Transition in the Fats and Oils Industry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meat: a Novel
University of New Hampshire University of New Hampshire Scholars' Repository Faculty Publications 2019 Meat: A Novel Sergey Belyaev Boris Pilnyak Ronald D. LeBlanc University of New Hampshire, [email protected] Follow this and additional works at: https://scholars.unh.edu/faculty_pubs Recommended Citation Belyaev, Sergey; Pilnyak, Boris; and LeBlanc, Ronald D., "Meat: A Novel" (2019). Faculty Publications. 650. https://scholars.unh.edu/faculty_pubs/650 This Book is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Sergey Belyaev and Boris Pilnyak Meat: A Novel Translated by Ronald D. LeBlanc Table of Contents Acknowledgments . III Note on Translation & Transliteration . IV Meat: A Novel: Text and Context . V Meat: A Novel: Part I . 1 Meat: A Novel: Part II . 56 Meat: A Novel: Part III . 98 Memorandum from the Authors . 157 II Acknowledgments I wish to thank the several friends and colleagues who provided me with assistance, advice, and support during the course of my work on this translation project, especially those who helped me to identify some of the exotic culinary items that are mentioned in the opening section of Part I. They include Lynn Visson, Darra Goldstein, Joyce Toomre, and Viktor Konstantinovich Lanchikov. Valuable translation help with tricky grammatical constructions and idiomatic expressions was provided by Dwight and Liya Roesch, both while they were in Moscow serving as interpreters for the State Department and since their return stateside. -
Evaluation of the Use of Recycled Vegetable Oil As a Collector Reagent in the Flotation of Copper Sulfide Minerals Using Seawater
recycling Article Evaluation of the Use of Recycled Vegetable Oil as a Collector Reagent in the Flotation of Copper Sulfide Minerals Using Seawater Felipe Arcos and Lina Uribe * School of Mining Engineering, University of Talca, Talca 3460000, Chile; [email protected] * Correspondence: [email protected]; Tel.: +56-220-1798 Abstract: Considering sustainable mining, the use of seawater in mineral processing to replace conventional water is an attractive alternative, especially in cases where this resource is limited. However, the use of this aqueous medium generates a series of challenges; specifically, in the seawater flotation process, it is necessary to adapt traditional reagents to the aqueous medium or to propose new reagents that achieve better performance and are environmentally friendly. In this research, the technical feasibility of using recycled vegetable oil (RVO) as a collector of copper sulfide minerals in the flotation process using seawater was studied. The study considered the analysis of the metallurgical indexes when different concentrations of collector and foaming reagent were used, considering as collectors the RVO, potassium amyl xanthate (PAX) and mixtures of these, in addition to the methyl isobutyl carbinol (MIBC) as foaming agent. In addition, it was evidenced that the best metallurgical indexes were achieved using 40 g/t of RVO and 15 g/t of MIBC, which corresponded to an enrichment ratio of 6.29, a concentration ratio of 7.01, a copper recovery of 90.06% and a selectivity index with respect to pyrite of 4.03 and with respect to silica of 12.89. Finally, in relation to the study of the RVO and PAX collector mixtures, it was found that a mixture of 60 g/t of RVO and 40 g/t of PAX in the absence of foaming agent presented the best results in terms of copper recovery (98.66%) and the selectivity index with respect to pyrite (2.88) and silica (14.65), improving Citation: Arcos, F.; Uribe, L. -
Greenhouse Gas Impact of Marginal Fossil Fuel Use
