Astrometric Asteroid Masses: a Simultaneous Determination
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
174 Minor Planet Bulletin 47 (2020) DETERMINING the ROTATIONAL
174 DETERMINING THE ROTATIONAL PERIODS AND LIGHTCURVES OF MAIN BELT ASTEROIDS Shandi Groezinger Kent Montgomery Texas A&M University-Commerce P.O. Box 3011 Commerce, TX 75429-3011 [email protected] (Received: 2020 Feb 21 Revised: 2020 March 20) Lightcurves and rotational periods are presented for six main-belt asteroids. The rotational periods determined are 970 Primula (2.777 ± 0.001 h), 1103 Sequoia (3.1125 ± 0.0004 h), 1160 Illyria (4.103 ± 0.002 h), 1188 Gothlandia (3.52 ± 0.05 h), 1831 Nicholson (3.215 ± 0.004 h) and (11230) 1999 JV57 (7.090 ± 0.003 h). The purpose of this research was to create lightcurves and determine the rotational periods of six asteroids: 970 Primula, 1103 Sequoia, 1160 Illyria, 1188 Gothlandia, 1831 Nicholson and (11230) 1999 JV57. Asteroids were selected for this study from a website that catalogues all known asteroids (CALL). For an asteroid to be chosen in this study, it has to meet the requirements of brightness, declination, and opposition date. For optimum signal to noise ratio (SNR), asteroids of apparent magnitude of 16 or lower were chosen. Asteroids with positive declinations were chosen due to using telescopes located in the northern hemisphere. The data for all the asteroids was typically taken within two weeks from their opposition dates. This would ensure a maximum number of images each night. Asteroid 970 Primula was discovered by Reinmuth, K. at Heidelberg in 1921. This asteroid has an orbital eccentricity of 0.2715 and a semi-major axis of 2.5599 AU (JPL). Asteroid 1103 Sequoia was discovered in 1928 by Baade, W. -
ESO's VLT Sphere and DAMIT
ESO’s VLT Sphere and DAMIT ESO’s VLT SPHERE (using adaptive optics) and Joseph Durech (DAMIT) have a program to observe asteroids and collect light curve data to develop rotating 3D models with respect to time. Up till now, due to the limitations of modelling software, only convex profiles were produced. The aim is to reconstruct reliable nonconvex models of about 40 asteroids. Below is a list of targets that will be observed by SPHERE, for which detailed nonconvex shapes will be constructed. Special request by Joseph Durech: “If some of these asteroids have in next let's say two years some favourable occultations, it would be nice to combine the occultation chords with AO and light curves to improve the models.” 2 Pallas, 7 Iris, 8 Flora, 10 Hygiea, 11 Parthenope, 13 Egeria, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 20 Massalia, 22 Kalliope, 24 Themis, 29 Amphitrite, 31 Euphrosyne, 40 Harmonia, 41 Daphne, 51 Nemausa, 52 Europa, 59 Elpis, 65 Cybele, 87 Sylvia, 88 Thisbe, 89 Julia, 96 Aegle, 105 Artemis, 128 Nemesis, 145 Adeona, 187 Lamberta, 211 Isolda, 324 Bamberga, 354 Eleonora, 451 Patientia, 476 Hedwig, 511 Davida, 532 Herculina, 596 Scheila, 704 Interamnia Occultation Event: Asteroid 10 Hygiea – Sun 26th Feb 16h37m UT The magnitude 11 asteroid 10 Hygiea is expected to occult the magnitude 12.5 star 2UCAC 21608371 on Sunday 26th Feb 16h37m UT (= Mon 3:37am). Magnitude drop of 0.24 will require video. DAMIT asteroid model of 10 Hygiea - Astronomy Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Hygiea is the fourth-largest asteroid (largest is Ceres ~ 945kms) in the Solar System by volume and mass, and it is located in the asteroid belt about 400 million kms away. -
Occuttau'on3newsteter
Occuttau'on3Newsteter Volume III, Number 5 September, 1983 Occultation Newsletter is pub?ished by the International Occultation Timing Association. Editor and Compos- itor: H. F. DaBo11; 6 N 106 white Oak Lane; St. Charles, IL 60174; U. S. A. Please send editorial matters, renewals, address changes, and reimbursement requests to the above, but for new memberships, new subscrip- tions, back issues, and any special requests, write to IOTA; P. 0. Box 3392; Columbus, OH 43210-0392; U.S.A. FROM THE PUBLISHER this page. William Stein, Fredericksburg, VA, has volunteered to take over Berton Stevens' job of This is the third issue of 1983. maintaining IOTA'S machine-readable records for pro- ducing address labels and station card input for lu- Please note the changes