Catalogue of 45 Reference Raman Spectra of Minerals Concerning Research in Art History Or Archaeology, Especially on Corroded Metals and Coloured Glass

Total Page:16

File Type:pdf, Size:1020Kb

Catalogue of 45 Reference Raman Spectra of Minerals Concerning Research in Art History Or Archaeology, Especially on Corroded Metals and Coloured Glass Spectrochimica Acta Part A 59 (2003) 2247Á/2266 www.elsevier.com/locate/saa Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass M. Bouchard *, D.C. Smith Baˆtiment Mine´ralogie, Muse´um National d’Histoire Naturelle and CNRS, 61 Rue Buffon, 75005 Paris, France Received 23 June 2002; accepted 15 August 2002 Abstract Small catalogues of reference Raman spectra of interest for analysing geomaterials or biomaterials of relevance to art history or archaeology are gradually being published by different research groups. However, except for some older catalogues, they are all concerned primarily with pigments, whether inorganic or organic. Here we present for the first time a catalogue of Raman spectra of minerals that may be found in corroded metal artworks or artefacts. At the same time we include some inorganic pigments that may be found in or on stained glass. Most of the minerals analysed came from the Gallery of Mineralogy at the Muse´um National d’Histoire Naturelle and most were verified by X-ray diffraction in order to augment the confidence in the mineral identity (which is not the case with many other catalogues). A number of problems encountered with mineral terminology are discussed. Comments are made on the spectra where appropriate. # 2003 Elsevier B.V. All rights reserved. Keywords: Raman spectroscopy; Catalogue; Reference spectra; Art; Archaeology 1. Introduction and tissues), the whole having been defined as ‘ARCHAEORAMAN’ [1,2], is the lack of ade- A major problem for a relatively ‘young’ quate databases of ‘reference Raman spectra’, i.e. discipline such as non-destructive Raman Micro- spectra obtained from known inorganic, organic scopy (RM) applied to Archaeology and Art or amorphous species. The basis of species identi- History in general, i.e. not only to pigments but fication by RM is the comparison of the spectrum also to geomaterials (e.g. rocks, gems, ceramics, of an unknown material with reference spectra glass and metals) and to biomaterials (e.g. resins (‘Raman spectral fingerprinting’). A poorly-docu- mented database will thus handicap any identifica- tion. Very few databases existed until recently: by * Corresponding author. Tel.: /33-1-4079-3527; fax: /33-1- Griffith on crystals [3], Guineau on pigments [4], 4079-3524. E-mail address: [email protected] (M. and Pinet et al. on gemstones [5]. Since then the Bouchard). database on pigments by Bell et al. [6] has been 1386-1425/03/$ - see front matter # 2003 Elsevier B.V. All rights reserved. doi:10.1016/S1386-1425(03)00069-6 2248 M. Bouchard, D.C. Smith / Spectrochimica Acta Part A 59 (2003) 2247Á/2266 updated by Burgio and Clark [7] and a consider- cm1, the samples were simply placed in turn in able number of new research teams are building up the exciting laser beam under the microscope their own databases on pigments. objective. The Raman spectra were mostly mea- We decided in 1997 to prepare a new database sured with the following operational conditions: concerning products likely to be observed in two red He/Ne laser excitation at 632.8 nm; 30 mW new domains of RM archaeometrical research: laser power at source reduced considerably by corrosion products of metals (e.g. sculptures, various filters and by the optical trajectory; /10, weapons or tools), and pigments and alterations /50 or /100 objective; 300 mm slits; multi- of stained glass (e.g. windows). The prestigious channel CCD detection; integration time 50Á/400 mineral collection of the Gallery of Mineralogy of s and two to seven accumulations. Green Ar the MNHN provides an excellent selection of laser radiation at 514.5 nm was also sometimes thousands of natural mineral species. Most of the used with variable but low laser power to reduce spectra presented in this catalogue came from heating of the sample. For routine analysis, 9/3 samples of this collection and most of these cm1 is considered to be the accuracy when minerals were checked by X-ray powder diffrac- comparing spectra from different samples, on tion (XRD) to verify that their Museum labelling different days, or from different instruments; the 1 was correct [8]. Most of the modern pigments here precision of RM being around 9/1cm . The were kindly provided by the ‘Atelier Debitus’ spectra published here were sometimes established stained-glass factory at Tours, France, but several by the simple addition of one spectrum obtained had previously been purchased by them from with the laser beam polarisation vertical and one commercial pigment manufacturers. with the laser beam polarisation horizontal, with- The Raman spectral data are presented below in out moving the sample at all, in order to take an identical format. Each paragraph starts with account of the crystal axis orientation effect and of the F codenumber that gives the ‘fiche’ (file or the optical trajectory orientation effect [9]. The index card) number of the corresponding XRD spectra presented were sometimes treated by base- data (the sign £ for confirmed spectra and no sign line correction and/or minor smoothing. for non-confirmed spectra). The XRD data are available from the authors. This is followed by the mineral group name, mineral species name, ideal chemical composition, crystal system and space 3. Terminological and other problems group. The second line lists the observed Raman wavenumbers, with underlining indicating the In all cases where it was possible to extract a relatively stronger bands and an asterisk the minute portion of crystal from the Gallery, an weaker ones (or shoulders). All the plotted spectra XRD identification was carried out to confirm the appear in Fig. 1 and can be identified by their F nature of the mineral species by reference to codenumber as well as their mineral species name. international powder diffraction tables. A consid- The order of the mineral species is based on erable number of problems were encountered and mineral groups as shown in Table 1 where an our procedure for dealing with them is outlined alphabetical list is also supplied. For simplicity the below. Over 70 species were collected from the adjectival term ‘hydroxy-’ here includes minerals Gallery or the ‘Atelier’ but only 45 finally arrived with (OH) and/or H2O. in this catalogue. 1) Minerals in the Gallery, being natural miner- 2. Experimental als, are very often mineral mixtures and whereas it was usually obvious to an experi- The Raman Microscope employed was a enced mineralogist which was which, this DILOR† XY† instrument. After wavenumber was not always the case and it was then calibration using the diamond peak at 13329/1 necessary to analyse each of the mineral M. Bouchard, D.C. Smith / Spectrochimica Acta Part A 59 (2003) 2247Á/2266 2249 Fig. 1. The Raman spectrum obtained from each of the 45 minerals described in this catalogue, each one being labelled by the species name preceded by our computer code F number as used in the text. Abscissa: wavenumber in cm1. Ordinate: arbitrary units. 