Standard Model with Spontaneously Broken Quantum Scale Invariance

Total Page:16

File Type:pdf, Size:1020Kb

Standard Model with Spontaneously Broken Quantum Scale Invariance PHYSICAL REVIEW D 96, 055034 (2017) Standard model with spontaneously broken quantum scale invariance † ‡ D. M. Ghilencea,1,2,* Z. Lalak,3, and P. Olszewski3, 1Theoretical Physics Department, National Institute of Physics and Nuclear Engineering, Bucharest 077125, Romania 2Theory Division, CERN, 1211 Geneva 23, Switzerland 3Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland (Received 28 July 2017; published 25 September 2017) We explore the possibility that scale symmetry is a quantum symmetry that is broken only spontaneously and apply this idea to the standard model. We compute the quantum corrections to the potential of the Higgs field (ϕ) in the classically scale-invariant version of the standard model (mϕ ¼ 0 at tree level) extended by the dilaton (σ). The tree-level potential of ϕ and σ, dictated by scale invariance, may contain nonpolynomial effective operators, e.g., ϕ6=σ2, ϕ8=σ4, ϕ10=σ6, etc. The one-loop scalar potential is scale invariant, since the loop calculations manifestly preserve the scale symmetry, with the dimensional regularization subtraction scale μ generated spontaneously by the dilaton vacuum expectation value μ ∼ hσi. The Callan-Symanzik equation of the potential is verified in the presence of the gauge, Yukawa, and the nonpolynomial operators. The couplings of the nonpolynomial operators have nonzero beta functions that we can actually compute from the quantum potential. At the quantum level, the Higgs mass is protected by spontaneously broken scale symmetry, even though the theory is nonrenormalizable. We compare the one- loop potential to its counterpart computed in the “traditional” dimensional regularization scheme that breaks scale symmetry explicitly (μ ¼ constant) in the presence at the tree level of the nonpolynomial operators. DOI: 10.1103/PhysRevD.96.055034 I. MOTIVATION that breaks explicitly the scale symmetry that we want to investigate.2 To avoid such breaking, the UV regularization In this paper, we explore the idea that scale symmetry is a must preserve this symmetry. This is done by using a quantum symmetry and study its implications for physics subtraction function μðσÞ, which generates (dynamically) a beyond the standard model (SM). However, this symmetry subtraction scale μðhσiÞ when the field σ acquires a vacuum is broken in the real world. We shall consider here only 1 expectation value (vev) hσi after spontaneous scale sym- spontaneous breaking of this (quantum) symmetry. One metry breaking. For details on this, see Ref. [3] and recent motivation of our study is that scale symmetry plays a role examples at one loop [4–8] and higher loops [9,10]. Here, σ in the UV behavior of the models. In particular, the SM is the Goldstone mode (dilaton) of the spontaneously with a classical Higgs mass parameter mϕ ¼ 0 has an broken scale symmetry3 and is an additional degree of increased symmetry: it is scale invariant at the tree level; freedom of the theory. this was invoked [1] to protect mϕ naturally [2] from The model we consider is a scale-invariant SM, defined large quantum corrections, but a full quantum study is as the SM with classical mϕ ¼ 0 and extended by the needed. dilaton. The goal is to use this scale-invariant regularization Consider a classically scale-invariant theory. One to compute quantum corrections to the scalar potential. The known issue when studying scale symmetry at the quantum quantum result is scale invariant, so it can only have level is that the regularization of the loop corrections spontaneous scale symmetry breaking, with a flat direction introduces a dimensionful parameter (subtraction scale μ) for the dilaton (σ). For clarity, this result is then compared to that in the “usual” dimensional regularization (DR) of *[email protected] † μ ¼ constant scale, which breaks explicitly the scale [email protected] ‡ symmetry at the quantum level. [email protected] 1By quantum scale symmetry, we mean that the full one- particle irreducible (1PI) quantum action is scale invariant. 