sialic acid residues, whereas hPIV3 is bound to α2,6-linked sialic acid residues in Accepted 11 July 2014 addition to α2,3-linked sialic acid residues in human red blood cells.
[Show full text]