2250 M. Bouchard, D.C. Smith / Spectrochimica Acta Part A 59 (2003) 2247Á/2266 Fig. 1 (Continued) M. Bouchard, D.C. Smith / Spectrochimica Acta Part A 59 (2003) 2247Á/2266 2251 Fig. 1 (Continued) 2252 M. Bouchard, D.C. Smith / Spectrochimica Acta Part A 59 (2003) 2247Á/2266 Fig. 1 (Continued) M. Bouchard, D.C. Smith / Spectrochimica Acta Part A 59 (2003) 2247Á/2266 2253 Fig. 1 (Continued) 2254 M. Bouchard, D.C. Smith / Spectrochimica Acta Part A 59 (2003) 2247Á/2266 Fig. 1 (Continued) M. Bouchard, D.C. Smith / Spectrochimica Acta Part A 59 (2003) 2247Á/2266 2255 Fig. 1 (Continued) 2256 M. Bouchard, D.C. Smith / Spectrochimica Acta Part A 59 (2003) 2247Á/2266 Fig. 1 (Continued) M. Bouchard, D.C. Smith / Spectrochimica Acta Part A 59 (2003) 2247Á/2266 2257 Table 1 species present (e.g. a sample labelled ‘man- Mineral species names and F codenumbers arranged by mineral ganite and polianite’). group and also alphabetically 2) The polymineralic situation also occurred Lexicon arranged by Alphabetical lexicon when only one species was listed as being mineral group present (e.g. in a sample labelled ‘anglesite’ Oxides Anglesite F17 the results revealed a rather large quantity of F1*/Cuprite Antlerite F13 cerussite coupled with only a small amount F2 */Hematite Atacamite F25 of anglesite; likewise ‘langite’ was in fact F3 */Litharge et massicot Aurichalcite F38 F4 */Minium Azurite F35 brochantite with a little langite). F5 */Zinc oxide Boleite F30 3) No exploitable Raman spectra were obtained F6 */Zincite Botallackite F27 F7 */Cassiterite Brochantite F15 due to the great opacity of certain minerals, F8 */‘Cobalt oxide’ Buttgenbachite F43 and sometimes due to the Raman selection F9 */Eskolaite Calumetite F28 rules (e.g. no data from the samples labelled: Oxy-Hydroxides Cassiterite F7 F10 */Goethite Cerussite F3 ‘chalcocite’, ‘eurubexite/chalcopyrite’ (in F11 */Lepidocrocite Chalcanthite F14 fact bornite by XRD analysis), ‘acanthite’, F12 */Manganite Chlorargyrite F23 (Cerargirite) ‘galena’, ‘chlorargyrite’, ‘melanothallite’, Sulphates and hydroxy- Clinoatacamite F26 ‘percylite’, and ‘chrysocolla’). sulphates 4) When the XRD spectrum did not correspond F13 */Antlerite Cobalt oxide F8 F14 */Chalcanthite Connellite F42 to the species name on the sample label, then F15 */Brochantite Cotunnite F23 two possible situations arose: F16 */Linarite Covellite F18 F17 */Anglesite Cumengite F29 i) If the new XRD identification pre- Sulphides Cuprite F1 sented some interest, then the sample
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • General Index
    CAL – CAL GENERAL INDEX CACOXENITE United States Prospect quarry (rhombs to 3 cm) 25:189– Not verified from pegmatites; most id as strunzite Arizona 190p 4:119, 4:121 Campbell shaft, Bisbee 24:428n Unanderra quarry 19:393c Australia California Willy Wally Gully (spherulitic) 19:401 Queensland Golden Rule mine, Tuolumne County 18:63 Queensland Mt. Isa mine 19:479 Stanislaus mine, Calaveras County 13:396h Mt. Isa mine (some scepter) 19:479 South Australia Colorado South Australia Moonta mines 19:(412) Cresson mine, Teller County (1 cm crystals; Beltana mine: smithsonite after 22:454p; Brazil some poss. melonite after) 16:234–236d,c white rhombs to 1 cm 22:452 Minas Gerais Cripple Creek, Teller County 13:395–396p,d, Wallaroo mines 19:413 Conselheiro Pena (id as acicular beraunite) 13:399 Tasmania 24:385n San Juan Mountains 10:358n Renison mine 19:384 Ireland Oregon Victoria Ft. Lismeenagh, Shenagolden, County Limer- Last Chance mine, Baker County 13:398n Flinders area 19:456 ick 20:396 Wisconsin Hunter River valley, north of Sydney (“glen- Spain Rib Mountain, Marathon County (5 mm laths donite,” poss. after ikaite) 19:368p,h Horcajo mines, Ciudad Real (rosettes; crystals in quartz) 12:95 Jindevick quarry, Warregul (oriented on cal- to 1 cm) 25:22p, 25:25 CALCIO-ANCYLITE-(Ce), -(Nd) cite) 19:199, 19:200p Kennon Head, Phillip Island 19:456 Sweden Canada Phelans Bluff, Phillip Island 19:456 Leveäniemi iron mine, Norrbotten 20:345p, Québec 20:346, 22:(48) Phillip Island 19:456 Mt. St-Hilaire (calcio-ancylite-(Ce)) 21:295– Austria United States
