arXiv:1805.07787v1 [math.NT] 20 May 2018 hr ( where where idas kind ahepolynomials. Daehee λ For ti nw htteSiln ubr ftefis idaedfie as defined are kind first the of numbers Stirling the that known is It nve f(.) edefine we (1.1), of view In ti o icl oso that show to difficult not is It 2010 e od n phrases. and words Key AAOUSOF -ANALOGUES ( se[2 (see x λ ahmtc ujc Classification. Subject Mathematics ) x x l 0 nomials. Abstract. ftefis idwihhv ls oncin ihthe with connections close have which kind first the of ftefis idand kind first the of ietercrec eain o hs ubr n hwthe show and numbers these the for with relations recurrence the give  ) ∈ ,λ λ 0 R 1+ (1 r the are ,( 1, = , 1 = 10 the , ( x , , λ 14 λt ( ) Siln ubr ftefis idadhge-re ahep Daehee higher-order and kind first the of numbers -Stirling x n,λ x ( λ , ) ) ) λ x nti ae,w study we paper, this In n,λ 15 aaou ffligfcoilsqec sdfie by defined is sequence factorial falling of -analogue n λ x aaouso ioilcoefficients binomial of -analogues ) = n = = , 17]) = = AKU I N A A KIM SAN DAE AND KIM TAEKYUN k X λ x X l =0 n ∞ =0 aaouso the of -analogues ( x X l x =0 n . λ ( S r x  Siln ubr ftefis id pcfial,we Specifically, kind. first the of numbers -Stirling − 1 SILN UBR FTEFIRST THE OF NUMBERS -STIRLING S ,λ − x l 1) 1  ( .Introduction 1. λ ( λ ,k n, λ ,l n, aaouso h trignmeso h first the of numbers Stirling the of -analogues · · · )( t l x ) ) ( = KIND x x x − k l X l − , , 17;11B83. 11B73; 2 ∞ =0 r λ 1 λ Siln ubr ftefis id higher-order kind, first the of numbers -Stirling aaouso the of -analogues n ) se[1 (see ( se[2 (see 1) + · · · x l ) ! l,λ ( x , t , − , l ( 2 , n 11 , ( 6 n ≥ − se[4 (see − − 1). 13 n x 9 r r 1)  , Siln numbers -Stirling Siln numbers -Stirling , 14]) ie by given λ 16 , ) rconnections ir , 7 , , 17]) − ( n 17]) ≥ . 1) x l , oly-  , λ = ( x (1.1) (1.2) (1.4) (1.3) l ) ! l,λ . 2 TAEKYUNKIMANDDAESANKIM

The r-Stirling numbers of the first kind are defined by the ∞ n 1 k (r) t log(1 + t) (1 + t)r = S (n, k) , (see [3, 20 − 23]). (1.5) k! 1 n! n=k  X where k ∈ N ∪{0} and r ∈ R. The unsigned r-Stirling numbers of the first kind are defined as n (x + r)(x + r + 1) ··· (x + r + n − 1) = n+r xk, (see [1, 17, 22]). k+r r (1.6) k=0 X   Thus, by (1.5), we get n (r) k (x + r)n = (x + r)(x + r − 1) ··· (x + r − n +1)= S1 (n, k)x , (see [1]). k=0 X (1.7) From (1.5) and (1.7), we note that − − S( r)(n, k) = (−1)n k n+r . (1.8) 1 k+r r The higher-order Daehee are defined  by ∞ log(1 + t) k tn (1 + t)x = D(k)(x) , (see [5, 18, 19, 24]). (1.9) t n n! n=0   X (k) (k) When x = 0, Dn = Dn (0) are called the higher-order Daehee numbers. In (1) particular, for k = 1, Dn(x)= Dn (x), (n ≥ 0), are called the ordinary Daehee polynomials. In this paper, we consider λ-analogues of r-Stirling numbers of the first kind which are derived from the λ-analogues of the falling factorial sequence and investigate some properties for these numbers. Specifically, we give some iden- tities and recurrence relations for the λ-analogues of r-Stirling numbers of the first kind and show their connections with the λ-Stirling numbers of the first kind and higher-order Daehee polynomials.

