Renormalization of the Classical Massless Scalar Field Theory With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Quantum Field Theory
AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ........................... -
2-Loop $\Beta $ Function for Non-Hermitian PT Symmetric $\Iota
2-Loop β Function for Non-Hermitian PT Symmetric ιgφ3 Theory Aditya Dwivedi1 and Bhabani Prasad Mandal2 Department of Physics, Institute of Science, Banaras Hindu University Varanasi-221005 INDIA Abstract We investigate Non-Hermitian quantum field theoretic model with ιgφ3 interaction in 6 dimension. Such a model is PT-symmetric for the pseudo scalar field φ. We analytically calculate the 2-loop β function and analyse the system using renormalization group technique. Behavior of the system is studied near the different fixed points. Unlike gφ3 theory in 6 dimension ιgφ3 theory develops a new non trivial fixed point which is energetically stable. 1 Introduction Over the past two decades a new field with combined Parity(P)-Time rever- sal(T) symmetric non-Hermitian systems has emerged and has been one of the most exciting topics in frontier research. It has been shown that such theories can lead to the consistent quantum theories with real spectrum, unitary time evolution and probabilistic interpretation in a different Hilbert space equipped with a positive definite inner product [1]-[3]. The huge success of such non- Hermitian systems has lead to extension to many other branches of physics and interdisciplinary areas. The novel idea of such theories have been applied in arXiv:1912.07595v1 [hep-th] 14 Dec 2019 numerous systems leading huge number of application [4]-[21]. Several PT symmetric non-Hermitian models in quantum field theory have also been studied in various context [16]-[26]. Deconfinment to confinment tran- sition is realised by PT phase transition in QCD model using natural but uncon- ventional hermitian property of the ghost fields [16]. -
Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany
Generating Functionals Functional Integration Renormalization Introduction to Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany 2nd Autumn School on High Energy Physics and Quantum Field Theory Yerevan, Armenia, 6-10 October, 2014 T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Overview Lecture 1: Basics of Quantum Field Theory Generating Functionals Functional Integration Perturbation Theory Renormalization Lecture 2: Effective Field Thoeries Effective Actions Effective Lagrangians Identifying relevant degrees of freedom Renormalization and Renormalization Group T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 3: Examples @ work From Standard Model to Fermi Theory From QCD to Heavy Quark Effective Theory From QCD to Chiral Perturbation Theory From New Physics to the Standard Model Lecture 4: Limitations: When Effective Field Theories become ineffective Dispersion theory and effective field theory Bound Systems of Quarks and anomalous thresholds When quarks are needed in QCD É. T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 1: Basics of Quantum Field Theory Thomas Mannel Theoretische Physik I, Universität Siegen f q f et Yerevan, October 2014 T. Mannel, Siegen University Effective Quantum -
Hep-Th] 27 May 2021
Higher order curvature corrections and holographic renormalization group flow Ahmad Ghodsi∗and Malihe Siahvoshan† Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran September 3, 2021 Abstract We study the holographic renormalization group (RG) flow in the presence of higher-order curvature corrections to the (d+1)-dimensional Einstein-Hilbert (EH) action for an arbitrary interacting scalar matter field by using the superpotential approach. We find the critical points of the RG flow near the local minima and maxima of the potential and show the existence of the bounce solutions. In contrast to the EH gravity, regarding the values of couplings of the bulk theory, superpoten- tial may have both upper and lower bounds. Moreover, the behavior of the RG flow controls by singular curves. This study may shed some light on how a c-function can exist in the presence of these corrections. arXiv:2105.13208v1 [hep-th] 27 May 2021 ∗[email protected] †[email protected] Contents 1 Introduction1 2 The general setup4 3 Holographic RG flow: κ1 = 0 theories5 3.1 Critical points for κ2 < 0...........................7 3.1.1 Local maxima of the potential . .7 3.1.2 Local minima of potential . .9 3.1.3 Bounces . .9 3.2 Critical points for κ2 > 0........................... 11 3.2.1 Critical points for W 6= WE ..................... 12 3.2.2 Critical points near W = WE .................... 13 4 Holographic RG flow: General case 15 4.1 Local maxima of potential . 18 4.2 Local minima of potential . 22 4.3 Bounces . -