    [Show full text]
  • Centennialite, Cacu3(OH)6Cl2.Nh2o, N ≈ 0.7, a New Kapellasite-Like Species, and a Reassessment of Calumetite
    Mineralogical Magazine, October 2017, Vol. 81(5), pp. 1105–1124 Centennialite, CaCu3(OH)6Cl2.nH2O, n ≈ 0.7, a new kapellasite-like species, and a reassessment of calumetite * WILSON A. CRICHTON AND HARALD MÜLLER ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France [Received 8 March 2015; Accepted 04 October 2016; Associate Editor: Michael Rumsey] ABSTRACT The new mineral centennialite (IMA 2013-110), CaCu3(OH)6Cl2·nH2O, was identified from three cotype specimens originating from the Centennial Mine, Houghton County, Michigan, USA, where it occurs as a secondary product, after acid water action upon supergene Cu mineralization in association with, and essentially indivisible from, other copper-containing minerals such as calumetite and atacamite family minerals. It forms as pale to azure blue encrustations, often taking a botryoidal form. Centennialite is trigonal, P3m1, a = 6.6606(9) Å, 3 c = 5.8004(8) Å, V = 222.85(6) Å , Z = 1. The strongest powder X-ray diffraction lines are dobs/Å [I%] (hkl), 5.799 [100] (001), 2.583 [75] (201), 2.886 [51] (111), 1.665 [20] (220), 1.605 [17] (023), 1.600 [15] (221), 1.444 [11] (222). The X-ray refined structure forms a kagome net of planar coordinated CuO4 units with Jahn- Teller coordinated Cl apices to form octahedra that edge-share to in-plane adjacent and flattened CaO6 octahedra, which are centred about the lattice origin. All oxygen sites are protonated and shared between one Ca-octahedron and one CuO4 planar unit. Three protonated sites are linked, by hydrogen-bonding to Cl sites, which sit on the triad axis.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Damaraite, a New Lead Oxychloride Mineral from the Kombat Mine, Namibia (South West Africa)
    Damaraite, a new lead oxychloride mineral from the Kombat mine, Namibia (South West Africa) A. J. CRIDDLE,l P. KELLER,2 C. J. STANLEY' and J. INNES3 IDepartment of Mineralogy, The Natural History Museum, Cromwell Rd., London SW7 5BD, U.K. 2Institut flir Mineralogie und Kristallchemie, Universitat Stuttgart, 0-700 Stuttgart, Germany 3CSIRO Division of Exploration Geoscience, Private Bag, Wembley, Western Australia 6014 Abstract Damaraite, ideally 3PbO.PbCI2, is a new mineral which occurs with jacobsite, hausmannite, hemato- phanite, native copper, an unnamed Pb-Mo oxychloride, calcite, and baryte, in specimens from the Asis West section of the Kombat mine, Namibia (South West Africa). Damaraite is colourless and transparent with a white streak, and adamantine lustre. It is brittle with an irregular to subconchoi- dal fracture and a cleavage on (010). The mineral has a low reflectance, a weak bireflectance, barely discernible reflectance pleochroism, from grey to slightly bluish grey in some sections, and is weakly anisotropic. Reflectance data in air and in oil are tabulated. Colour values relative to the CIE illuminant C for the most strongly bireflectant grain are, for R I and R2 respectively: Y%15.9, 16.9; Ad475, 472; Pe %5.3, 8.9 It has a VHN50 of 148 (range 145-154) with a calculated Mohs hardness of 3. X-ray powder diffraction studies give the following parameters refined from the powder data: orthorhombic; space group Pma2, Pmam or P2]am; a 15.104(1), b 6.891(1), c 5.806 (1)A; V is 604.3 (4)A3 and Z=3. Deale7.84 g/cm3.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • 31 May 2013 2013-024 Yeomanite