2. λ-analogues of r-Stirling numbers of the first kind From (1.3) and (1.4), we have ∞ ∞ k k k x t n t (1 + λt) λ = (x) = S (k,n)x k,λ k! 1,λ k! k=0 k=0 n=0 ! X∞ ∞ X X (2.1) tk xn = n! S (k,n) . 1,λ k! n! n=0 k n ! X X= λ-ANALOGUES OF r-STIRLING NUMBERS OF THE FIRST KIND 3

On the other hand, we also have

∞ n n x x log(1+λt) log(1 + λt) x (1 + λt) λ = e λ = . (2.2) λ n! n=0 X  

Therefore, by (2.1) and (2.2), we get the generating function for S1,λ(n, k), (n, k ≥ 0), which is given by

∞ 1 log(1 + λt) n tk = S1,λ(k,n) . (2.3) n! λ k! k n   X= Now, we define λ-analogues of r-Stirling numbers of the first kind as

k ∞ n 1 log(1 + λt) r (r) t (1 + λt) λ = S (n, k) , (2.4) k! λ 1,λ n! n k   X= where k ∈ N ∪{0}, and r ∈ R. (0) From (2.3) and (2.4), we note that S1,λ(n, k)= S1,λ(n, k), (n ≥ k ≥ 0). Also, it is easy to show that

∞ n x r t (1 + λt) λ (1 + λt) λ = (x + r)n,λ . (2.5) n! n=0 X By (2.5), we get

∞ n ∞ t x + r n r x log(1+λt) (x + r) = t = (1+ λt) λ e λ n,λ n! n n=0 n=0  λ X X∞ k k 1 log(1 + λt r = x (1 + λt) λ (2.6) k! λ k=0   X∞ ∞ ∞ tn n tn = xk S(r)(n, k) = S(r)(n, k)xk . 1,λ n! 1,λ n! k n k n=0 k ! X=0 X= X X=0 Therefore, by comparing the coefficients on both sides of (2.6), we obtain the following theorem.

Theorem 2.1. For n ≥ 0, we have

n (r) k (x + r)n,λ = S1,λ(n, k)x . k X=0 4 TAEKYUNKIMANDDAESANKIM

Now, we observe that ∞ k k 1 log(1 + λt) r x (1 + λt) λ k! λ k=0   X ∞ ∞ ∞ tm tl = xk S (m, k) (r) 1,λ m! l,λ l! k m k ! l ! X=0 X= X=0 ∞ m m ∞ l k t t = S1,λ(m, k)x (r)l,λ (2.7) m! l! m=0 k=0 ! l=0 ! ∞X X X n m n n k t = S (m, k)(r) − x m 1,λ n m,λ n! n=0 m=0 k ! X X X=0   ∞ n n n n k t = S (m, k)(r) − x . m 1,λ n m,λ n! n=0 k m k ! X X=0 X=   Thus, by (2.6) and (2.7), we get n n n (r) k n k S (n, k)x = S (m, k)(r) − x . (2.8) 1,λ m 1,λ n m,λ k k m k ! X=0 X=0 X=   Therefore, by comparing the coefficients on both sides of (2.8), we obtain the following theorem. Theorem 2.2. For n ≥ 0, we have n (r) n S (n, k)= S (m, k)(r) − . 1,λ m 1,λ n m,λ m k X=   Now, we define λ-analogues of the unsigned r-Stirling numbers of the first kind as follows:

n (x + r)(x + r + λ)(x + r +2λ)+ ··· (x + r + (n − 1)λ)= n+r xk. k+r r,λ (2.9) k X=0 n+r n+r   Note that lim → = , (n ≥ k ≥ 0). λ 1 k+r r,λ k+r r By Theorem 2.1 and (2.9), we get n (−r) k (x − r)n,λ = S1,λ (n, k)x , (2.10) k X=0 and n − (x − r) = (−1)n k n+r xk. n,λ k+r r,λ (2.11) k=0 X   λ-ANALOGUES OF r-STIRLING NUMBERS OF THE FIRST KIND 5

