Common Iliac Vein  Median Sacral Veins  Ovarians Veins

Total Page:16

File Type:pdf, Size:1020Kb

Common Iliac Vein  Median Sacral Veins  Ovarians Veins DR MOUIN ABBOUD PR OF ANATOMY In faculity of medecin ( Damascus and Sham uneversities ) Specialist in respiratory diseases الدكتور معين عبود استاذ التشريح في كلية الطب البشري في جامعة دمشق وجامعة الشام الخاصة اختصاصي في أمراض جهاز التنفس DR MOUIN ABBOUD pelvis – blood vessels - nerves Major Arteries of the Pelvis Arteries of the Pelvis are : The internal iliac artery : The major artery of the pelvis and perineum Other vessels that originate in the abdomen and contribute to the supply of pelvic structures include: the median sacral artery and, in women, the ovarian arteries. It originates at the bifurcation of the common iliac Internal iliac artery The internal iliac artery originates from the common iliac artery on each side, approximately at the level of the intervertebral disc between LV and SI and lies anteromedial to the sacro-iliac joint The vessel courses inferiorly over the pelvic inlet, then divides into anterior and posterior trunks at the level of the superior border of the greater sciatic foramen. Branches from the posterior trunk contribute to the supply of the lower posterior abdominal wall, the posterior pelvic wall, and the gluteal region. Branches from the anterior trunk supply the pelvic viscera, the perineum, the gluteal region, the adductor region of the thigh, and, in the fetus, the placenta. Anterior Trunk The anterior trunk gives rise to numerous branches that supply the pelvic organs, the perineum, and the gluteal and adductor regions of the lower limb. working anti-clockwise from obturator artery to inferior gluteal artery. Umbilical artery – Gives rise in (male) – the superior vesical artery Inferior vesical artery Middle rectal artery – The obturator artery Internal pudendal artery Inferior gluteal artery – The uterine artery Obturator artery Obturator artery – Travels through the obturator canal, accompanied by the obturator nerve and vein. It supplies the muscles of the thigh’s adductor region. Umbilical artery Umbilical artery – Gives rise to the superior vesical artery, which supplies the superior aspect of the urinary bladder. The umbilical artery also transports blood from the placenta to the fetus during gestation. After birth, it closes distally to the origin of the superior vesical artery, and forms the medial umbilical ligament. Inferior vesical and vaginal artery Inferior vesical artery (male) – Supplies the prostate gland, seminal vesicle and inferior aspect of the bladder. the equivalent artery in women is the vaginal artery. supplies branches to the vagina and to adjacent parts of the bladder and rectum. Uterine artery Uterine artery (female) Travels within the broad ligament to reach the cervix, where it ascends along the lateral aspect of the uterus. At origin of the fallopian tubes, it anastamoses with the ovarian artery. During its course, it crosses the ureters superiorly. Middle rectal artery Middle rectal artery : Travels medially to supply the distal part of the rectum. It also forms anastamoses with the superior rectal artery (derived from the inferior mesenteric) and the inferior rectal artery (derived from the internal pudendal) Internal pudendal artery Internal pudendal artery – Moves inferiorly to exit the pelvis via the greater sciatic foramen inferior to the piriformis muscle. Accompanied by the pudendal nerve, it then enters the perineum via the lesser sciatic foramen. It is the main artery responsible for the blood supply to the perineum.. Inferior gluteal artery Inferior gluteal artery – The terminal branch of the anterior trunk. It leaves the pelvic cavity via the greater sciatic foramen, emerging inferiorly to the piriformis muscle in the gluteal region. It contributes to the blood supply of the gluteal muscles and hip joint. Posterior Trunk The posterior trunk gives rise to arteries that supply the lower posterior abdominal wall, posterior pelvic wall and the gluteal region. There are typically three branches: Iliolumbar artery – Lateral sacral arteries (superior and inferior) – Superior gluteal artery – Iliolumbar artery Iliolumbar artery – Ascends to exit the lesser pelvis, dividing into a lumbar and iliac branch. The lumbar branch contributes to the supply of the posterior abdominal wall, psoas, quadratus lumborum