Greenhouse gas impact of marginal fossil fuel use Greenhouse gas impact of marginal fossil fuel use By: Arno van den Bos, Carlo Hamelinck Date: 12 November 2014 Project number: BIENL14773 © Ecofys 2014 by order of the European Oilseed Alliance (EOA), the European Biodiesel Board (EBB) and the European Vegetable Oil and Proteinmeal Industry (FEDIOL) ECOFYS Netherlands B.V. | Kanaalweg 15G | 3526 KL Utrecht| T +31 (0)30 662-3300 | F +31 (0)30 662-3301 | E [email protected] | I www.ecofys.com Chamber of Commerce 30161191 Summary Biofuels represent a major option to reduce greenhouse gas emissions from the transportation sector. When assessing the benefits of biofuels, they are compared to the fossil fuels they replace. In the framework of the European Renewable Energy Directive and the Fuel Quality Directive, this is done by comparing the lifecycle greenhouse gas emissions of biofuels to a ‘fossil comparator’. This fossil comparator is based on the average greenhouse gas intensity of fossil fuels brought on the EU transportation market. Unconventional oils such as extra heavy oil and bitumen (tar sands), kerogen oil (oil shale), light tight oil (shale oil), deep sea oil and synthetic products such as gas-to-liquids and coal-to-liquids, typically have higher carbon footprints than conventional oil mainly because the effort required to extract, refine and/or synthesize them is much larger than for conventional oil. As the share of these unconventional oil-based fuels gradually rises in the total fuel supply over time, the greenhouse gas footprint of the average fuel consumption also rises. Even for conventional oil production fields, because larger existing fields get depleted, the extraction efforts increase while smaller fields are taken in operation. -
Innovative, Sustainable Processing Solutions for the Palm Oil Industry Stay Ahead
Alfa Laval in brief Alfa Laval is a leading global provider of specialized products and engineered solutions. Our equipment, systems and services are dedicated to helping customers to optimize the performance of their processes. Time and time again. We help our customers to heat, cool, separate and transport products such as oil, water, chemicals, beverages, foodstuffs, From fruit to food - and beyond starch and pharmaceuticals. Solutions Our worldwide organization works closely with customers in almost 100 countries to help them Innovative, sustainable processing solutions for the palm oil industry stay ahead. that add value In response to challenges facing players in the competitive palm oil milling, refining and fats modification industry, Alfa Laval has developed a range of innovative solutions that offer sustainable alternatives to traditional technology. The solutions have one thing in common – they add value. PFT00521EN 1208 D3 PRO, Aldec, MBR, PAPX, PANX, VHE ECO, CompaBloc, SoftColumn, SoftColumn Dual-Strip, SoftFlex, TocoBoost, Iso-Mix, Iso-Mix, VHE ECO, CompaBloc, SoftColumn, SoftColumn Dual-Strip, SoftFlex, TocoBoost, PANX, D3 PRO, Aldec, MBR, PAPX, trademarks owned by Alfa Laval Corporate AB, Sweden. (AGT) are Treatment Ageratec and Advanced Glycerol and owned by Alfa Laval Corporate AB, Sweden. © 2012 Laval. Alfa Laval is a trademark registered Palm oil processing 2 A versatile partner who Maximum uptime Global services thinks outside the box for your operation - close to you Palm oil supply chain: The innovative Alfa Laval way to sustainable, high yield palm oil extraction, refining, fats modification and biodiesel production t Wherever you are, Alfa Laval’s palm oil competence centres, sales offices and service centres are never far away Micronutrients eatmen tion Enrichment processes Tocotrienols tr ca erol erifi t yc st gl v. -
Vegetable Oil Processing
Pollution Prevention and Abatement Handbook WORLD BANK GROUP Effective July 1998 Vegetable Oil Processing Industry Description and Practices to 5,000 mg/l). Seed dressing and edible fat and oil processing generate approximately 10–25 m3 The vegetable oil processing industry involves of wastewater per metric ton (t) of product. Most the extraction and processing of oils and fats from of the solid wastes (0.7–0.8 t/t of raw material), vegetable sources. Vegetable oils and fats are which are mainly of vegetable origin, can be pro- principally used for human consumption but are cessed into by-products or used as fuel. Molds also used in animal feed, for medicinal purposes, may be found on peanut kernels, and aflatoxins and for certain technical applications. The oils may be present. and fats are extracted from a variety of fruits, seeds, and nuts. The preparation of raw materi- Pollution Prevention and Control als includes husking, cleaning, crushing, and con- ditioning. The extraction processes are generally Good pollution prevention practices in the indus- mechanical (boiling for fruits, pressing for seeds try focus on the following main areas: and nuts) or involve the use of solvent such as hexane. After boiling, the liquid oil is skimmed; Prevent the formation of molds on edible after pressing, the oil is filtered; and after solvent materials by controlling and monitoring air extraction, the crude oil is separated and the sol- humidity. vent is evaporated and recovered. Residues are Use citric acid instead of phosphoric acid, conditioned (for example, dried) and are repro- where feasible, in degumming operations. -