wrought by the recent chang- nar grazing occultation and local planetary/aster- es of officers; see the masthead and IOTA NEWS. The oidal appulse predictions. Since some software dc- Tinley Park address should no longer be used. The ve1oµnent is needed, Stevens will continue to do St. Charles address should be used for editorial this work at least for another month. When Stein matters, renewals, address changes, and reimburse- assumes the job, he will update the files according ment requests. The Columbus address should be used to data supplied by DaBo11. for new memberships, new subscriptions, back issues, b ' W, , and any special requests. A copy of IOTA'S by-laws is enclosed with this is- sue, for manbers. Also enclosed with this issue, o.n.'s price is $1.40/issue, or $5.50/year (4 is- for members, is a ballot, and envelope for sending sues) including first class surface mailing. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
STARDUST Newsletter of the Royal Astronomical Society of Canada Edmonton Centre
STARDUST Newsletter of the Royal Astronomical Society of Canada Edmonton Centre September 2008 Volume 54 Issue 1 Partial eclipse, from high above the tundra near Cambridge Bay, 1 August 2008. Photo by Krista Stefan. Inside this Issue Contact Information................................................................................................................................................page 2 Upcoming Events, Meetings, Deadlines, Announcements.....................................................................................page 3 Public Education Report.........................................................................................................................................page 3 International Year of Astronomy Committee Report.............................................................................................page 3 Letter to RASC Edmonton Centre..........................................................................................................................page 4 President's Report....................................................................................................................................................page 4 Observers Report.....................................................................................................................................................page 4 Eclipse.....................................................................................................................................................................page 8 Beaver Hills Dark -
Study of Photometric Phase Curve: Assuming a Cellinoid Ellipsoid Shape of Asteroid (106) Dione
RAA 2017 Vol. X No. XX, 000–000 R c 2017 National Astronomical Observatories, CAS and IOP Publishing Ltd. esearch in Astronomy and http://www.raa-journal.org http://iopscience.iop.org/raa Astrophysics Study of photometric phase curve: assuming a Cellinoid ellipsoid shape of asteroid (106) Dione Yi-Bo Wang1,2,3, Xiao-Bin Wang1,3,4, Donald P. Pray5 and Ao Wang1,2,3 1 Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; [email protected], [email protected] 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China 4 Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, China 5 Sugarloaf Mountain Observatory, South Deerfield, MA 01373, USA Received 2017 May 9; accepted 2017 May 31 Abstract We carried out the new photometric observations of asteroid (106) Dione at three apparitions (2004, 2012 and 2015) to understand its basic physical properties. Based on a new brightness model, the new photometric observational data and the published data of (106) Dione were analyzed to characterize the morphology of Dione’s photometric phase curve. In this brightness model, Cellinoid ellipsoid shape and three-parameter (H, G1, G2) magnitude phase function system were involved. Such a model can not only solve the phase function system parameters of (106) Dione by considering an asymmetric shape of asteroid, but also can be applied to more asteroids, especially for those asteroids without enough photometric data to solve the convex shape. Using a Markov Chain Monte Carlo (MCMC) method, +0.03 +0.077 Dione’s absolute magnitude H =7.66−0.03 mag, and phase function parameters G1 =0.682−0.077 and +0.042 G2 = 0.081−0.042 were obtained. -