From (2.10) and (2.11), we can easily derive the following equation (2.12). − − S( r)(n, k) = (−1)n k n+r , (n ≥ k ≥ 0). 1,λ k+r r,λ (2.12) For n ≥ 1, by Theorem 2.1, we get   n+1 n+1 (r) k (r) k (x + r)n+1,λ = S1,λ(n +1, k)x = S1,λ(n +1, k)x + (r)n+1,λ. (2.13) k k X=0 X=1 On the other hand, by (1.2), we get

(x + r)n+1,λ = (x + r)n,λ(x + r − nλ) n n (r) k (r) k = x S1,λ(n, k)x − (nλ − r) S1,λ(n, k)x k=0 k=0 nX n X (r) k (r) k n+1 = S1,λ(n, k − 1)x − (nλ − r)S1,λ(n, k)x + (r − nλ)(r)n,λ + x k=1 k=1 Xn X (r) (r) k n+1 = S1,λ(n, k − 1) − (nλ − r)S1,λ(n, k) x + (r)n+1,λ + x . k=1 n o X (2.14) Therefore, by Theorem 2.1 and (2.14), we obtain the following theorem. Theorem 2.3. For 1 ≤ k ≤ n, we have

(r) (r) (r) S1,λ(n +1, k)= S1,λ(n, k − 1) − (nλ − r)S1,λ(n, k). From (2.4), we note that

k k ∞ l l 1 log(1 + λt) r 1 log(1 + λt) r log(1 + λt) (1 + λt) λ = k! λ k! λ l! λ     l=0   ∞ X k + l 1 log(1 + λt) k+l = rl l (k + l)! λ l=0     X∞ ∞ k + l tn = rl S (n, k + l) l 1,λ n! l=0   n=k+l X∞ ∞X k + l tn+k = rl S (n + k, k + l) l 1,λ (n + k)! l=0   n=l X∞ Xn n!tk k + l tn = rl S (n + k, k + l) . (n + k)! l 1,λ n! n=0 l=0   ! X X (2.15) 6 TAEKYUNKIMANDDAESANKIM

On the other hand, we have k k k 1 log(1 + λt) r t log(1 + λt) r (1 + λt) λ = (1 + λt) λ k! λ k! λt   ∞  ∞ λltl tm tk = D(k) (r) l l! m,λ m! k! (2.16) l=0 ! m=0 ! X∞ X n n k n (k) l t t = D λ (r) − . l l n l,λ n! k! n=0 l ! X X=0   Thus, by (2.15) and (2.16), we get n k+l n l l n (k) l r S1,λ(n + k, k + l)= D λ (r)n−l,λ. (2.17) n+k l l l=0 n  l=0 X X   Therefore, by (2.17),  we obtain the following theorem. Theorem 2.4. For n ≥ 0, we have n n k+l n (k) l l l D λ (r) − = r S (n + k, k + l). l l n l,λ n+k 1,λ l=0 l=0 n  X   X Now, we observe that  ∞ k l k 1 log(1 + λt) r t 1 log(1 + λt) (1 + λt) λ = (r) k! λ l,λ l! k! λ   l=0 !   ∞X n n tn = S (m, k)(r) − . m 1,λ n m,λ n! n=k m=k   ! X X (2.18) Therefore, by (2.4) and (2.18), we obtain the following theorem. Theorem 2.5. For n, k ≥ 0, with n ≥ k, we have n (r) n S (n, k)= (r) − S (m, k). 1,λ m n m,λ 1,λ m k X=   From (2.4), we note that m k 1 log(1 + λt) 1 log(1 + λt) r (1 + λt) λ m! λ k! λ     m+k (m + k)! 1 log(1 + λt) r = (1 + λt) λ (2.19) m!k! (m + k)! λ ∞   m + k tn = S(r)(n,m + k) . m 1,λ n! n m k   =X+ λ-ANALOGUES OF r-STIRLING NUMBERS OF THE FIRST KIND 7

On the other hand,

m k 1 log(1 + λt) 1 log(1 + λt) r (1 + λt) λ m! λ k! λ     ∞ ∞ l j t (r) t = S ,λ(l,m) S (j, k) 1 l!  1,λ j!  (2.20) l m ! j k X= X= ∞ n−m   n tn = S(r)(l, k)S (n − l,m) . l 1,λ 1,λ n! n m k l k ! =X+ X=   Therefore, by (2.19) and (2.20), we obtain the following theorem.