Meat Packing, an Industry on the Deck
University of Mississippi eGrove Touche Ross Publications Deloitte Collection 1964 Meat Packing, an industry on the deck Maurice McGill Iowa Beef Packers Follow this and additional works at: https://egrove.olemiss.edu/dl_tr Part of the Accounting Commons, and the Taxation Commons Recommended Citation Quarterly, Vol. 10, no. 3 (1964, September), p. 17-21 This Article is brought to you for free and open access by the Deloitte Collection at eGrove. It has been accepted for inclusion in Touche Ross Publications by an authorized administrator of eGrove. For more information, please contact [email protected]. by Maurice McGill MEAT PACKIN6 The author wishes to express his appreciation to Iowa Beef Packers, Inc., for their cooperation in preparing this article. An Industry nn the Deck "Gentlemen, this industry is on the deck. It has hit the cheaper to transport the cattle to feed supplies, primarily bottom and has only one way to go — up." This statement corn, than it was to transport feed to the cattle, particu was made recently to a group of financial analysts by larly in view of the fact that in doing so, the cattle were A. D. Anderson, president of Iowa Beef Packers, Inc., as moved closer to the larger Eastern population centers he discussed one of the largest, most important industries where they would ultimately be consumed. Inadequate of the United States — meat packing. These comments, refrigeration and transportation facilities made it impera coming from the president of the newest member in the tive that meat slaughter plants be located close to the family of major meat packers, were greeted with some consumer. -
Influence of Vegetable Oils on Ph Profile During Processing Of
cess Pro ing d & o o T F e c f h o a a a oo Poe eo 2 n l o a l n o r Journal of Food DOI: 10.4172/2157-7110.1000756 g u y o J Processing & Technology ISSN: 2157-7110 Research Article Open Access Influence of Vegetable Oils on pH Profile during Processing of Semidry Fermented Buffalo Meat Sausage Irfan Khan1 and Saghir Ahmad2* Department of Post-Harvest Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India Abstract The experiments were conducted to deduce the effect of lactic acid fermentation and smoking on the pH of semidry fermented Buffalo meat sausage incorporated with different vegetable oils viz., Canola oil, Safflower oil and olive oil with levels of 15%, 20%, 25% individually. The aim was to replace the buffalo white fat with the different levels of vegetable oils (Canola oil, Safflower oil and olive oil) to make a product healthier for human beings as the taken vegetable oils contain good amount of monounsaturated fatty acids, polyunsaturated fatty acids, tocopherols, phytosterols and polyphenols. As the problems related to overdose of saturated fat become prevalent in the society particularly in urban people viz., cardiovascular diseases (atherosclerosis, arteriosclerosis), type-2 diabetes mellitus, polycystic ovary etc. Three samples with each vegetable oil were prepared by taking 15%, 20% and 25% substitution level in the laboratory. The fermentation of Buffalo meat sausage was performed with the bacterial strains of Lactobacillus plantarum MTCC 1407 and Lactobacillus brevis MTCC1750 in the batch process at 22°C temperature for 48 hrs. -
Innovation in Processing & Reformulation of Vegetable Oils & Fats