Occultation Newsletter Volume 8, Number 4
Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date. -
SMALL BODIES: SHAPES of THINGS to COME 8:30 A.M
40th Lunar and Planetary Science Conference (2009) sess404.pdf Wednesday, March 25, 2009 SMALL BODIES: SHAPES OF THINGS TO COME 8:30 a.m. Waterway Ballroom 6 Chairs: Al Conrad Debra Buczkowski 8:30 a.m. Conrad A. R. * Merline W. J. Drummond J. D. Carry B. Dumas C. Campbell R. D. Goodrich R. W. Chapman C. R. Tamblyn P. M. Recent Results from Imaging Asteroids with Adaptive Optics [#2414] We report results from recent high-angular-resolution observations of asteroids using adaptive optics (AO) on large telescopes. 8:45 a.m. Marchis F. * Descamps P. Durech J. Emery J. P. Harris A. W. Kaasalainen M. Berthier J. The Cybele Binary Asteroid 121 Hermione Revisited [#1336] The combination of adaptive optics, photometric and Spitzer mid-IR observations of the 121 Hermione binary asteroid system allowed us to confirm the bilobated nature of the primary derived a bulk density of 1.4 g/cc implying a rubble-pile interior. 9:00 a.m. Schmidt B. E. * Thomas P. C. Bauer J. M. Li J. -Y. Radcliffe S. C. McFadden L. A. Mutchler M. J. Parker J. Wm. Rivkin A. S. Russell C. T. Stern S. A. The 3D Figure and Surface of Pallas from HST [#2421] We present Pallas in three dimensions and surface maps. 9:15 a.m. Besse S. * Groussin O. Jorda L. Lamy P. Kaasalainen M. Gesquiere G. Remy E. OSIRIS Team 3-Dimensional Reconstruction of Asteroid 2867 Steins [#1545] The OSIRIS imaging experiment has imaged asteroid Steins. We have combined three methods to retrieve the shape: limbs, Point of Interest and light curves. -
Perturbations in the Motion of the Quasicomplanar Minor Planets For
Publications of the Department of Astronom} - Beograd, N2 ID, 1980 UDC 523.24; 521.1/3 osp PERTURBATIONS IN THE MOTION OF THE QUASICOMPLANAR MI NOR PLANETS FOR THE CASE PROXIMITIES ARE UNDER 10000 KM J. Lazovic and M. Kuzmanoski Institute of Astronomy, Faculty of Sciences, Beograd Received January 30, 1980 Summary. Mutual gravitational action during proximities of 12 quasicomplanar minor pla nets pairs have been investigated, whose minimum distances were under 10000 km. In five of the pairs perturbations of several orbital elements have been stated, whose amounts are detectable by observations from the Earth. J. Lazovic, M. Kuzmanoski, POREMECAJI ELEMENATA KRETANJA KVAZIKOM PLANARNIH MALIH PLANETA U PROKSIMITETIMA NJIHOVIH PUTANJA SA DA LJINAMA MANJIM OD 10000 KM - Ispitali smo medusobna gravitaciona de;stva pri proksi mitetima 12 parova kvazikomplanarnih malih planeta sa minimalnim daljinama ispod 10000 km. Kod pet parova nadeni su poremecaji u vi~e putanjskih elemenata, ~iji bi se iznosi mogli ustano viti posmatranjima sa Zemlje. Earlier we have found out 13 quasicomplanar minor planets pairs (the angle I between their orbital planes less than O~500), whose minimum mutual distances (pmin) were less than 10000 km (Lazovic, Kuzmanoski, 1978). The shortest pro ximity distance of only 600 km among these pairs has been stated with minor planet pair (215) Oenone and 1851 == 1950 VA. The corresponding perturbation effects in this pair have been calculated (Lazovic, Kuzmanoski, 1979a). This motivated us to investigate the mutual perturbing actions in the 12 remaining minor planets pairs for the case they found themselves within the proximities of their correspon ding orbits. -
~XECKDING PAGE BLANK WT FIL,,Q
1,. ,-- ,-- ~XECKDING PAGE BLANK WT FIL,,q DYNAMICAL EVIDENCE REGARDING THE RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES GEORGE W. WETHERILL Department of Temcltricrl kgnetism ~amregie~mtittition of Washington Washington, D. C. 20025 Meteorites are fragments of small solar system bodies (comets, asteroids and Apollo objects). Therefore they may be expected to provide valuable information regarding these bodies. How- ever, the identification of particular classes of meteorites with particular small bodies or classes of small bodies is at present uncertain. It is very unlikely that any significant quantity of meteoritic material is obtained from typical ac- tive comets. Relatively we1 1-studied dynamical mechanisms exist for transferring material into the vicinity of the Earth