ALGEBRAIC NUMBER THEORY Romyar Sharifi

Total Page:16

File Type:pdf, Size:1020Kb

ALGEBRAIC NUMBER THEORY Romyar Sharifi ALGEBRAIC NUMBER THEORY Romyar Sharifi Contents Introduction 7 Part 1. Algebraic number theory 9 Chapter 1. Abstract algebra 11 1.1. Tensor products of fields 11 1.2. Integral extensions 13 1.3. Norm and trace 18 1.4. Discriminants 22 1.5. Normal bases 29 Chapter 2. Dedekind domains 33 2.1. Fractional ideals 33 2.2. Dedekind domains 34 2.3. Discrete valuation rings 39 2.4. Orders 43 2.5. Ramification of primes 47 2.6. Decomposition groups 52 Chapter 3. Applications 57 3.1. Cyclotomic fields 57 3.2. Quadratic reciprocity 61 3.3. Fermat’s last theorem 63 Chapter 4. Geometry of numbers 67 4.1. Lattices 67 4.2. Real and complex embeddings 70 4.3. Finiteness of the class group 71 4.4. Dirichlet’s unit theorem 74 Chapter 5. Valuations and completions 79 5.1. Global fields 79 5.2. Valuations 80 3 4 CONTENTS 5.3. Completions 88 5.4. Extension of valuations 97 5.5. Local fields 101 Chapter 6. Local-global theory 105 6.1. Semi-local theory 105 6.2. Ramification revisited 110 6.3. Differents and discriminants 113 Part 2. Cohomology 121 Chapter 7. Group cohomology 123 7.1. Group rings 123 7.2. Group cohomology via cochains 124 7.3. Group cohomology via projective resolutions 129 7.4. Homology of groups 132 7.5. Induced modules 134 7.6. Tate cohomology 136 7.7. Dimension shifting 141 7.8. Comparing cohomology groups 142 7.9. Cup products 152 7.10. Tate cohomology of cyclic groups 159 7.11. Cohomological triviality 162 7.12. Tate’s theorem 166 Chapter 8. Galois cohomology 171 8.1. Profinite groups 171 8.2. Cohomology of profinite groups 178 8.3. Galois theory of infinite extensions 182 8.4. Galois cohomology 185 8.5. Kummer theory 187 Part 3. Class field theory 193 Chapter 9. Nonarchimedean local fields 195 9.1. Multiplicative groups 195 9.2. Tamely ramified extensions 198 9.3. Ramification groups 201 Chapter 10. Class formations 209 CONTENTS 5 10.1. Reciprocity maps 209 10.2. Norm groups 215 10.3. Class field theory over finite fields 219 Chapter 11. Local class field theory 223 11.1. The Brauer group of a local field 223 11.2. Local reciprocity 228 11.3. Norm residue symbols 230 11.4. The existence theorem 235 11.5. Class field theory over Qp 239 11.6. Ramification groups and the unit filtration 243 Chapter 12. Global class field theory via ideals 247 12.1. Ray class groups 247 12.2. Statements 250 12.3. Class field theory over Q 256 12.4. The Hilbert class field 258 Chapter 13. Global class field theory via ideles` 261 13.1. Restricted topological products 261 13.2. Adeles 263 13.3. Ideles` 269 13.4. Statements 273 13.5. Comparison of the approaches 276 13.6. Cohomology of the ideles` 280 13.7. The first inequality 282 13.8. The second inequality 284 13.9. The reciprocity law 288 13.10. Power reciprocity laws 294 Introduction At its core, the ancient subject of number theory is concerned with the arithmetic of the integers. The Fundamental Theorem of Arithmetic, which states that every positive integer factors uniquely into a product of prime numbers, was contained in Euclid’s Elements, as was the infinitude of the set of prime numbers. Over the centuries, number theory grew immensely as a subject, and techniques were developed for approaching number-theoretic problems of a various natures. For instance, unique factorization may be viewed as a ring-theoretic property of Z, while Euler used analysis in his own proof that the set of primes is infinite, exhibiting the divergence of the infinite sum of the reciprocals of all primes. Algebraic number theory distinguishes itself within number theory by its use of techniques from abstract algebra to approach problems of a number-theoretic nature. It is also often considered, for this reason, as a subfield of algebra. The overriding concern of algebraic number theory is the study of the finite field extensions of Q, which are known as number fields, and their rings of integers, analogous to Z. The ring of integers O of a number field F is the subring of F consisting of all roots of all monic polynomials in [x]. Unlike , not all integer rings are UFDs, as one sees for instance by considering Z Z p the factorization of 6 in the ring Z[ −5]. However, they are what are known as Dedekind domains, which have the particularly nice property that every nonzero ideal factors uniquely as a product of nonzero prime ideals, which are all in fact maximal. In essence, prime ideals play the role in O that prime numbers do in Z. A Dedekind