2One could use a regularization that does not keep manifest Published by the American Physical Society under the terms of scale symmetry and then attempt to restore it “by hand” at the the Creative Commons Attribution 4.0 International license. end, but this misses scale-invariant operators if the theory is Further distribution of this work must maintain attribution to nonrenormalizable (see later, Sec. II). the author(s) and the published article’s title, journal citation, 3To be exact, the mass eigenstates may actually contain a small and DOI. mixing of original ϕ, σ. 2470-0010=2017=96(5)=055034(10) 055034-1 Published by the American Physical Society D. M. GHILENCEA, Z. LALAK, and P. OLSZEWSKI PHYSICAL REVIEW D 96, 055034 (2017) “ ” O λ Let us consider first a simplified scale-invariant tunings bringing acceptable ð jÞ corrections to this (classical) theory (e.g., Refs. [11–27]) of two real scalar relation, relative to the previous perturbation order4; this fields ϕ (Higgs-like) and σ. The potential V is a homo- tuning ensures a vanishing vacuum energy Vðhϕi; hσiÞ ∼ geneous function, having no dimensionful couplings, so Wðρ0Þ¼0 [see conditions (2)]. We stress that the above picture, which builds on – Vðϕ;σÞ¼σ4Wðϕ=σÞ; where Wðϕ=σÞ¼Vðϕ=σ;1Þ: ð1Þ previous studies [3 10], is very different from that obtained in the “traditional” DR scheme (μ ¼ constant scale) that is often used in classically scale-invariant models, e.g., We assume that Vðϕ; σÞ has spontaneous scale symmetry Refs. [18–27]; in such models, scale symmetry is broken breaking i.e., that σ acquires a nonzero vacuum expectation explicitly by the (regularization of) quantum effects, and value hσi ≠ 0. We thus search for such a solution and for then conditions (1) and (2) are not true anymore at the the necessary condition for this spontaneous breaking to quantum level, and the flat direction is lifted by quantum happen. With hσi ≠ 0, it is then easy to see that the corrections (the dilaton is then a pseudo-Goldstone, which minimum conditions Vσ ¼ Vϕ ¼ 0 (Vα ¼ ∂V=∂α) are is light). equivalent to What about the hierarchy problem? In the absence of gravity (not included here), the standard model has no ρ 0 ρ 0 ρ ≡ ϕ σ Wð Þ¼W ð Þ¼ ; = : ð2Þ hierarchy problem. However, this situation is no longer true under the reasonable assumption that there is some “new ρ ≡ ϕ σ These equations can have a common solution 0 h i=h i, physics” beyond SM, e.g. a large vev of a new scalar field if the couplings satisfy a particular condition (constraint); that couples to Higgs, etc. In the model we consider, ϕ σ see below. Then, a flat direction exists in the plane ð ; Þ defined by the scale-invariant version of the SM extended ϕ ρ σ ϕ σ with ¼ 0 . Indeed, if ðh i; h iÞ is a ground state with by the dilaton, we have “new physics” beyond the SM, 0 ϕ σ V ¼ , then so is ðth i;th iÞ, t real. Also, the second represented by the vev σ that spontaneously breaks the α β ϕ σ h i derivatives matrix Vαβ with respect to ; ¼ ; has scale symmetry. hσi can be very large compared to hϕi, 00 02 detðVαβÞ ∝ ð4WW − 3W Þ¼0 on the ground state, so which fixes the electroweak scale. In the Brans-Dicke- a massless state is indeed present corresponding to the flat Jordan theory of gravity, not considered here, one expects5 ρ σ ∼ σ direction. Finally, since 0 is a root of both W and of its h i MPlanck.(h i can then be regarded as a physical cutoff 0 2 derivative W , then Wðϕ=σÞ ∝ ðϕ=σ − ρ0Þ , while if V of the theory.) We simply enforce such hierarchy by depends only on even powers of the scalar fields (our model choosing a very weak coupling of the visible to the hidden below), then the general structure is sector of the dilaton6 [31]. Such hierarchy is, however, stable under quantum corrections, so mϕ ∼ hϕi ≪ hσi 2 2 2 2 Wðϕ=σÞ ∝ ðϕ =σ − ρ0Þ : ð3Þ without tuning at the quantum level [4,8], and we verify this in our model at one loop. This is expected to remain Note that the vanishing vacuum energy Vðhϕi; hσiÞ ¼ 0 true to all orders in perturbation theory since scale follows from the (spontaneously broken) scale symmetry; symmetry is preserved by the regularization and is broken see Eq. (2). A scale-invariant regularization of this theory only spontaneously.7 We thus have an example of a leads to a scale-invariant quantum potential, which thus quantum stable hierarchy, with a vanishing vacuum energy remains of the form shown in Eq. (1). Hence, the above at the loop level, that follows from the demand of sponta- discussion around Eqs. (1), (2), and (3) remains true at the neously broken quantum scale symmetry. quantum level, including the possibility of spontaneous- only breaking of the scale symmetry. 4 λ 1 λ One of the two minimum conditions in (2) fixes the ratio Perturbativity, σ < , is maintained for a weak coupling m between the visible (ϕ) and hidden (σ) sectors; see later, Eq. (9) ρ0 ¼hϕi=hσi in terms of the (dimensionless) couplings of (a) or (11) (a), which fixes λσ < 1 in terms of the other couplings, the theory. Thus, all vevs of such a theory, including hϕi, for a small enough λm. are proportional to hσi ≠ 0, which is a(n) (unknown) 5Such hierarchy can be generated dynamically (Refs. [28,29] parameter of the theory. The second minimum condition, or as in Ref. [30]). 6 λ ≪ λ λ σ after eliminating ρ0 between the two equations in (2),gives One takes j mj ϕ; m: coupling of hidden ( ) to the visible ϕ λ a relation among the couplings of the theory in the order of sector ( ); ϕ: Higgs self-coupling; see later in the paper, Eq.