from the inner edge of the asteroid belt on an 210~-~year time scale. It seems likely that most iron meteorites are obtained in this way, and a significant yield of complementary differec- tiated meteoritic silicate material may be expected to accom- pany these differentiated iron meteorites. Insofar as data exist, photometric measurements support an association between Apollo objects and chondri tic meteorites. Because Apol lo ob- jects are in orbits which come close to the Earth, and also must be fragmented as they traverse the asteroid belt near aphel ion, there also must be a component of the meteorite flux derived from Apollo objects. Dynamical arguments favor the hypothesis that most Apollo objects are devolatilized comet resiaues. However, plausible dynamical , petrographic, and cosmogonical reasons are known which argue against the simple conclusion of this syllogism, uiz., that chondri tes are of cometary origin. Suggestions are given for future theoretical , observational, experimental investigations directed toward improving our understanding of this puzzling situation. -
Comet Hitchhiker
Comet Hitchhiker NIAC Phase I Final Report June 30, 2015 Masahiro Ono, Marco Quadrelli, Gregory Lantoine, Paul Backes, Alejandro Lopez Ortega, H˚avard Grip, Chen-Wan Yen Jet Propulsion Laboratory, California Institute of Technology David Jewitt University of California, Los Angeles Copyright 2015. All rights reserved. Mission Concept - Pre-decisional - for Planning and Discussion Purposes Only. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and in part at University of California, Los Angeles. Comet Hitchhiker NASA Innovative Advanced Concepts Preface Yes, of course the Hitchhiker’s Guide to the Galaxy was in my mind when I came up with a concept of a tethered spacecraft hitching rides on small bodies, which I named Comet Hitchhiker. Well, this NASA-funded study is not exactly about traveling through the Galaxy; it is rather about exploring our own Solar System, which may sound a bit less exciting than visiting extraterrestrial civilizations, building a hyperspace bypass, or dining in the Restaurant at the End of the Universe. However, for the “primitive ape-descended life forms that have just begun exploring the universe merely a half century or so ago, our Solar System is still full of intellectually inspiring mysteries. So far the majority of manned and unmanned Solar System travelers solely depend on a fire breathing device called rocket, which is known to have terrible fuel efficiency. You might think there is no way other than using the gas-guzzler to accelerate or decelerate in an empty vacuum space. -
Ground-Based Visible Spectroscopy of Asteroids to Support the Development of an Unsupervised Gaia Asteroid Taxonomy A
Ground-based visible spectroscopy of asteroids to support the development of an unsupervised Gaia asteroid taxonomy A. Cellino, Ph. Bendjoya, M. Delbo’, Laurent Galluccio, J. Gayon-Markt, P. Tanga, E.F. Tedesco To cite this version: A. Cellino, Ph. Bendjoya, M. Delbo’, Laurent Galluccio, J. Gayon-Markt, et al.. Ground-based visible spectroscopy of asteroids to support the development of an unsupervised Gaia asteroid tax- onomy. Astronomy and Astrophysics - A&A, EDP Sciences, 2020, 10.1051/0004-6361/202038246. hal-02942763 HAL Id: hal-02942763 https://hal.archives-ouvertes.fr/hal-02942763 Submitted on 12 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astronomy & Astrophysics manuscript no. TNGspectra2ndrev c ESO 2020 July 28, 2020 Ground-based visible spectroscopy of asteroids to support development of an unsupervised Gaia asteroid taxonomy A. Cellino1, Ph. Bendjoya2, M. Delbo’3, L. Galluccio3, J. Gayon-Markt3, P. Tanga3, and E. F. Tedesco4 1 INAF, Osservatorio Astrofisico di Torino, via Osservatorio 20, 10025 Pino Torinese, Italy e-mail: [email protected] 2 Université de la Côte d’Azur - Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Campus Valrose Nice, Nice Cedex 4, France e-mail: [email protected] 3 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, CS34229, 06304, Nice Cedex 4, France e-mail: [email protected], [email protected], [email protected] 4 Planetary Science Institute, Tucson, AZ, USA e-mail: [email protected] Received ..., 2020; accepted ..., 2020 ABSTRACT Context.