Theorem 2.6. For m,n,k ≥ 0 with n ≥ m + k, we have

n−m m + k n S(r)(n,m + k)= S (l, k)S (n − l,m). m 1,λ l 1,λ 1,λ l k   X=   By (2.3), we get

∞ n k t 1 log(1 + λt) r − r S (n, k) = (1 + λt) λ (1 + λt) λ 1,λ n! k! λ n=k   X ∞ ∞ tl − r = S(r)(l, k) λ λmtm 1,λ l! m l=k ! m=0   ! X∞ X∞ tl tm = S(r)(l, k) (−1)m(r + (m − 1)λ) 1,λ l! m,λ m! l=k ! m=0 ! ∞X X n n n (r) n−l t = S (l, k)(−1) (r + (n − l − 1)λ) − . l 1,λ n l,λ n! n=k l=k   ! X X (2.21)

Comparing the coefficients on both sides of (2.21), we have the following theorem.

Theorem 2.7. For n, k ≥ 0, with n ≥ k, we have

n n (r) n−l S (n, k)= S (l, k)(−1) (r + λ(n − l − 1)) − . 1,λ l 1,λ n l,λ l k X=   8 TAEKYUNKIMANDDAESANKIM

From (1.9), we have

k k k 1 log(1 + λt) r t log(1 + λt) r (1 + λt) λ = (1 + λt) λ k! λ k! λt  ∞  ∞   tk tm tl = D(k)λm (r) k! m m! l,λ l! (2.22) m=0 ! l ! X X=0 k ∞ n n t n (k) m t = D λ (r) − . k! m m n m,λ n! n=0 m=0 ! X X   On the other hand, by (2.4), we get

k ∞ n 1 log(1 + λt) r (r) t (1 + λt) λ = S (n, k) k! λ 1,λ n!   n=k X ∞ (2.23) tk n!k! tn = S(r)(n + k, k) . k! 1,λ (n + k)! n! n=0 X Thus, by comparing the coefficients on both sides of (2.22) and (2.23), we get

n n (k) m 1 (r) D λ (r)n−m,λ = S (n + k, k). (2.24) m m n+k 1,λ m=0 n X   Therefore, by (2.24), we obtain the following theorem.

Theorem 2.8. For n, k ≥ 0, we have n (r) n + k n (k) m S (n + k, k)= D λ (r) − . 1,λ n m m n m,λ m=0   X   From (1.9), we note that

k k k 1 log(1 + λt) r t log(1 + λt) r (1 + λt) λ = (1 + λt) λ k! λ k! λt   ∞  (2.25) tk tn = λnD(k)( r ) . k! n λ n! n=0 X By (2.23) and (2.25), we get (n + k)! n + k S(r)(n + k, k)= λn D(k)( r )= λn D(k)( r ), (n ≥ 0). (2.26) 1,λ n!k! n λ n n λ   In particular, for r = 0, from (2.21) and (2.26) we have λ-ANALOGUES OF r-STIRLING NUMBERS OF THE FIRST KIND 9

n + k λn D(k) = S (n + k, k) k n 1,λ   n+k (2.27) n + k (r) n+k−l = S (l, k)(−1) (r + (n + k − l − 1)λ) − , l 1,λ n+k l,λ l k X=   where n, k ≥ 0. Therefore, by (2.27), we obtain the following theorem. Theorem 2.9. For n, k ≥ 0, we have

n+k n n + k (k) n + k (r) n+k−l λ D = S (l, k)(−1) (r + (n + k − l − 1)λ) − . k n l 1,λ n+k l,λ l k   X=   In addition,