FEDIOL Nutrition Factsheet Innovation in processing and reformulation of vegetable oils and fats Within the global context of health, diet and physical activity, the vegetable oils and fats sector is actively working on healthy solutions for the EU food market . Despite different national diets in the EU, which present I lowering Trans Fatty Acids (TFA), a variety of challenges for reformulating options, I lowering Saturated Fatty Acids (SAFA) and the industry has worked over the last 10 years towards I increasing Mono- and Polyunsaturated Fatty Acids achieving the following goals : (MUFA, PUFA) Evolution of the vegetable oils and fats content in TFA, SAFA, PUFA and MUFA from 1998-2008 45 The vegetable oils and fats industry is committed to 40 35 deliver formulations with an improved nutritional 30 s i s a 25 b profile to the food industry t a 20 F % 15 I Significant improvements have been achieved in 10 the last 10 years in reducing TFA and SAFA, and 5 0 increasing MUFA and PUFA 1998 2003 2008 Years I The vegetable oils and fats industry and food ––– MUFA ––– PUFA ––– SAFA ––– TFA producers have to overcome technical challenges Results to deliver food products with the same I The average TFA content in vegetable oils and fats functionalities and sensory properties has decreased over the last 10 years from 5.3 to 1% on fat basis, which corresponds to a relative decrease I Raw materials and innovative processes are in of 81%. constant development with a clear cost impact I A slight increase of SAFA can be observed from The vegetable oils and fats industry will continue 1998 to 2003, followed by a decrease from 2003 to 2008 reaching 27.3% of total fat. -
Development of the U.S. Meat Industry Elizabeth Boyle, Ph.D. and Rodolfo
Development of the U.S. Meat Industry Elizabeth Boyle, Ph.D. and Rodolfo Estrada Department of Animal Sciences and Industry Kansas State University November 1994 The U.S. meat industry began during colonial times. Initially, colonists depended on wild animals for their meat supply. As the supply of domestic livestock increased, colonists became involved in trading meat with the West Indies in exchange for molasses. Meat was salted, smoked and packed into wooden barrels or boxes for storage and shipping. Hence, the term "meat packing." According to historical records, William Pynchon of Springfield, Massachusetts became the first American devoted to the 'packing' business. In 1655 he started by driving cattle to Boston, and was packing large numbers of hogs by 1662. The first retail meat shops were operated by colonial butchers. Having learned their trade in Europe, local butchers supplied meat to others in the community beyond their own immediate family. With the advent of the Industrial Revolution, eastern cities grew and the demand for meat increased. To serve this market, large cattle ranches were established west of the Mississippi river. Between 1865 and 1875, railroads expanded into the Mississippi and Ohio Valley regions. Range cattle were driven on hoof over cattle trails from production areas in the west to railheads. One of the best known trails was the Chisholm Trail which led from Texas to Abilene, Kansas. Railroad cattle cars were then used to transport livestock to large eastern packing houses. Cincinnati, Buffalo, Milwaukee and Chicago became centers of the packing industry. Meat packing was a seasonal industry, operating primarily during the cooler months. -
UMITED STATES DEPARTMENT of AÖRICULTURE Agriculture
UMITED STATES DEPARTMENT OF AÖRICULTURE Agriculture Information Bulletin No. 37 Washingtffli, D. C. Issued April 1951 LISTS OF PUBLICATIONS AND PATENTS BUREAU OF AGRICULTURAL AND INDUSTRIAL CHEMISTRY AGRICULTURAL RESEARCH ADMINISTRATION U. S. DEPARTMENT OF AGRICULTURE Issued during fiscal year ended June 30, 1950 Compiled By T. D. Jarrell / CONTENTS Page PUBLICATIONS Northern Regional Research Laboratory ...... 1 Southern Regional Research Laboratory •«•... • • . • • 4 Eastern Regional Research Laboratory •«•••.••••••...••• 9 Western Elegional Research Laboratory • . • . • . « * • . • • • • • . 16 Agricultural Chemical Research Division ................. 20 Naval Stores Research Division ••••••••• 22 Enzyme Research Division • • • • . • • . ... • . • • .••... 23 Pharmacology Laboratory . • • . • . .... • • . • . • • .24 Fruit and Vegetable Chemistry Laboratory ..•.••••••..•••• 25 Natural Rubber Extracticm and Processing Investigations . ... 25 Allergen Research Division 26 Microbiology itesearch Division ........ 26 Biologically Active Chemical Conçounds Division .26 General . 