Recommended publications
  • 2-Loop $\Beta $ Function for Non-Hermitian PT Symmetric $\Iota
    2-Loop β Function for Non-Hermitian PT Symmetric ιgφ3 Theory Aditya Dwivedi1 and Bhabani Prasad Mandal2 Department of Physics, Institute of Science, Banaras Hindu University Varanasi-221005 INDIA Abstract We investigate Non-Hermitian quantum field theoretic model with ιgφ3 interaction in 6 dimension. Such a model is PT-symmetric for the pseudo scalar field φ. We analytically calculate the 2-loop β function and analyse the system using renormalization group technique. Behavior of the system is studied near the different fixed points. Unlike gφ3 theory in 6 dimension ιgφ3 theory develops a new non trivial fixed point which is energetically stable. 1 Introduction Over the past two decades a new field with combined Parity(P)-Time rever- sal(T) symmetric non-Hermitian systems has emerged and has been one of the most exciting topics in frontier research. It has been shown that such theories can lead to the consistent quantum theories with real spectrum, unitary time evolution and probabilistic interpretation in a different Hilbert space equipped with a positive definite inner product [1]-[3]. The huge success of such non- Hermitian systems has lead to extension to many other branches of physics and interdisciplinary areas. The novel idea of such theories have been applied in arXiv:1912.07595v1 [hep-th] 14 Dec 2019 numerous systems leading huge number of application [4]-[21]. Several PT symmetric non-Hermitian models in quantum field theory have also been studied in various context [16]-[26]. Deconfinment to confinment tran- sition is realised by PT phase transition in QCD model using natural but uncon- ventional hermitian property of the ghost fields [16].
    [Show full text]
  • Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany
    Generating Functionals Functional Integration Renormalization Introduction to Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany 2nd Autumn School on High Energy Physics and Quantum Field Theory Yerevan, Armenia, 6-10 October, 2014 T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Overview Lecture 1: Basics of Quantum Field Theory Generating Functionals Functional Integration Perturbation Theory Renormalization Lecture 2: Effective Field Thoeries Effective Actions Effective Lagrangians Identifying relevant degrees of freedom Renormalization and Renormalization Group T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 3: Examples @ work From Standard Model to Fermi Theory From QCD to Heavy Quark Effective Theory From QCD to Chiral Perturbation Theory From New Physics to the Standard Model Lecture 4: Limitations: When Effective Field Theories become ineffective Dispersion theory and effective field theory Bound Systems of Quarks and anomalous thresholds When quarks are needed in QCD É. T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 1: Basics of Quantum Field Theory Thomas Mannel Theoretische Physik I, Universität Siegen f q f et Yerevan, October 2014 T. Mannel, Siegen University Effective Quantum
    [Show full text]
  • Hep-Th] 27 May 2021
    Higher order curvature corrections and holographic renormalization group flow Ahmad Ghodsi∗and Malihe Siahvoshan† Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran September 3, 2021 Abstract We study the holographic renormalization group (RG) flow in the presence of higher-order curvature corrections to the (d+1)-dimensional Einstein-Hilbert (EH) action for an arbitrary interacting scalar matter field by using the superpotential approach. We find the critical points of the RG flow near the local minima and maxima of the potential and show the existence of the bounce solutions. In contrast to the EH gravity, regarding the values of couplings of the bulk theory, superpoten- tial may have both upper and lower bounds. Moreover, the behavior of the RG flow controls by singular curves. This study may shed some light on how a c-function can exist in the presence of these corrections. arXiv:2105.13208v1 [hep-th] 27 May 2021 ∗[email protected][email protected] Contents 1 Introduction1 2 The general setup4 3 Holographic RG flow: κ1 = 0 theories5 3.1 Critical points for κ2 < 0...........................7 3.1.1 Local maxima of the potential . .7 3.1.2 Local minima of potential . .9 3.1.3 Bounces . .9 3.2 Critical points for κ2 > 0........................... 11 3.2.1 Critical points for W 6= WE ..................... 12 3.2.2 Critical points near W = WE .................... 13 4 Holographic RG flow: General case 15 4.1 Local maxima of potential . 18 4.2 Local minima of potential . 22 4.3 Bounces .