muscles, and cauda equina via a small spinal branch that passes through the intervertebral foramen between LV and SI. The iliac branch passes laterally into the iliac fossa to supply muscle and bone. Lateral sacral arteries Lateral sacral arteries (superior and inferior) – Travel infero- medially along the posterior pelvic wall to supply structures in the sacral canal, and the skin and muscle posterior to the sacrum. Superior gluteal artery Superior gluteal artery – The terminal branch of the posterior trunk. It exits the pelvic cavity via the greater sciatic foramen, entering the gluteal region superiorly to the piriformis muscle. It is the major blood supply to the muscles and skin of the gluteal region. Minor Arteries of the Pelvis Gonadal Arteries Median Sacral Artery Superior Rectal Artery Gonadal Arteries Gonadal Arteries The ovarian artery is the major gonadal artery in females. It arises from the abdominal aorta, distal to the origin of the renal arteries. The artery descends towards the pelvis, crossing the pelvic brim and the origin of the external iliac vessels. It moves medially, dividing into an ovarian branch and tubal branches, which supply their respective structures. Note – the testicular artery reaches the scrotum via the inguinal canal, and therefore does not actually enter the pelvis. Median Sacral Artery Median Sacral Artery The median sacral artery originates from the posterior aspect of abdominal aorta, at its bifurcation into the common iliac arteries. It descends anteriorly to the L4 and L5 vertebrae, the sacrum and the coccyx, contributing to the arterial supply of these regions. Superior Rectal Artery Superior Rectal Artery The superior rectal artery is the terminal continuation of the inferior mesenteric artery. It crosses the left common iliac artery and descends in the mesentery of the sigmoid colon. It gives rise to branches that supply the rectum. Venous Drainage of the Pelvis Venous Drainage of the Pelvis– the external iliac vein, internal iliac vein and common iliac vein median sacral veins Ovarians veins External Iliac Vein The external iliac vein is a continuation of the femoral vein It ascends along the medial aspect of the external iliac artery, before joining with the internal iliac vein to form the common iliac vein. During its short course, the external iliac vein receives the inferior epigastric and deep circumflex iliac veins. Internal Iliac Vein Pelvic veins follow the course of all branches of the internal iliac artery except for : the umbilical artery and the iliolumbar artery It is formed near the greater sciatic foramen, ascending anteriorly to the sacroiliac joint, before combining with the external iliac vein to form the common iliac vein. With the exception of the iliolumbar vein (which drains into the common iliac), The tributaries of the internal iliac vein the tributaries of the internal iliac vein correspond with the branches of the internal iliac artery : Superior and inferior gluteal veins – drains the buttock and upper thigh. Internal pudendal vein – drains the reproductive organs and part of the rectum (via the inferior rectal vein). Obturator vein Lateral sacral veins – drains part of the sacrum. Middle rectal vein – drains the bladder, prostate (in males only), and part of the rectum. Vesical veins – drains the urinary bladder via the vesical venous plexus. Uterine and vaginal veins – drain the female reproductive organs via the vaginal and uterine venous plexuses. pelvic plexus Within the pelvic cavity, extensive interconnected venous plexuses are associated with the surfaces of the viscera (bladder, rectum, prostate, uterus, and vagina). Together, these plexuses form the pelvic plexus of veins Portacaval -rectum The part of the venous plexus surrounding the rectum and anal canal drains via superior rectal veins (tributaries of inferior mesenteric veins) into the hepatic portal system, and via middle and inferior rectal veins into the caval system. This pelvic plexus is an important portacaval shunt when the hepatic portal system is blocked Common Iliac Vein The common iliac vein is formed at the upper margin of the pubic symphysis by the union of the external and internal iliac veins. It receives two additional tributaries: Iliolumbar vein – drains the L4 and L5 vertebrae, and the iliopsoas muscle. Middle sacral veins – drain part of the sacrum. The left and right common