    Title Yeomanite, Pb2O(OH)Cl, a new chain-structured Pb oxychloride from Merehead Quarry, Somerset, England Authors Turner, RW; Siidra, OI; Rumsey, MS; Polekhovsky, YS; Kretser, YL; Krivovichev, SV; Spratt, J; Stanley, Christopher Date Submitted 2016-04-04 2013-024 YEOMANITE CONFIDENTIAL INFORMATION DEADLINE: 31 MAY 2013 2013-024 YEOMANITE Pb2O(OH)Cl Orthorhombic Space group: Pnma a = 6.585(10) b = 3.855(6) c = 17.26(1) Å V = 438(1) Å3 Z = 4 R.W. Turner1*, O.I. Siidra2, M.S. Rumsey3, Y.S. Polekhovsky4, S.V. Krivovichev2, Y.L. Kretser5, C.J. Stanley3, and J. Spratt3 1The Drey, Allington Track, Allington, Salisbury SP4 0DD, Wiltshire, UK 2Department of Crystallography, Geological Faculty, St Petersburg State University, University Embankment 7/9, St Petersburg 199034, Russia 3Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 4Department of Mineral Deposits, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia 5V.G. Khlopin Radium Institute, Roentgen Street 1, 197101 St Petersburg, Russia *E-mail: [email protected] OCCURRENCE The mineral occurs in the Torr Works (Merehead) Quarry, East Cranmore, Somerset, UK. Yeomanite is associated with mendipite, as a cavity filling in manganese oxide pods. Other oxyhalide minerals that are found hosted in mendipite include diaboleite, chloroxiphite and paralaurionite. Secondary Pb and Cu minerals, including mimetite, wulfenite, cerussite, hydrocerussite, malachite, and crednerite also occur in the same environment. Gangue minerals associated with mineralised manganese pods include aragonite, calcite and barite. Undifferentiated pod-forming Mn oxides are typically a mixture of manganite and pyrolusite, associated with Fe oxyhydroxides such as goethite (Turner, 2006).
    [Show full text]
  • Mendipite Pb3o2cl2 C 2001-2005 Mineral Data Publishing, Version 1
    Mendipite Pb3O2Cl2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 222. In columnar or fibrous aggregates, and cleavable masses, to 12 cm. Physical Properties: Cleavage: {010}, perfect; {100} and {010}, less perfect. Fracture: Conchoidal to uneven. Hardness = 2.5 D(meas.) = 7.240 D(calc.) = 7.22 Optical Properties: Translucent, rarely transparent. Color: Colorless to white, brownish cream, gray, tinged yellow, pink, red, or blue; nearly colorless in transmitted light. Streak: White. Luster: Pearly to silky on cleavages; resinous to adamantine on fractures. Optical Class: Biaxial (+). Orientation: X = a; Y = b; Z = c. Dispersion: r< v,very strong. α = 2.24(2) β = 2.27(2) γ = 2.31(2) 2V(meas.) = ∼90◦ Cell Data: Space Group: P 212121. a = 9.52 b = 11.95 c = 5.87 Z = 4 X-ray Powder Pattern: L˚angban,Sweden. 2.78 (10), 2.64 (9), 3.04 (8), 3.51 (7), 7.40 (6), 3.78 (6), 3.08 (6) Chemistry: (1) (2) (3) Pb 85.87 85.69 85.79 O 4.53 [4.44] 4.42 Cl 9.35 9.87 9.79 Total 99.75 [100.00] 100.00 (1) Mendip Hills, England; corresponds to Pb3.14Cl2O2.15. (2) Kunibert mine, near Brilon, Germany. (3) Pb3O2Cl2. Occurrence: In nodules in manganese oxide ores (Somerset, England). Association: Hydrocerussite, cerussite, malachite, pyromorphite, calcite, chloroxiphite, diaboleite, parkinsonite (Somerset, England). Distribution: In England, from the Higher Pitts Farm, the Priddy Hill Farm, the Wesley mine, and near Churchill, Mendip Hills, and in the Merehead quarry, near Shepton Mallet, Somerset.