    [Show full text]
  • The Euler Legacy to Modern Physics
    ENTE PER LE NUOVE TECNOLOGIE, L'ENERGIA E L'AMBIENTE THE EULER LEGACY TO MODERN PHYSICS G. DATTOLI ENEA -Dipartimento Tecnologie Fisiche e Nuovi Materiali Centro Ricerche Frascati M. DEL FRANCO - ENEA Guest RT/2009/30/FIM This report has been prepared and distributed by: Servizio Edizioni Scientifiche - ENEA Centro Ricerche Frascati, C.P. 65 - 00044 Frascati, Rome, Italy The technical and scientific contents of these reports express the opinion of the authors but not necessarily the opinion of ENEA. THE EULER LEGACY TO MODERN PHYSICS Abstract Particular families of special functions, conceived as purely mathematical devices between the end of XVIII and the beginning of XIX centuries, have played a crucial role in the development of many aspects of modern Physics. This is indeed the case of the Euler gamma function, which has been one of the key elements paving the way to string theories, furthermore the Euler-Riemann Zeta function has played a decisive role in the development of renormalization theories. The ideas of Euler and later those of Riemann, Ramanujan and of other, less popular, mathematicians have therefore provided the mathematical apparatus ideally suited to explore, and eventually solve, problems of fundamental importance in modern Physics. The mathematical foundations of the theory of renormalization trace back to the work on divergent series by Euler and by mathematicians of two centuries ago. Feynman, Dyson, Schwinger… rediscovered most of these mathematical “curiosities” and were able to develop a new and powerful way of looking at physical phenomena. Keywords: Special functions, Euler gamma function, Strin theories, Euler-Riemann Zeta function, Mthematical curiosities Riassunto Alcune particolari famiglie di funzioni speciali, concepite come dispositivi puramente matematici tra la fine del XVIII e l'inizio del XIX secolo, hanno svolto un ruolo cruciale nello sviluppo di molti aspetti della fisica moderna.
    [Show full text]
  • Dimensional Reduction, Regularisation
    PoS(LL2012)011 Dimensional Reduction (and all that) Tim Jones∗ Liverpool University E-mail: [email protected] I summarise the salient features of regularisation by dimensional reduction, and its relationship with the original form of dimensional regularisation. “Loops and Legs in Quantum Field Theory", 11th DESY Workshop on Elementary Particle Physics April 15-20, 2012 Wernigerode, Germany ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Dimensional Reduction (and all that) Tim Jones 1. Introduction Siegel [1] introduced regularisation by dimensional reduction (DRED) as a variation of di- mensional regularisation, DREG [2], to maintain the equality of Bose-Fermi degrees of freedom characteristic of supersymmetry, an equality not preserved by DREG. As a consequence, for exam- ple, the relationship between the quark-quark-gluon and quark-squark-gluino couplings in SQCD is not preserved when DREG is used. Which is not to say that DREG cannot be used in supersym- metric theories; but it lacks convenience. For a formal discussion of the equivalence of DRED and DREG (modulo DRED ambiguities to be discussed below) see [3],[4]. A pedagogical introduction PoS(LL2012)011 to Siegel’s proposal, and a first discussion of its application to the non-supersymmetric case appears in Ref. [5]. Essentially DRED amounts to defining xµ ≡ (xi,0) pµ ≡ (pi,0) j j Wµ ≡ Wi(x ),Wσ (x ) (1.1) where µ and i, j are 4-dimensional and D-dimensional indices respectively, and D < 4. It is useful to define hatted quantities with µ,ν ··· indices whose only non-vanishing components are in the D-dimensional subspace; in particular,g ˆµν = (gi j,0).