iliac veins combine at L5 to become the inferior vena cava, which empties into the inferior aspect of the right atrium. the median sacral veins the median sacral veins coalesce to form a single vein that joins either the left common iliac vein or the junction of the two common iliac veins to form the inferior vena cava; the ovarian veins the ovarian veins follow the course of the corresponding arteries; on the left, they join the left renal vein and, on the right, they join the inferior vena cava in the abdomen. Nerves Somatic plexuses Sacral and coccygeal plexuses Visceral plexuses : Paravertebral sympathetic chain Parasympathetic fibers Somatic plexuses The somatic plexuses are : Sacral and coccygeal plexuses Sacral plexus The plexus is formed in relation to the anterior surface of the piriformis muscle, The sacral plexus
Recommended publications
  • The Anatomy of the Rectum and Anal Canal
    BASIC SCIENCE identify the rectosigmoid junction with confidence at operation. The anatomy of the rectum The rectosigmoid junction usually lies approximately 6 cm below the level of the sacral promontory. Approached from the distal and anal canal end, however, as when performing a rigid or flexible sigmoid- oscopy, the rectosigmoid junction is seen to be 14e18 cm from Vishy Mahadevan the anal verge, and 18 cm is usually taken as the measurement for audit purposes. The rectum in the adult measures 10e14 cm in length. Abstract Diseases of the rectum and anal canal, both benign and malignant, Relationship of the peritoneum to the rectum account for a very large part of colorectal surgical practice in the UK. Unlike the transverse colon and sigmoid colon, the rectum lacks This article emphasizes the surgically-relevant aspects of the anatomy a mesentery (Figure 1). The posterior aspect of the rectum is thus of the rectum and anal canal. entirely free of a peritoneal covering. In this respect the rectum resembles the ascending and descending segments of the colon, Keywords Anal cushions; inferior hypogastric plexus; internal and and all of these segments may be therefore be spoken of as external anal sphincters; lymphatic drainage of rectum and anal canal; retroperitoneal. The precise relationship of the peritoneum to the mesorectum; perineum; rectal blood supply rectum is as follows: the upper third of the rectum is covered by peritoneum on its anterior and lateral surfaces; the middle third of the rectum is covered by peritoneum only on its anterior 1 The rectum is the direct continuation of the sigmoid colon and surface while the lower third of the rectum is below the level of commences in front of the body of the third sacral vertebra.
    [Show full text]
  • Heart Vein Artery
    1 PRE-LAB EXERCISES Open the Atlas app. From the Views menu, go to System Views and scroll down to Circulatory System Views. You are responsible for the identification of all bold terms. A. Circulatory System Overview In the Circulatory System Views section, select View 1. Circulatory System. The skeletal system is included in this view. Note that blood vessels travel throughout the entire body. Heart Artery Vein 2 Brachiocephalic trunk Pulmonary circulation Pericardium 1. Where would you find the blood vessels with the largest diameter? 2. Select a few vessels in the leg and read their names. The large blue-colored vessels are _______________________________ and the large red-colored vessels are_______________________________. 3. In the system tray on the left side of the screen, deselect the skeletal system icon to remove the skeletal system structures from the view. The largest arteries and veins are all connected to the _______________________________. 4. Select the heart to highlight the pericardium. Use the Hide button in the content box to hide the pericardium from the view and observe the heart muscle and the vasculature of the heart. 3 a. What is the largest artery that supplies the heart? b. What are the two large, blue-colored veins that enter the right side of the heart? c. What is the large, red-colored artery that exits from the top of the heart? 5. Select any of the purple-colored branching vessels inside the rib cage and use the arrow in the content box to find and choose Pulmonary circulation from the hierarchy list. This will highlight the circulatory route that takes deoxygenated blood to the lungs and returns oxygenated blood back to the heart.