    [Show full text]
  • Calumetite Cu(OH, Cl)2 • 2H2O C 2001-2005 Mineral Data Publishing, Version 1
    Calumetite Cu(OH, Cl)2 • 2H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: n.d. As spherules and sheaves of scaly crystals, subparallel on {001}, with {001} and {110}. Physical Properties: Cleavage: {001}, good. Tenacity: Brittle. Hardness = 2 D(meas.) = n.d. D(calc.) = n.d. Optical Properties: Semitransparent. Color: Brilliant azure to powder blue; bluish white on the cleavage. Luster: Pearly on the cleavage. Optical Class: Biaxial (–). Pleochroism: Feeble; in blues. Orientation: X = c; Y = a; Z = b. Absorption: Z ≥ Y > X. α = 1.666 β = 1.690 γ = 1.690 2V(meas.) = 2◦ Cell Data: Space Group: n.d. Z = n.d. X-ray Powder Pattern: Centennial mine, Michigan, USA. 7.50 (10), 2.481 (8), 3.02 (6), 3.76 (5), 3.42 (3), 3.30 (3), 2.341 (3) Chemistry: (1) AgCl 0.17 Cu 44.1 Cl 5.3 + H2O + OH 33.5 + H2O 16.9 Total 99.97 (1) Centennial mine, Michigan, USA; Cu by electrolysis, H2O:OH from charge balance; • corresponding to Cu0.99[(OH)1.78Cl0.22]Σ=2.00 2.35H2O. Occurrence: In cavities and fractures in basalt, formed by the action of chlorine-bearing connate waters on copper, cuprite being regarded as an intermediate product in the alteration (Centennial mine, Michigan, USA). Association: Tremolite, quartz, epidote, monazite, copper, cuprite, atacamite, buttgenbachite, malachite, paratacamite, anthonyite (Centennial mine, Michigan, USA). Distribution: In the USA, from the Centennial and other nearby mines, near Calumet, Houghton Co., Michigan. From Laurium, Greece, in slag. In Germany, from Niederfischbach, Siegerland, and at Richelsdorf, Hesse, in slag.
    [Show full text]
  • Sundiusite, a New Lead Sulfate Oxychloride from Lingban, Sweden
    American Mineralogist, Volume 65, pages 506-508, 1980 Sundiusite,a new lead sulfate oxychloridefrom Lingban, Sweden Pnrp J. DUNN Department of Mineral Sciences, Smithsonian Institution llashington, D. C. 20560 AND ROLAND C. ROUSE Department of Geology and Mineralogy, University of Michigan Ann Arbor, Michigan 48109 Abstract Sundiusite,Pbro(SO4)Cl2Or, is a new mineral from Ldngban, Sweden.It is monoclinic, C2, Cm,orA/m,witha:24.67(l),6:3.781(l),c: ll.S8l(5)A,B:100.07(4)",andZ:2. The strongestlines in the X-ray powderpattern are (Al, hk|)2.981I0 510;2.7378113;3.101 6 602,603;3.W 6 800,403;6.10 3 400;3.74 3 I 10.Sundiusite occurs as plumoseaggregates of white to colorlesscrystals with an adamantineluster. The Mohs hardnessis about 3, and there is a perfect {100} cleavage.Optically, it appearsto be biaxial (+) with all indices greater than 2.10;lath-shaped fragments are length-slow.The observedand calculatedden- sitiesare 7.0 and 7.20g/an3, respectively.The mineral doesnot fluorescein ultraviolet radia- tion. The composition,as determinedby electronmicroprobe, is PbO 93.1,FeO 0.5, SO33.5, Cl 3.0,less O = Cl 0.7, total 99.4weight percent,which yields the ideal formula Pbro(SO4)Cl2Ot. The composition and cell geometry suggesta structural relationship to the nadorite group. Sundiusite is known only from Ldngban and is identical with Flink unknown #284. The name is for the late Nils Sundius. Introduction not recognized by the Subcommitteeon Amphiboles, This new mineral specieswas found severalyears IMA, in its recent systemizationof amphibole no- ago on a specimen in the collections of the Smithso- menclature (Leake, 1968) and indeed "sundiusite" nian Institution.