domain is a UFD if and only if it is a PID. The class group of a Dedekind domain is roughly the quotient of its set of nonzero ideals by its nonzero principal ideals, and it thereby serves as something of a measure of how far a Dedekind domain is from being a prinicipal ideal domain. The class group of a number field is finite, and the classical proof of this is in fact a bit of analysis. This should not be viewed as an anomalous encroachment: algebraic number theory draws heavily from the areas it needs to tackle the problems it considers, and analysis and geometry play important roles in the modern theory. Given a prime ideal p in the integer ring O of a number field F, one can define a metric on F that measures the highest power of p dividing the difference of two points in F. If the finite field O=p has characteristic p, then the completion Fp of F with respect to this metric is known as a p-adic field, and the subring Op that is the completion of O is called its valuation ring. In the case that F = Q, 7 8 INTRODUCTION one obtains the p-adic numbers Qp and p-adic integers Zp. The archimedean fields R and C are also completions of number fields with respect to the more familiar Euclidean metrics, and are in that sense similar to p-adic fields, but the geometry of p-adic fields is entirely different. For instance, a sequence of integers converges to 0 in Zp if and only it is eventually congruent to zero modulo arbitrarily high powers of p. It is often easier to work with p-adic fields, as solutions to polynomial equations can be found in them by successive approximation modulo increasing powers of a prime ideal. The “Hasse principle” asserts that the existence of a solution to polynomial equations in a number field should be equivalent to the existence of a solution in every completion of it. (The Hasse principle does not actually hold in such generality, which partially explains the terminology.) Much of the formalism in the theory of number fields carries over to a class of fields of finite characteristic, known as function fields. The function fields we consider are the finite extensions of the fields of rational functions Fp(t) in a single indeterminate t, for some prime p. Their “rings of integers”, such as Fp[t] in the case of Fp(t), are again Dedekind domains. Since function fields play a central role in algebraic geometry, the ties here with geometry are much closer, and often help to provide intuition in the number field case. For instance, instead of the class group, one usually considers the related Picard group of divisors of degree 0 modulo principal divsors. The completions of function fields are fields of Laurent series over finite fields. We use the term “global field” refer to number fields and function fields in general, while the term “local field” refers to their nonarchimedean completions. An introductory course in algebraic number theory can only hope to touch on a minute but essen- tial fraction of the theory as it is today. Much more of this beautiful edifice can be seen in some of the great accomplishments in the number theory of recent decades. Chief among them, of course, is the proof of Fermat’s last theorem, the statement of which is surely familiar to you. Wiles’ proof of FLT is actually rather round-about. It proceeds first by showing that a certain rational elliptic curve that can be constructed out of a solution to Fermat’s equation is not modular, and then that all (or really, enough) rational elliptic curves are modular. In this latter aspect of the proof are contained advanced methods in the theory of Galois representations, modular forms, abelian varieties, deformation theory, Iwasawa theory, and commutative ring theory, none of which we will be able to discuss. NOTATION 0.0.1. Throughout these notes, we will use the term ring to refer more specifically to a nonzero ring with unity. Part 1 Algebraic number theory CHAPTER 1 Abstract algebra In this chapter, we introduce the many of the purely algebraic results that play a major role in algebraic number theory, pausing only briefly to dwell on number-theoretic examples. When we do pause, we will need the definition of the objects of primary interest in these notes, so we make this definition here at the start. DEFINITION 1.0.1.A number field (or algebraic number field) is a finite field extension of Q. We have the following names for extensions of Q of various degrees. DEFINITION 1.0.2.A quadratic (resp., cubic, quartic, quintic, ...) field is a degree 2 (resp., 3, 4, 5, ...) extension of Q.