    [Show full text]
  • Anatomical Planes in Rectal Cancer Surgery
    DOI: 10.4274/tjcd.galenos.2019.2019-10-2 Turk J Colorectal Dis 2019;29:165-170 REVIEW Anatomical Planes in Rectal Cancer Surgery Rektum Kanser Cerrahisinde Anatomik Planlar Halil İbrahim Açar, Mehmet Ayhan Kuzu Ankara University Faculty of Medicine, Department of General Surgery, Ankara, Turkey ABSTRACT This review outlines important anatomical landmarks not only for rectal cancer surgery but also for pelvic exentration. Keywords: Anorectal anatomy, pelvic anatomy, surgical anatomy of rectum ÖZ Pelvis anatomisini derleme halinde özetleyen bu makale rektum kanser cerrahisi ve pelvik ezantrasyon için önemli topografik noktaları gözden geçirmektedir. Anahtar Kelimeler: Anorektal anatomi, pelvik anatomi, rektumun cerrahi anatomisi Introduction Surgical Anatomy of the Rectum The rectum extends from the promontory to the anal canal Pelvic Anatomy and is approximately 12-15 cm long. It fills the sacral It is essential to know the pelvic anatomy because of the concavity and ends with an anal canal 2-3 cm anteroinferior intestinal and urogenital complications that may develop to the tip of the coccyx. The rectum contains three folds in after the surgical procedures applied to the pelvic region. the coronal plane laterally. The upper and lower are convex The pelvis, encircled by bone tissue, is surrounded by the to the right, and the middle is convex to the left. The middle main vessels, ureters, and autonomic nerves. Success in the fold is aligned with the peritoneal reflection. Intraluminal surgical treatment of pelvic organs is only possible with a projections of the lower boundaries of these folds are known as Houston’s valves. Unlike the sigmoid colon, taenia, good knowledge of the embryological development of the epiploic appendices, and haustra are absent in the rectum.
    [Show full text]
  • Rectum & Anal Canal
    Rectum & Anal canal Dr Brijendra Singh Prof & Head Anatomy AIIMS Rishikesh 27/04/2019 EMBRYOLOGICAL basis – Nerve Supply of GUT •Origin: Foregut (endoderm) •Nerve supply: (Autonomic): Sympathetic Greater Splanchnic T5-T9 + Vagus – Coeliac trunk T12 •Origin: Midgut (endoderm) •Nerve supply: (Autonomic): Sympathetic Lesser Splanchnic T10 T11 + Vagus – Sup Mesenteric artery L1 •Origin: Hindgut (endoderm) •Nerve supply: (Autonomic): Sympathetic Least Splanchnic T12 L1 + Hypogastric S2S3S4 – Inferior Mesenteric Artery L3 •Origin :lower 1/3 of anal canal – ectoderm •Nerve Supply: Somatic (inferior rectal Nerves) Rectum •Straight – quadrupeds •Curved anteriorly – puborectalis levator ani •Part of large intestine – continuation of sigmoid colon , but lacks Mesentery , taeniae coli , sacculations & haustrations & appendices epiploicae. •Starts – S3 anorectal junction – ant to tip of coccyx – apex of prostate •12 cms – 5 inches - transverse slit •Ampulla – lower part Development •Mucosa above Houstons 3rd valve endoderm pre allantoic part of hind gut. •Mucosa below Houstons 3rd valve upto anal valves – endoderm from dorsal part of endodermal cloaca. •Musculature of rectum is derived from splanchnic mesoderm surrounding cloaca. •Proctodeum the surface ectoderm – muco- cutaneous junction. •Anal membrane disappears – and rectum communicates outside through anal canal. Location & peritoneal relations of Rectum S3 1 inch infront of coccyx Rectum • Beginning: continuation of sigmoid colon at S3. • Termination: continues as anal canal, • one inch below
    [Show full text]
  • The Acetabular Blood Supply: Implications for Periacetabular Osteotomies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Surg Radiol Anat (2003) 25: 361–367 DOI 10.1007/s00276-003-0149-3 ANATOMIC BASES OF MEDICAL, RADIOLOGICAL AND SURGICAL TECHNIQUES M. Beck Æ M. Leunig Æ T. Ellis Æ J. B. Sledge Æ R. Ganz The acetabular blood supply: implications for periacetabular osteotomies Received: 22 April 2002 / Accepted: 27 February 2003 / Published online: 16 August 2003 Ó Springer-Verlag 2003 Abstract As the popularity of juxta-acetabular osteot- noise, une e´ tude anatomique apre` s injection de latex omies in adults increases, concern arises that such a colore´ ae´ te´ re´ alise´ e. La vascularisation du versant ex- procedure will potentially cause avascular necrosis of the terne du fragment pe´ ri-ace´ tabulaire a e´ te´ e´ tudie´ e sur 16 acetabular fragment. In order to verify the remaining hanches apre` s injection de latex colore´ dans l’aorte ab- vascularization after a Bernese periacetabular osteoto- dominale et celle de son versant interne sur 4 hanches. my, an injection study with colored latex was performed. Pour confirmer les conclusions tire´ es du travail anato- The vascularity of the outside of the periacetabular bone mique, une oste´ otomie pe´ ri-ace´ tabulaire bernoise a e´ te´ was studied in 16 hips after injection of colored latex re´ alise´ e sur deux hanches supple´ mentaires apre` s injec- into the abdominal aorta and the inside in four hips. To tion de latex. Cette e´ tude a montre´ que, par une voie confirm the conclusions drawn from the anatomic study, d’abord de Smith-Petersen modifie´ eetenre´ alisant a Bernese periacetabular osteotomy was performed in l’oste´ otomie a` partir du versant interne du bassin, le two additional hips after latex injection.