    [Show full text]
  • Raman Spectroscopy of the Minerals Boleite, Cumengeite, Diaboleite and Phosgenite-Implications for the Analysis of Cosmetics of Antiquity
    COVER SHEET Frost, Ray and Martens, Wayde and Williams, Peter (2003) Raman spectroscopy of the minerals boléite, cumengéite, diaboléite and phosgenite –implications for the analysis of cosmetics of antiquity. Mineralogical Magazine 61(1):pp. 103-111. Accessed from http://eprints.qut.edu.au Copyright 2003 The Mineralogical Society RAMAN SPECTROSCOPY OF SOME BASIC CHLORIDE CONTAINING MINERALS OF LEAD AND COPPER RAY L. FROST•, WAYDE MARTENS and PETER A. WILLIAMS* Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. *School of Science, Food and Horticulture, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia Endnote file: boléite, laurionite, pseudomalachite ABSTRACT Raman spectroscopy has been used to characterise several lead and mixed cationic-lead minerals including mendipite, perite, laurionite, diaboléite, boléite, pseudoboléite, chloroxiphite, and cumengéite. Raman spectroscopy enables their vibrational spectra to be compared. The low wavenumber region is characterised by the bands assigned to cation-chloride stretching and bending modes. Phosgenite is a mixed chloride-carbonate mineral and a comparison is made with the molecular structure of the aforementioned minerals. Each mineral shows different hydroxyl- stretching vibrational patterns, but some similarity exists in the Raman spectra of the hydroxyl deformation modes. Raman spectroscopy lends itself to the study of these types of minerals in complex mineral systems involving secondary mineral formation. Keywords: boléite, cumengéite, diaboleite, lead, copper, chloride, phosgenite, Raman spectroscopy INTRODUCTION The use of these compounds of lead for pharmaceutical and cosmetic purposes in antiquity have been known for some considerable time (Lacroix 1911; Lacroix and de Schulten 1908).
    [Show full text]
  • Description and Crystal Structure of Bobkingite, Cu~+CI2(OH)8(H20h, a New Mineral from New Cliffe Hill Quarry, Stanton-Under-Bardon, Leicestershire, UK
    Mineralogical Magazine, April 2002, Vol. 66(2), pp. 30]-3]] Description and crystal structure of bobkingite, Cu~+CI2(OH)8(H20h, a new mineral from New Cliffe Hill Quarry, Stanton-under-Bardon, Leicestershire, UK F. C. HAWTIIORNEI.*,M. A. COOPERI, J. D. CiRICI2, A. C. ROBERTSJANDN. HUBBARD4 I Deparlment of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 2 Research Division, Canadian Museum of Nature, P.O. Box 3443, Station 'D', Ottawa, Ontario, Canada KIP 6P4 1 Geological Survey of Canada, 60 I Booth Street, Ottawa, Ontario, Canada K IA OE8 4 30 Thirlmere Road, Barrow-upon-Soar, Leieestershire, LE 12 8QQ, UK ABSTRACT Robkingite, ideally Cu~ t Cl2(OHJx(H20h. is a new mineral from the New Cliffe Hill Quarry, Stanton- under-Bardon, Leicestershire, England. It occurs as very thin (~5 flm) transparent plates up to 0.2 mm across, perchcd on a compact fibrous crust of malachite and crystalline azurite attached to massive cuprite. Crystals are tabular on {001: with dominant :001} and minor {IOO} and: IIO}. Bobkingite is a soft pale blue colour with a palc-blue streak, vitreous lustrc and no observable fluorcscence under ultraviolet light. It has perfect {001: and fair: 100} cleavages, no observable parting, conchoidal fracturc, and is brittle. Its Mohs' hardncss is 3 and the caleulated dcnsity is 3.254 g/cmJ Bobkingite is biaxial negative with CI.= 1.724(2), ~ = 1.745(2), y = 1.750(2), 2V'llllcas = 33(6), 2Vcalc = 52, pleochroism distinct, X = very pale blue, Z = pale greenish blue, X'a = 22' (in ~ obtusc), Y = c, Z = b.
    [Show full text]