27 UltlTED STATES PATEÎIT8 29 Further information on the jmblications listed herein may be obtained by writing to the division or laboratory concerned. PUBLICATIONS NORTHERN REGIONAL RESEARCH LAB(»ATORY 825 North University Street Peoria 5, Illinois RESEARCH Evaluation of fibrous agricultural residues for structural building board prod- ucts* III, A process for the manufacture of high-grade products from wheat straw. By E. C. Lathrop and T. R. Naffziger. TAPPI (Tech. Assoc. Pulp and Paper Indus.) 32(7): 319-330, 1949. Agricultural residues in plastics. III. Evaluation of residue flours as fillers in thermosetting phenolics. By T. F. Clark. Mod. Plastics 26(12): 111-116, 164«165. 1949. Agricultural residue flours as extenders in phenolic resin glues for plywood. By R. V. Williamson and E. C. Lathrop. Mod. Plastics 27(2): 111-112, 169-170, 172, 174. 1949. Hop vines for paper. By H. -
14 T.Txt the Hype from Hollywood: Tinseltown's Latest Assault on the Meat Industry Kendal Frazier; Janet Riley
14_t.txt The Hype from Hollywood: Tinseltown's Latest Assault on the Meat Industry Kendal Frazier; Janet Riley [1]We're going to spend about an hour or so to hear from Kendal Frazier from the National Cattlemen's Beef Association and Janet Riley, one of my co-workers at the American Meat Institute, and they are going to talk about the hype from Hollywood; Tinsel Town's latest assault on the meat industry. First, I would like to introduce Kendal Frazier. Kendal is the Vice President of Communications at NCBA. He has spent twenty-one years at both the National Cattlemen's Association, NCA, as well as NCBA. He is a graduate of Kansas State University, and he was raised on a diversified livestock and grain operation in south-central Kansas, and Janet Riley, they are going to tag-team this morning on the talk, and Janet is the Senior Vice President of Public Affairs and Professional Development at the American Meat Institute. In her role, she develops public information on issues management strategy and manages various other public communications including AMI's news reporting on meatami.com. In addition, she is the liaison to the Animal Welfare Committee and oversees policy initiatives in this area. Janet also leads educational and professional development efforts for the Institute, and as a member of the AMI Crisis Management Team, she provides strategic counsel to AMI members when in need. So, with those brief introductions, I'm going to turn it over to Janet and Kendal. Thank you Randy and good morning everyone. -
Emerging Vegetable Oils in Europe
CBI Product Factsheet: Emerging vegetable oils in Europe CBI | Market Intelligence Product Factsheet Cloves in Germany | 1 Introduction The drive for innovation in the European food industry leads companies to adopt new ingredients in order to remain competitive. The introduction of new vegetable oils (emerging oils), either as ingredients or as final consumer products, is a form of innovation, differentiation and marketing used by food companies to articulate their competitive edge. On the other side of the coin, exporters of emerging oils still face a number of challenges to access the European market successfully. Whereas the Novel Food Regulation imposes marketing restrictions on a number of innovative products, some barriers to suppliers are often related to issues such as supply sufficiency and stability. At the same time, emerging oils also provide opportunities in terms of niche marketing and value adding propositions. Understanding the European market for emerging vegetable oils Innovation is high on the agenda of food manufacturers in Europe, significantly in North-Western Europe. In order to remain competitive, companies invest heavily in Research & Development (R&D), with the goal of adapting products to ever-changing consumer preferences, food health and safety requirements and introducing novelty into the food market. A large part of this strategy consists in finding new ingredient solutions. Vegetable oils are an integral part of several food products and, as such, are an interesting basis for product development. The introduction of new vegetable oils, either as ingredients or as final consumer products, is a form of innovation, differentiation and marketing used by food companies to articulate their competitive edge.