Recommended publications
  • Field Theory Pete L. Clark
    Field Theory Pete L. Clark Thanks to Asvin Gothandaraman and David Krumm for pointing out errors in these notes. Contents About These Notes 7 Some Conventions 9 Chapter 1. Introduction to Fields 11 Chapter 2. Some Examples of Fields 13 1. Examples From Undergraduate Mathematics 13 2. Fields of Fractions 14 3. Fields of Functions 17 4. Completion 18 Chapter 3. Field Extensions 23 1. Introduction 23 2. Some Impossible Constructions 26 3. Subfields of Algebraic Numbers 27 4. Distinguished Classes 29 Chapter 4. Normal Extensions 31 1. Algebraically closed fields 31 2. Existence of algebraic closures 32 3. The Magic Mapping Theorem 35 4. Conjugates 36 5. Splitting Fields 37 6. Normal Extensions 37 7. The Extension Theorem 40 8. Isaacs' Theorem 40 Chapter 5. Separable Algebraic Extensions 41 1. Separable Polynomials 41 2. Separable Algebraic Field Extensions 44 3. Purely Inseparable Extensions 46 4. Structural Results on Algebraic Extensions 47 Chapter 6. Norms, Traces and Discriminants 51 1. Dedekind's Lemma on Linear Independence of Characters 51 2. The Characteristic Polynomial, the Trace and the Norm 51 3. The Trace Form and the Discriminant 54 Chapter 7. The Primitive Element Theorem 57 1. The Alon-Tarsi Lemma 57 2. The Primitive Element Theorem and its Corollary 57 3 4 CONTENTS Chapter 8. Galois Extensions 61 1. Introduction 61 2. Finite Galois Extensions 63 3. An Abstract Galois Correspondence 65 4. The Finite Galois Correspondence 68 5. The Normal Basis Theorem 70 6. Hilbert's Theorem 90 72 7. Infinite Algebraic Galois Theory 74 8. A Characterization of Normal Extensions 75 Chapter 9.
    [Show full text]
  • 8 Complete Fields and Valuation Rings
    18.785 Number theory I Fall 2016 Lecture #8 10/04/2016 8 Complete fields and valuation rings In order to make further progress in our investigation of finite extensions L=K of the fraction field K of a Dedekind domain A, and in particular, to determine the primes p of K that ramify in L, we introduce a new tool that will allows us to \localize" fields. We have already seen how useful it can be to localize the ring A at a prime ideal p. This process transforms A into a discrete valuation ring Ap; the DVR Ap is a principal ideal domain and has exactly one nonzero prime ideal, which makes it much easier to study than A. By Proposition 2.7, the localizations of A at its prime ideals p collectively determine the ring A. Localizing A does not change its fraction field K. However, there is an operation we can perform on K that is analogous to localizing A: we can construct the completion of K with respect to one of its absolute values. When K is a global field, this process yields a local field (a term we will define in the next lecture), and we can recover essentially everything we might want to know about K by studying its completions. At first glance taking completions might seem to make things more complicated, but as with localization, it actually simplifies matters considerably. For those who have not seen this construction before, we briefly review some background material on completions, topological rings, and inverse limits.
    [Show full text]
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • THE INTERSECTION of NORM GROUPS(I) by JAMES AX
    THE INTERSECTION OF NORM GROUPS(i) BY JAMES AX 1. Introduction. Let A be a global field (either a finite extension of Q or a field of algebraic functions in one variable over a finite field) or a local field (a local completion of a global field). Let C(A,n) (respectively: A(A, n), JV(A,n) and £(A, n)) be the set of Xe A such that X is the norm of every cyclic (respectively: abelian, normal and arbitrary) extension of A of degree n. We show that (*) C(A, n) = A(A,n) = JV(A,n) = £(A, n) = A" is "almost" true for any global or local field and any natural number n. For example, we prove (*) if A is a number field and %)(n or if A is a function field and n is arbitrary. In the case when (*) is false we are still able to determine C(A, n) precisely. It then turns out that there is a specified X0e A such that C(A,n) = r0/2An u A". Since we always have C(A,n) =>A(A,n) =>N(A,n) r> £(A,n) =>A", there are thus two possibilities for each of the three middle sets. Determining which is true seems to be a delicate question; our results on this problem, which are incomplete, are presented in §5. 2. Preliminaries. We consider an algebraic number field A as a subfield of the field of all complex numbers. If p is a nonarchimedean prime of A then there is a natural injection A -> Ap where Ap denotes the completion of A at p.