    [Show full text]
  • Prep for Practical II
    Images for Practical II BSC 2086L "Endocrine" A A B C A. Hypothalamus B. Pineal Gland (Body) C. Pituitary Gland "Endocrine" 1.Thyroid 2.Adrenal Gland 3.Pancreas "The Pancreas" "The Adrenal Glands" "The Ovary" "The Testes" Erythrocyte Neutrophil Eosinophil Basophil Lymphocyte Monocyte Platelet Figure 29-3 Photomicrograph of a human blood smear stained with Wright’s stain (765). Eosinophil Lymphocyte Monocyte Platelets Neutrophils Erythrocytes "Blood Typing" "Heart Coronal" 1.Right Atrium 3 4 2.Superior Vena Cava 5 2 3.Aortic Arch 6 4.Pulmonary Trunk 1 5.Left Atrium 12 9 6.Bicuspid Valve 10 7.Interventricular Septum 11 8.Apex of The Heart 9. Chordae tendineae 10.Papillary Muscle 7 11.Tricuspid Valve 12. Fossa Ovalis "Heart Coronal Section" Coronal Section of the Heart to show valves 1. Bicuspid 2. Pulmonary Semilunar 3. Tricuspid 4. Aortic Semilunar 5. Left Ventricle 6. Right Ventricle "Heart Coronal" 1.Pulmonary trunk 2.Right Atrium 3.Tricuspid Valve 4.Pulmonary Semilunar Valve 5.Myocardium 6.Interventricular Septum 7.Trabeculae Carneae 8.Papillary Muscle 9.Chordae Tendineae 10.Bicuspid Valve "Heart Anterior" 1. Brachiocephalic Artery 2. Left Common Carotid Artery 3. Ligamentum Arteriosum 4. Left Coronary Artery 5. Circumflex Artery 6. Great Cardiac Vein 7. Myocardium 8. Apex of The Heart 9. Pericardium (Visceral) 10. Right Coronary Artery 11. Auricle of Right Atrium 12. Pulmonary Trunk 13. Superior Vena Cava 14. Aortic Arch 15. Brachiocephalic vein "Heart Posterolateral" 1. Left Brachiocephalic vein 2. Right Brachiocephalic vein 3. Brachiocephalic Artery 4. Left Common Carotid Artery 5. Left Subclavian Artery 6. Aortic Arch 7.