The Euler Legacy to Modern Physics
ENTE PER LE NUOVE TECNOLOGIE, L'ENERGIA E L'AMBIENTE THE EULER LEGACY TO MODERN PHYSICS G. DATTOLI ENEA -Dipartimento Tecnologie Fisiche e Nuovi Materiali Centro Ricerche Frascati M. DEL FRANCO - ENEA Guest RT/2009/30/FIM This report has been prepared and distributed by: Servizio Edizioni Scientifiche - ENEA Centro Ricerche Frascati, C.P. 65 - 00044 Frascati, Rome, Italy The technical and scientific contents of these reports express the opinion of the authors but not necessarily the opinion of ENEA. THE EULER LEGACY TO MODERN PHYSICS Abstract Particular families of special functions, conceived as purely mathematical devices between the end of XVIII and the beginning of XIX centuries, have played a crucial role in the development of many aspects of modern Physics. This is indeed the case of the Euler gamma function, which has been one of the key elements paving the way to string theories, furthermore the Euler-Riemann Zeta function has played a decisive role in the development of renormalization theories. The ideas of Euler and later those of Riemann, Ramanujan and of other, less popular, mathematicians have therefore provided the mathematical apparatus ideally suited to explore, and eventually solve, problems of fundamental importance in modern Physics. The mathematical foundations of the theory of renormalization trace back to the work on divergent series by Euler and by mathematicians of two centuries ago. Feynman, Dyson, Schwinger… rediscovered most of these mathematical “curiosities” and were able to develop a new and powerful way of looking at physical phenomena. Keywords: Special functions, Euler gamma function, Strin theories, Euler-Riemann Zeta function, Mthematical curiosities Riassunto Alcune particolari famiglie di funzioni speciali, concepite come dispositivi puramente matematici tra la fine del XVIII e l'inizio del XIX secolo, hanno svolto un ruolo cruciale nello sviluppo di molti aspetti della fisica moderna. -
Finite Quantum Field Theory and Renormalization Group
Finite Quantum Field Theory and Renormalization Group M. A. Greena and J. W. Moffata;b aPerimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada bDepartment of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada September 15, 2021 Abstract Renormalization group methods are applied to a scalar field within a finite, nonlocal quantum field theory formulated perturbatively in Euclidean momentum space. It is demonstrated that the triviality problem in scalar field theory, the Higgs boson mass hierarchy problem and the stability of the vacuum do not arise as issues in the theory. The scalar Higgs field has no Landau pole. 1 Introduction An alternative version of the Standard Model (SM), constructed using an ultraviolet finite quantum field theory with nonlocal field operators, was investigated in previous work [1]. In place of Dirac delta-functions, δ(x), the theory uses distributions (x) based on finite width Gaussians. The Poincar´eand gauge invariant model adapts perturbative quantumE field theory (QFT), with a finite renormalization, to yield finite quantum loops. For the weak interactions, SU(2) U(1) is treated as an ab initio broken symmetry group with non- zero masses for the W and Z intermediate× vector bosons and for left and right quarks and leptons. The model guarantees the stability of the vacuum. Two energy scales, ΛM and ΛH , were introduced; the rate of asymptotic vanishing of all coupling strengths at vertices not involving the Higgs boson is controlled by ΛM , while ΛH controls the vanishing of couplings to the Higgs. Experimental tests of the model, using future linear or circular colliders, were proposed. -
U(1) Symmetry of the Complex Scalar and Scalar Electrodynamics