n+k − 1 n + k l 1 n+k l D(k) = n n+k l k λ k l k X=      n+k−l (k) r × (r + (n +k − l − 1)λ)n+k−l,λ(−1) Dl−k( λ ). Now, we observe that ∞ n k t 1 log(1 + λt) r − r log(1+λt) S (n, k) = (1 + λt) λ e λ 1,λ n! k! λ n=k   X ∞ ∞ tl 1 log(1 + λt) m = S(r)(l, k) (−1)mrm 1,λ l! m! λ l k ! m=0 X= X   ∞ ∞ ∞ l j (r) t m m t = S (l, k) (−1) r S ,λ(j, m) 1,λ l!  1 j!  l k ! m=0 j=m X= X X ∞ −   n k j n n m m t = (−1) r S ,λ(j, m)S ,λ(n − j, k) .  j 1 1  n! n k j=0 m=0 X= X X    (2.28) Therefore, by comparing the coefficients on both sides of (2.28), we obtain the following theorem Theorem 2.10. For n, k ≥ 0, with n ≥ k, we have − j n k n S (n, k)= (−1)mrmS (j, m)S (n − j, k). 1,λ j 1,λ 1,λ j=0 m=0 X X   10 TAEKYUNKIMANDDAESANKIM

For m,n ≥ 0, we define λ-analogues of the Whitney’s type r-Stirling numbers of the first kind as

(mx + r)n,λ = (mx + r)(mx + r − λ)(mx + r − 2λ) ··· (mx + r − (n − 1)λ) n (r) k = T1,λ (n, k|m)x . k=0 X (2.29)

By (2.29), we get

∞ ∞ tn n tn (mx + r) = T (r)(n, k|m)xk n,λ n! 1,λ n! n=0 n=0 k=0 ! X X∞ X∞ (2.30) tn = T (r)(n, k|m) xk. 1,λ n! k n k ! X=0 X= On the other hand, by binomial expansion, we get ∞ ∞ tn mx + r (mx + r) = tn n,λ n! n n=0 n=0 λ X X   mx+r r mx( log(1+λt) ) =(1+ λt) λ = (1+ λt) λ e λ (2.31) ∞ k k m log(1 + λt) r k = (1 + λt) λ x . k! λ k X=0   Comparing the coefficients on both sides of (2.30) and (2.31), the generating (r) function for T1,λ (n, k|m), (n, k ≥ 0), is given by

∞ k k n m log(1 + λt) r (r) t (1 + λt) λ = T (n, k|m) . (2.32) k! λ 1,λ n! n k   X= From (2.4) and (2.32), we note that 1 S(r)(n, k)= T (r)(n, k|m), (n ≥ k ≥ 0). (2.33) 1,λ mk 1,λ It is known that the r-Whitney numbers are defined as

n n k (mx + r) = m Wm,r(n, k)(x)k, (see [3]). (2.34) k X=0 By (1.3), we get λ-ANALOGUES OF r-STIRLING NUMBERS OF THE FIRST KIND 11

n l (mx + r)n,λ = S1,λ(n,l)(mx + r) l X=0 n l j = S1,λ(n,l) m Wm,r(l, j)(x)j l j=0 X=0 X n n S n,l mj W l, j x = 1,λ( ) m,.r( )( )j (2.35) j=0 l j X X= n n j j k = S1,λ(n,l)m Wm,r(l, j) S1(j, k)x j=0 l j k X X= X=0 n n n j k = S ,λ(n,l)S (j, k)m Wm,r(l, j) x .  1 1  k j k l j X=0 X= X= Therefore, by (2.29) and (2.35), we obtain the following theorem. Theorem 2.11. For n, k ≥ 0, with n ≥ k, we have n n (r) j T1,λ (n, k|m)= S1,λ(n,l)S1(j, k)m Wm,r(l, j). j k l j X= X= References