    [Show full text]
  • Department of Physics and Astronomy University of Heidelberg
    Department of Physics and Astronomy University of Heidelberg Diploma thesis in Physics submitted by Kher Sham Lim born in Pulau Pinang, Malaysia 2011 This page is intentionally left blank Planck Scale Boundary Conditions And The Standard Model This diploma thesis has been carried out by Kher Sham Lim at the Max Planck Institute for Nuclear Physics under the supervision of Prof. Dr. Manfred Lindner This page is intentionally left blank Fakult¨atf¨urPhysik und Astronomie Ruprecht-Karls-Universit¨atHeidelberg Diplomarbeit Im Studiengang Physik vorgelegt von Kher Sham Lim geboren in Pulau Pinang, Malaysia 2011 This page is intentionally left blank Randbedingungen der Planck-Skala und das Standardmodell Die Diplomarbeit wurde von Kher Sham Lim ausgef¨uhrtam Max-Planck-Institut f¨urKernphysik unter der Betreuung von Herrn Prof. Dr. Manfred Lindner This page is intentionally left blank Randbedingungen der Planck-Skala und das Standardmodell Das Standardmodell (SM) der Elementarteilchenphysik k¨onnte eine effektive Quan- tenfeldtheorie (QFT) bis zur Planck-Skala sein. In dieser Arbeit wird diese Situ- ation angenommen. Wir untersuchen, ob die Physik der Planck-Skala Spuren in Form von Randbedingungen des SMs hinterlassen haben k¨onnte. Zuerst argumen- tieren wir, dass das SM-Higgs-Boson kein Hierarchieproblem haben k¨onnte, wenn die Physik der Planck-Skala aus einem neuen, nicht feld-theoretischen Konzept bestehen w¨urde. Der Higgs-Sektor wird bez¨uglich der theoretischer und experimenteller Ein- schr¨ankungenanalysiert. Die notwendigen mathematischen Methoden aus der QFT, wie z.B. die Renormierungsgruppe, werden eingef¨uhrtum damit das Laufen der Higgs- Kopplung von der Planck-Skala zur elektroschwachen Skala zu untersuchen.
    [Show full text]
  • Running Coupling and Anomalous Dimension of SU(3) Gauge Theory with Adjoint Fermions
    Running coupling and anomalous dimension of SU(3) gauge theory with adjoint fermions Thomas DeGranda, Yigal Shamirb and Benjamin Svetitskyb Department of Physics, University of Colorado, Boulder, CO 80309, USA cRaymond and Beverly Sackler School of Physics and Astronomy Tel-Aviv University, Ramat Aviv, 69978 Israel ABSTRACT We propose to measure the running coupling and pseudoscalar renormalization constant of the SU(3) gauge theory with two flavors of adjoint fermions on 124 and 164 lattices. This will be combined with data from smaller lattices to give the beta func- tion and mass anomalous dimension of the theory, which is a technicolor candidate. The total time requested is 3.3 million Jpsi-equivalent core-hours on the Fermilab clusters. 1 1 Physics goals Gauge theories with groups other than SU(3), or with light fermions in representations higher than the fundamental, are a staple of theories that go beyond the Standard Model. Among the mechanisms proposed to connect these theories to the Standard Model at low energies are technicolor and tumbling, with many associated variants. Both of these depend largely on weak-coupling pictures for their dynamics: a perturbative β function to take technicolor from weak to strong coupling as the energy scale drops, and a most-attractive-channel argument for scale separation and selection of the condensed channel in tumbling. Nonperturbative tests of these pictures, long overdue, have appear only in the last four years—for reviews, see [1–3]. In the past four years we have carried out a program of lattice studies of theories with SU(N) gauge fields and fermions in the two-index symmetric representation of the gauge group [4–9].