    [Show full text]
  • Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers
    ORIGINAL ARTICLE Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers Imelda A. Luna Department of Anatomy, College of Medicine, University of the Philippines Manila ABSTRACT Objectives. This is a descriptive study to determine the origin of abnormal obturator arteries, the drainage of abnormal obturator veins, and if any anastomoses exist between these abnormal vessels in Filipino cadavers. Methods. A total of 54 cadaver halves, 50 dissected by UP medical students and 4 by UP Dentistry students were included in this survey. Results. Results showed the abnormal obturator arteries arising from the inferior epigastric arteries in 7 halves (12.96%) and the abnormal communicating veins draining into the inferior epigastric or external iliac veins in 16 (29.62%). There were also arterial anastomoses in 5 (9.25%) with the inferior epigastric artery, and venous anastomoses in 16 (29.62%) with the inferior epigastric or external iliac veins. Bilateral abnormalities were noted in a total 6 cadavers, 3 with both arterial and venous, and the remaining 3 with only venous anastomoses. Conclusion. It is important to be aware of the presence of these abnormalities that if found during surgery, must first be ligated to avoid intraoperative bleeding complications. Key Words: obturator vessels, abnormal, corona mortis INtroDUCTION The main artery to the pelvic region is the internal iliac artery (IIA) with two exceptions: the ovarian/testicular artery arises directly from the aorta and the superior rectal artery from the inferior mesenteric artery (IMA). The internal iliac or hypogastric artery is one of the most variable arterial systems of the human body, its parietal branches, particularly the obturator artery (OBA) accounts for most of its variability.
    [Show full text]
  • The Blood Supply of the Lumbar and Sacral Plexuses in the Human Foetus* by M
    J. Anat., Lond. (1964), 98, 1, 105-116 105 With 4 plates and 3 text-figures Printed in Great Britain The blood supply of the lumbar and sacral plexuses in the human foetus* BY M. H. DAYt Department of Anatomy, Royal Free Hospital School of Medicine INTRODUCTION The existence of a blood supply to peripheral nerve is well established. Recently, a number of authors have reviewed the literature of the field, among them Blunt (1956) and Abdullah (1958), who from their own observations have confirmed that peripheral nerves are supplied by regional vessels reinforcing longitudinally arranged channels which freely anastomose with each other. There is also evidence that posterior root ganglia are particularly well supplied with blood vessels (Abdullah, 1958), but the precise distribution and arrangement of arteries to some individual nerve trunks and plexuses is still in need of investigation. The literature reveals few references to the blood supply of the lumbar and sacral plexuses. The distribution of arteries to the roots and ganglia of the sacral nerves was noted by Haller (1756), but the most important contributions in this field were those of Bartholdy (1897) and Tonkoff (1898), whose observations on the lumbar and sacral plexuses form part of a general survey of the blood supply of peripheral nerve in man. They cited the lumbar, ilio-lumbar, median and lateral sacral arteries as well as the gluteal and pudendal vessels as sources of supply, but gave no indication of the frequency of these contributions. Subsequent authors including Hovelacque (1927), dealt briefly with the distribution of the lateral sacral, median sacral, gluteal and pudendal arteries to the sacral plexus, but treated more fully the blood supply of the sciatic nerve.
    [Show full text]
  • Anatomy of the Large Blood Vessels-Veins
    Anatomy of the large blood vessels-Veins Cardiovascular Block - Lecture 4 Color index: !"#$%&'(& !( "')*+, ,)-.*, $()/ Don’t forget to check the Editing File !( 0*"')*+, ,)-.