Fall 2019: Classical Field Theory (PH6297) U(1) Symmetry of the complex scalar and scalar electrodynamics August 27, 2019 1 Global U(1) symmetry of the complex field theory & associated Noether charge Consider the complex scalar field theory, defined by the action, h i h i I Φ(x); Φy(x) = d4x (@ Φ)y @µΦ − V ΦyΦ : (1) ˆ µ As we have noted earlier complex scalar field theory action Eq. (1) is invariant under multiplication by a constant complex phase factor ei α, Φ ! Φ0 = e−i αΦ; Φy ! Φ0y = ei αΦy: (2) The phase,α is necessarily a real number. Since a complex phase is unitary 1 × 1 matrix i.e. the complex conjugation is also the inverse, y −1 e−i α = e−i α ; such phases are also called U(1) factors (U stands for Unitary matrix and since a number is a 1×1 matrix, U(1) is unitary matrix of size 1 × 1). Since this symmetry transformation does not touch spacetime but only changes the fields, such a symmetry is called an internal symmetry. Also note that since α is a constant i.e. not a function of spacetime, it is a global symmetry (global = same everywhere = independent of spacetime location). Check: Under the U(1) symmetry Eq. (2), the combination ΦyΦ is obviously invariant, 0 Φ0yΦ = ei αΦy e−i αΦ = ΦyΦ: This implies any function of the product ΦyΦ is also invariant. 0 V Φ0yΦ = V ΦyΦ : Note that this is true whether α is a constant or a function of spacetime i.e. -
Vacuum Energy
Vacuum Energy Mark D. Roberts, 117 Queen’s Road, Wimbledon, London SW19 8NS, Email:[email protected] http://cosmology.mth.uct.ac.za/ roberts ∼ February 1, 2008 Eprint: hep-th/0012062 Comments: A comprehensive review of Vacuum Energy, which is an extended version of a poster presented at L¨uderitz (2000). This is not a review of the cosmolog- ical constant per se, but rather vacuum energy in general, my approach to the cosmological constant is not standard. Lots of very small changes and several additions for the second and third versions: constructive feedback still welcome, but the next version will be sometime in coming due to my sporadiac internet access. First Version 153 pages, 368 references. Second Version 161 pages, 399 references. arXiv:hep-th/0012062v3 22 Jul 2001 Third Version 167 pages, 412 references. The 1999 PACS Physics and Astronomy Classification Scheme: http://publish.aps.org/eprint/gateway/pacslist 11.10.+x, 04.62.+v, 98.80.-k, 03.70.+k; The 2000 Mathematical Classification Scheme: http://www.ams.org/msc 81T20, 83E99, 81Q99, 83F05. 3 KEYPHRASES: Vacuum Energy, Inertial Mass, Principle of Equivalence. 1 Abstract There appears to be three, perhaps related, ways of approaching the nature of vacuum energy. The first is to say that it is just the lowest energy state of a given, usually quantum, system. The second is to equate vacuum energy with the Casimir energy. The third is to note that an energy difference from a complete vacuum might have some long range effect, typically this energy difference is interpreted as the cosmological constant. -
8. Quantum Field Theory on the Plane
8. Quantum Field Theory on the Plane In this section, we step up a dimension. We will discuss quantum field theories in d =2+1dimensions.Liketheird =1+1dimensionalcounterparts,thesetheories have application in various condensed matter systems. However, they also give us further insight into the kinds of phases that can arise in quantum field theory. 8.1 Electromagnetism in Three Dimensions We start with Maxwell theory in d =2=1.ThegaugefieldisAµ,withµ =0, 1, 2. The corresponding field strength describes a single magnetic field B = F12,andtwo electric fields Ei = F0i.Weworkwiththeusualaction, 1 S = d3x F F µ⌫ + A jµ (8.1) Maxwell − 4e2 µ⌫ µ Z The gauge coupling has dimension [e2]=1.Thisisimportant.ItmeansthatU(1) gauge theories in d =2+1dimensionscoupledtomatterarestronglycoupledinthe infra-red. In this regard, these theories di↵er from electromagnetism in d =3+1. We can start by thinking classically. The Maxwell equations are 1 @ F µ⌫ = j⌫ e2 µ Suppose that we put a test charge Q at the origin. The Maxwell equations reduce to 2A = Qδ2(x) r 0 which has the solution Q r A = log +constant 0 2⇡ r ✓ 0 ◆ for some arbitrary r0. We learn that the potential energy V (r)betweentwocharges, Q and Q,separatedbyadistancer, increases logarithmically − Q2 r V (r)= log +constant (8.2) 2⇡ r ✓ 0 ◆ This is a form of confinement, but it’s an extremely mild form of confinement as the log function grows very slowly. For obvious reasons, it’s usually referred to as log confinement. –384– In the absence of matter, we can look for propagating degrees of freedom of the gauge field itself. -
Physics 234C Lecture Notes