    [Show full text]
  • Notes on Supersymmetry N = 1 SUSY Effective Actions Contents 1
    Notes on Supersymmetry N = 1 SUSY Effective Actions Zhong-Zhi Xianyu∗ Institute of Modern Physics and Center for High Energy Physics, Tsinghua University, Beijing 100084, China Contents 1 Introduction1 2 Effective Action in Perturbation Theory2 2.1 Non-renormalization theorem.........................2 3 Beta Function of Non-Abelian Gauge Theory7 3.1 Instanton calculus and NSVZ β function...................7 3.2 Effective action: Wilsonian vs. 1PI......................8 3.3 Rescaling anomaly of vector superfield....................8 4 Nonperturbative Corrections to Effective Action8 1. Introduction In preceding note we learned that the most general renormalizable field theory equiped with N = 1 susy can be expressed fully in terms of chiral superfield Φ subjected to the y y constraint Dα_ Φ = 0, its conjugation Φ , and the vector superfield V satisfying V = V . The Lagrangian of this theory can be written as Z Z τ 2 α 2 2 ¯ y 2V L = 2Re d θ tr W Wα + d θd θ Φ e Φ 16πik (1) Z m g + 2Re d2θ λΦ + Φ2 + Φ3 ; 2 3 ∗E-mail: [email protected] 1 Notes by Zhong-Zhi Xianyu Begin on 2013/08/01, last updated on 2013/09/08 where θ 4πi τ = YM + (2) 2π g2 is the generalized gauge coupling, k is the normalization factor from tr (T aT b) = kδab with T a's being generators of gauge group. However, we are also interested in nonrenormalizable theories. For instance, when we are concerned with low energy dynamics of the theory, the most powerful approach is to write down the most general Lagrangian compatible with the symmetry of the theory, including both renormalizable and nonrenormalizable terms.
    [Show full text]
  • Renormalization Group and Dynamics of Supersymmetric Gauge Theories
    RENORMALIZATION GROUP AND DYNAMICS OF SUPERSYMMETRIC GAUGE THEORIES K. KONISHI Dipartimento di Fisica, Universit`adi Pisa, INFN, Sezione di Pisa, Via Buonarroti, 2, Ed. B 56127 Pisa, Italy E-mail: [email protected] We discuss questions related to renormalization group and to nonperturbative as- pects of non-Abelian gauge theories with N = 2 and/or N = 1 supersymmetry. Results on perturbative and nonperturbative β functions of these theories are re- viewed, and new mechanisms of confinement and dynamical symmetry breaking recently found in a class of SU(nc), USp(2nc) and SO(nc) theories are discussed. 1 Introduction We start with a brief review on the NSVZ β functions in N = 1 supersymmetric gauge theories and related issues. 1.1 NSVZ β function in N =1 supersymmetric gauge theories The bare Lagrangian of an N = 1 supersymmetric gauge theory with generic matter content is given by 1 1 L = d2θ W aW a + h.c. + d4θ Φ†e2Vi Φ (1) 4 g2(M) i i i Z Z X where 1 1 θ(M) τ(M) = + i i (2) g2(M) g2(M) 8π2 ≡ 4π and g(M) and θ(M) stand for the bare coupling constant and vacuum parameter, arXiv:hep-th/0012122v1 14 Dec 2000 M being the ultraviolet cutoff. Note that with this convention the vector fields Aµ(x) and the gaugino (gluino) fields λα(x) contain the coupling constant and hence, in accordance with the non Abelian gauge symmetry, are not renormalized. By a generalized nonrenormalization theorem 2 the effective Lagrangian at scale µ takes the form, 1 1 b M L = d2θ + 0 log W aW a + h.c.
    [Show full text]
  • Lecture 1: What Do We Know About N = 1 Super Yang-Mills ?
    QCD and Supersymmetry Lecture 1: What do we know about N = 1 Super Yang-Mills ? Adi Armoni Swansea University Schladming 2009 1 Motivation The most interesting regime of QCD where chiral symmetry breaking and confinement occurs is non-perturbative. Unfortunately, it is difficult to derive analytical results in this regime. In supersymmetric theories the situation is much better (due to holomorphicity): we can derive exact non-perturbative results in N = 1 Super Yang-Mills and in Super QCD. It would be fantastic if we could use the knowledge that we accumulated in supersymmetric QCD and use it for real QCD ! 2 Motivation - continuation In these lectures I will present a method, called \planar equivalence", which enables us to copy results from supersymmetric theories to QCD. I have decided to organize the lectures as follows: Lecture number 1: what do we know about N = 1 SYM ? Lecture number 2: What is orientifold planar equivalence ? Lecture number 3: Supersymmetry relics in QCD 3 The N = 1 Super Yang-Mills Lagrangian N = 1 Super Yang-Mills is a theory which consists of a gluon and a gluino. The gluino is the \superpartner" of the gluon. It is a four-component Majorana (real) fermion transforming in the adjoint representation of the gauge group. We will focus on SU(N). The Lagrangian of N = 1 SYM is 1 i L = − F a F a + λ¯aD γµλa 4g2 µν µν 2g2 µ The Lagrangian looks exactly as the Lagrangian of QCD with one quark flavor, except that in the present case the quark field (denoted by λ) transforms in the adjoint representation.