*, $()/ 1$ ($&*, 23&%' -(0$%"'&-$(4 *3#)'('&-$( Objectives: ● Define veins, and understand the general principles of venous system. ● Describe the superior & inferior Vena Cava and their tributaries. ● List major veins and their tributaries in the body. ● Describe the Portal Vein. ● Describe the Portocaval Anastomosis Veins ◇ Veins are blood vessels that bring blood back to the heart. ◇ All veins carry deoxygenated blood. with the exception of the pulmonary veins(to the left atrium) and umbilical vein(umbilical vein during fetal development). Vein can be classified in two ways based on Location Circulation ◇ Superficial veins: close to the surface of the body ◇ Veins of the systemic circulation: NO corresponding arteries Superior and Inferior vena cava with their tributaries ◇ Deep veins: found deeper in the body ◇ Veins of the portal circulation: With corresponding arteries Portal vein Superior Vena Cava ◇Formed by the union of the right and left Brachiocephalic veins. ◇Brachiocephalic veins are formed by the union of internal jugular and subclavian veins. Drains venous blood from : ◇ Head & neck ◇ Thoracic wall ◇ Upper limbs It Passes downward and enter the right atrium. Receives azygos vein on its posterior aspect just before it enters the heart. Veins of Head & Neck Superficial veins Deep vein External jugular vein Anterior Jugular Vein Internal Jugular Vein Begins just behind the angle of mandible It begins in the upper part of the neck by - It descends in the neck along with the by union of posterior auricular vein the union of the submental veins.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Cat Dissection
    Cat Dissection Muscular Labs Tibialis anterior External oblique Pectroalis minor Sartorius Gastrocnemius Pectoralis major Levator scapula External oblique Trapezius Gastrocnemius Semitendinosis Trapezius Latissimus dorsi Sartorius Gluteal muscles Biceps femoris Deltoid Trapezius Deltoid Lumbodorsal fascia Sternohyoid Sternomastoid Pectoralis minor Pectoralis major Rectus abdominis Transverse abdominis External oblique External oblique (reflected) Internal oblique Lumbodorsal Deltoid fascia Latissimus dorsi Trapezius Trapezius Trapezius Deltoid Levator scapula Deltoid Trapezius Trapezius Trapezius Latissimus dorsi Flexor carpi radialis Brachioradialis Extensor carpi radialis Flexor carpi ulnaris Biceps brachii Triceps brachii Biceps brachii Flexor carpi radialis Flexor carpi ulnaris Extensor carpi ulnaris Triceps brachii Extensor carpi radialis longus Triceps brachii Deltoid Deltoid Deltoid Trapezius Sartorius Adductor longus Adductor femoris Semimembranosus Vastus Tensor fasciae latae medialis Rectus femoris Vastus lateralis Tibialis anterior Gastrocnemius Flexor digitorum longus Biceps femoris Tensor fasciae latae Semimembranosus Semitendinosus Gluteus medius Gluteus maximus Extensor digitorum longus Gastrocnemius Soleus Fibularis muscles Brachioradiallis Triceps (lateral and long heads) Brachioradialis Biceps brachii Triceps (medial head) Trapezius Deltoid Deltoid Levator scapula Trapezius Deltoid Trapezius Latissimus dorsi External oblique (right side cut and reflected) Rectus abdominis Transversus abdominis Internal oblique Pectoralis
    [Show full text]
  • Reprint Of: Why Are Hemorrhoids Symptomatic? the Pathophysiology and Etiology of Hemorrhoids
    Seminars in Colon and Rectal Surgery 29 (2018) 160 166 À Contents lists available at ScienceDirect Seminars in Colon and Rectal Surgery journal homepage: www.elsevier.com/locate/yscrs Reprint of: Why are hemorrhoids symptomatic? the pathophysiology and etiology of hemorrhoids WilliamD1X X C. Cirocco, MD,D2X X FACS, FASCRS* Department of Surgery, University of Missouri Kansas City, Kansas City, Missouri. À ABSTRACT Hemorrhoids are a normal component of the anorectum and contribute to the mechanism of anal closure, thus providing fine adjustment of anal continence. There are numerous myths and legends associated with the disordered and diseased state of hemorrhoids. Fortunately, information obtained from modern technolo- gies including microscopic histopathology defined first the actual substance and makeup of hemorrhoids and was later combined with anorectal physiology to provide evidence establishing the underlying pathophysiol- ogy of this universal finding of the human anorectum. The sliding anal canal theory of Gass and Adams has held up and is further supported by other anatomic studies including the work of WHF Thomson, who popu- larized the term “cushions” to describe the complex intertwining of muscle, connective tissue, veins, arteries, and arteriovenous communications which constitute hemorrhoids. A loss of muscle mass in favor of connec- tive tissue over time helps explain the role of aging as a predisposing factor for symptomatic hemorrhoids. Other factors include the modern “rich” or low-residue diet leading to constipation and straining which con- tributes to prolapsing cushions. Pathologic studies also demonstrated arteriovenous communications explain- ing why hemorrhoid bleeding is typically bright red or arterial in nature as opposed to dark or venous bleeding.
    [Show full text]