1. A. Z. Border, The r-Stirling numbers, Discrete math. 49 (1984), 241–259. 2. L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51–88. 3. C. B. Corcino, R. B. Corcino, N. Acala, Asymptotic estimates for r-Whitney numbers of the second kind, J. Appl. Math. 2014, Art. ID 354053, 7 pp. 4. D. V. Dolgy, T. Kim, Some explicit formulas of degenerate Stirling numbers associated with the degenerate special numbers and polynomials, Proc. Jangjeon Math. Soc. 21 (2018), no. 2, 309–317. 5. B. S. El-Desouky, A. Mustafa, New results on higher-order Daehee and Bernoulli numbers and polynomials, Adv. Difference Equ. 2016, Paper No. 32, 21 pp. 6. H. W. Gould, representation problems, Proc. Amer. Math. Soc. 11 (1960), 447-451. 7. G.-W. Jang, T. Kim, H.-I.Kwon, On the extension of degenerate of the second kind and degenerate Bell polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 28 (2018), no. 2, 305–316. 8. G.-W. Jang, J. Kwon, J.G. Lee, Some identities of degenerate Daehee numbers arising from nonlinear differential equation, Adv. Difference Equ. 2017 , Paper No. 206, 10 pp. 9. D. S. Kim, T. Kim, Daehee numbers and polynomials. Appl. Math. Sci. (Ruse) 7 (2013), no. 117-120, 5969-5976. 10. T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc. 20 (2017), no. 3, 319–331. 12 TAEKYUNKIMANDDAESANKIM

11. T. Kim, λ-analogue of Stirling numbers of the first kind, Adv. Stud. Contemp. Math. (Kyungshang) 27 (2017), no. 3, 423–429. 12. T. Kim, G.-W. Jang, A note on degenerate gamma function and degenerate Stirling num- ber of the second kind, Adv. Stud. Contemp. Math. (Kyungshang) 28 (2018), no. 2, 207– 214. 13. T. Kim, D. S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys. 24 (2017), no. 2, 241-248. 14. T. Kim, D.S.Kim, G.-W. Jang, Extended Stirling polynomials of the second kind and extended Bell polynomials, Proc. Jangjeon Math. Soc. 20 (2017), no. 3, 365–376. 15. T. Kim, D.S. Kim, L.-C. Jang, H. I. Kwon, Extended degenerate stirling numbers of the second kind and extended degenerate Bell polynomials, Utilitas Math. 106 (2018), 11–21. 16. T. Kim, D. S. Kim, H.-I. Kwon, A note on degenerate Stirling numbers and their appli- cations, Proc. Jangjeon Math. Soc. 21 (2018), no. 2, 195.-203. 17. T. Kim, Y. Yao, D.S. Kim, G.-W. Jang, Degenerate r-Stirling Numbers and r-Bell Poly- nomials, Russ. J. Math. Phys. 25 (2018), no. 1, 44-58. 18. C. Liu, Wuyungaowa, Application of probabilistic method on Daehee sequences, Eur. J. Pure Appl. Math. 11 (2018), no. 1, 69-78. 19. E.-J. Moon, J.-W. Park, S.-H. Rim, A note on the generalized q-Daehee numbers of higher order, Proc. Jangjeon Math. Soc. 17 (2014), no. 4, 557-565. 20. J.-W. Park, On the q-analogue of Daehee numbers and polynomials, Proc. Jangjeon Math. Soc. 19 (2016), no. 3, 537-544. 21. S.-S. Pyo, Degenerate Cauchy numbers and polynomials of the fourth kind, Adv. Stud. Contemp. Math. (Kyungshang) 28 (2018), no. 1, 127–138. 22. J. Quaintance, H. W. Gould, Combinatorial identities for Stirling numbers. The unpub- lished notes of H. W. Gould. With a foreword by George E. Andrews. World Scientific Publishing Co. Pte. Ltd., Singapore, 2016 xv+260 pp. 23. Y. Simsek, On q-deformed Stirling numbers, Int. J. Math. Comput. 15 (2012), no. 2, 70-80. 24. Y. Simsek, Identities on the Changhee numbers and Apostol-type Daehee polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 27 (2017), no. 2, 199–212.

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea E-mail address: [email protected]

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Ko- rea E-mail address: [email protected]