    [Show full text]
  • Complete One-Loop Renormalization of the Higgs-Electroweak Chiral Lagrangian G Buchalla, O Catà, a Celis, Marc Knecht, C
    Complete One-Loop Renormalization of the Higgs-Electroweak Chiral Lagrangian G Buchalla, O Catà, A Celis, Marc Knecht, C. Krause To cite this version: G Buchalla, O Catà, A Celis, Marc Knecht, C. Krause. Complete One-Loop Renormalization of the Higgs-Electroweak Chiral Lagrangian. Nuclear Physics B, Elsevier, 2018, 928, pp.93-106. 10.1016/j.nuclphysb.2018.01.009. hal-01775247 HAL Id: hal-01775247 https://hal.archives-ouvertes.fr/hal-01775247 Submitted on 24 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LMU-ASC 64/17 SI-HEP-2017-22 QFET-2017-20 IFIC/17-51 FTUV/17-1018 October 2017 Complete One-Loop Renormalization of the Higgs-Electroweak Chiral Lagrangian G. Buchallaa, O. Cata`a,b, A. Celisa, M. Knechtc and C. Kraused aLudwig-Maximilians-Universit¨at M¨unchen, Fakult¨at f¨ur Physik, Arnold Sommerfeld Center for Theoretical Physics, D-80333 M¨unchen, Germany bTheoretische Physik 1, Universit¨at Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany cCentre de Physique Th´eorique (CPT), UMR 7332 CNRS/Aix-Marseille Univ./Univ. du Sud Toulon-Var, Marseille, France dIFIC, Universitat de Val`encia – CSIC, Apt.
    [Show full text]
  • Wilsonian Renormalization
    Outline Loops EFT Renormalization End Wilsonian renormalization Sourendu Gupta Mini School 2016, IACS Kolkata, India Effective Field Theories 29 February–4 March, 2016 Sourendu Gupta Effective Field Theories 2014: Lecture 2 Outline Loops EFT Renormalization End Outline Outline Spurious divergences in Quantum Field Theory Wilsonian Effective Field Theories Wilsonian renormalization The renormalization group The Wilsonian point of view RG for an Euclidean field theory in D = 0 Defining QFT without perturbation theory End matter Sourendu Gupta Effective Field Theories 2014: Lecture 2 Outline Loops EFT Renormalization End Outline Spurious divergences in Quantum Field Theory Wilsonian Effective Field Theories Wilsonian renormalization The renormalization group The Wilsonian point of view RG for an Euclidean field theory in D = 0 Defining QFT without perturbation theory End matter Sourendu Gupta Effective Field Theories 2014: Lecture 2 Outline Loops EFT Renormalization End Outline Outline Spurious divergences in Quantum Field Theory Wilsonian Effective Field Theories Wilsonian renormalization The renormalization group The Wilsonian point of view RG for an Euclidean field theory in D = 0 Defining QFT without perturbation theory End matter Sourendu Gupta Effective Field Theories 2014: Lecture 2 Outline Loops EFT Renormalization End The old renormalization We start with a Lagrangian, for example, the 4-Fermi theory: 1 1 = ψ∂ψ/ mψψ + λ(ψψ)2 + L 2 − 2 ··· Here all the parameters are finite. But anticipating the divergence of perturbative expansions, we add counter-terms 1 1 2 c = Aψ∂ψ/ Bmψψ + λC(ψψ) + L 2 − 2 ··· where A, B, C, etc., are chosen to cancel all divergences in amplitudes. This gives the renormalized Lagrangian 1 1 2 r = ψ ∂ψ/ r mr ψ ψr + λr (ψ ψr ) + L 2 r − 2 r r ··· Clearly, ψr = Zψψ where ψr = ψ√1+ A, mr = m(1 + B)/(1 + A), 2 λr = λ(1 + C)/(1 + A) , etc.
    [Show full text]