Physics 234C Lecture Notes Jordan Smolinsky [email protected] Department of Physics & Astronomy, University of California, Irvine, ca 92697 Abstract These are lecture notes for Physics 234C: Advanced Elementary Particle Physics as taught by Tim M.P. Tait during the spring quarter of 2015. This is a work in progress, I will try to update it as frequently as possible. Corrections or comments are always welcome at the above email address. 1 Goldstone Bosons Goldstone's Theorem states that there is a massless scalar field for each spontaneously broken generator of a global symmetry. Rather than prove this, we will take it as an axiom but provide a supporting example. Take the Lagrangian given below: N X 1 1 λ 2 L = (@ φ )(@µφ ) + µ2φ φ − (φ φ ) (1) 2 µ i i 2 i i 4 i i i=1 This is a theory of N real scalar fields, each of which interacts with itself by a φ4 coupling. Note that the mass term for each of these fields is tachyonic, it comes with an additional − sign as compared to the usual real scalar field theory we know and love. This is not the most general such theory we could have: we can imagine instead a theory which includes mixing between the φi or has a nondegenerate mass spectrum. These can be accommodated by making the more general replacements X 2 X µ φiφi ! Mijφiφj i i;j (2) X 2 X λ (φiφi) ! Λijklφiφjφkφl i i;j;k;l but this restriction on the potential terms of the Lagrangian endows the theory with a rich structure. -
Physics 215A: Particles and Fields Fall 2016
Physics 215A: Particles and Fields Fall 2016 Lecturer: McGreevy These lecture notes live here. Please email corrections to mcgreevy at physics dot ucsd dot edu. Last updated: 2017/10/31, 16:42:12 1 Contents 0.1 Introductory remarks............................4 0.2 Conventions.................................6 1 From particles to fields to particles again7 1.1 Quantum sound: Phonons.........................7 1.2 Scalar field theory.............................. 14 1.3 Quantum light: Photons.......................... 19 1.4 Lagrangian field theory........................... 24 1.5 Casimir effect: vacuum energy is real................... 29 1.6 Lessons................................... 33 2 Lorentz invariance and causality 34 2.1 Causality and antiparticles......................... 36 2.2 Propagators, Green's functions, contour integrals............ 40 2.3 Interlude: where is 1-particle quantum mechanics?............ 45 3 Interactions, not too strong 48 3.1 Where does the time dependence go?................... 48 3.2 S-matrix................................... 52 3.3 Time-ordered equals normal-ordered plus contractions.......... 54 3.4 Time-ordered correlation functions.................... 57 3.5 Interlude: old-fashioned perturbation theory............... 67 3.6 From correlation functions to the S matrix................ 69 3.7 From the S-matrix to observable physics................. 78 4 Spinor fields and fermions 85 4.1 More on symmetries in QFT........................ 85 4.2 Representations of the Lorentz group on fields.............. 91 4.3 Spinor lagrangians............................. 96 4.4 Free particle solutions of spinor wave equations............. 103 2 4.5 Quantum spinor fields........................... 106 5 Quantum electrodynamics 111 5.1 Vector fields, quickly............................ 111 5.2 Feynman rules for QED.......................... 115 5.3 QED processes at leading order...................... 120 3 0.1 Introductory remarks Quantum field theory (QFT) is the quantum mechanics of extensive degrees of freedom. -
Quantum Mechanics Propagator
Quantum Mechanics_propagator This article is about Quantum field theory. For plant propagation, see Plant propagation. In Quantum mechanics and quantum field theory, the propagator gives the probability amplitude for a particle to travel from one place to another in a given time, or to travel with a certain energy and momentum. In Feynman diagrams, which calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the diagram. They also can be viewed as the inverse of the wave operator appropriate to the particle, and are therefore often called Green's functions. Non-relativistic propagators In non-relativistic quantum mechanics the propagator gives the probability amplitude for a particle to travel from one spatial point at one time to another spatial point at a later time. It is the Green's function (fundamental solution) for the Schrödinger equation. This means that, if a system has Hamiltonian H, then the appropriate propagator is a function satisfying where Hx denotes the Hamiltonian written in terms of the x coordinates, δ(x)denotes the Dirac delta-function, Θ(x) is the Heaviside step function and K(x,t;x',t')is the kernel of the differential operator in question, often referred to as the propagator instead of G in this context, and henceforth in this article. This propagator can also be written as where Û(t,t' ) is the unitary time-evolution operator for the system taking states at time t to states at time t'. The quantum mechanical propagator may also be found by using a path integral, where the boundary conditions of the path integral include q(t)=x, q(t')=x' .