    [Show full text]
  • Part III Essay on Serre's Conjecture
    Serre’s conjecture Alex J. Best June 2015 Contents 1 Introduction 2 2 Background 2 2.1 Modular forms . 2 2.2 Galois representations . 6 3 Obtaining Galois representations from modular forms 13 3.1 Congruences for Ramanujan’s t function . 13 3.2 Attaching Galois representations to general eigenforms . 15 4 Serre’s conjecture 17 4.1 The qualitative form . 17 4.2 The refined form . 18 4.3 Results on Galois representations associated to modular forms 19 4.4 The level . 21 4.5 The character and the weight mod p − 1 . 22 4.6 The weight . 24 4.6.1 The level 2 case . 25 4.6.2 The level 1 tame case . 27 4.6.3 The level 1 non-tame case . 28 4.7 A counterexample . 30 4.8 The proof . 31 5 Examples 32 5.1 A Galois representation arising from D . 32 5.2 A Galois representation arising from a D4 extension . 33 6 Consequences 35 6.1 Finiteness of classes of Galois representations . 35 6.2 Unramified mod p Galois representations for small p . 35 6.3 Modularity of abelian varieties . 36 7 References 37 1 1 Introduction In 1987 Jean-Pierre Serre published a paper [Ser87], “Sur les representations´ modulaires de degre´ 2 de Gal(Q/Q)”, in the Duke Mathematical Journal. In this paper Serre outlined a conjecture detailing a precise relationship between certain mod p Galois representations and specific mod p modular forms. This conjecture and its variants have become known as Serre’s conjecture, or sometimes Serre’s modularity conjecture in order to distinguish it from the many other conjectures Serre has made.
    [Show full text]
  • The Structure Theory of Complete Local Rings
    The structure theory of complete local rings Introduction In the study of commutative Noetherian rings, localization at a prime followed by com- pletion at the resulting maximal ideal is a way of life. Many problems, even some that seem \global," can be attacked by first reducing to the local case and then to the complete case. Complete local rings turn out to have extremely good behavior in many respects. A key ingredient in this type of reduction is that when R is local, Rb is local and faithfully flat over R. We shall study the structure of complete local rings. A complete local ring that contains a field always contains a field that maps onto its residue class field: thus, if (R; m; K) contains a field, it contains a field K0 such that the composite map K0 ⊆ R R=m = K is an isomorphism. Then R = K0 ⊕K0 m, and we may identify K with K0. Such a field K0 is called a coefficient field for R. The choice of a coefficient field K0 is not unique in general, although in positive prime characteristic p it is unique if K is perfect, which is a bit surprising. The existence of a coefficient field is a rather hard theorem. Once it is known, one can show that every complete local ring that contains a field is a homomorphic image of a formal power series ring over a field. It is also a module-finite extension of a formal power series ring over a field. This situation is analogous to what is true for finitely generated algebras over a field, where one can make the same statements using polynomial rings instead of formal power series rings.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • The Kronecker-Weber Theorem
    The Kronecker-Weber Theorem Lucas Culler Introduction The Kronecker-Weber theorem is one of the earliest known results in class field theory. It says: Theorem. (Kronecker-Weber-Hilbert) Every abelian extension of the rational numbers Q is con- tained in a cyclotomic extension. Recall that an abelian extension is a finite field extension K/Q such that the galois group Gal(K/Q) th is abelian, and a cyclotomic extension is an extension of the form Q(ζ), where ζ is an n root of unity. This paper consists of two proofs of the Kronecker-Weber theorem. The first is rather involved, but elementary, and uses the theory of higher ramification groups. The second is a simple application of the main results of class field theory, which classifies abelian extension of an arbitrary number field. An Elementary Proof Now we will present an elementary proof of the Kronecker-Weber theoerem, in the spirit of Hilbert’s original proof. The particular strategy used here is given as a series of exercises in Marcus [1]. Minkowski’s Theorem We first prove a classical result due to Minkowski. Theorem. (Minkowski) Any finite extension of Q has nonzero discriminant. In particular, such an extension is ramified at some prime p ∈ Z. Proof. Let K/Q be a finite extension of degree n, and let A = OK be its ring of integers. Consider the embedding: r s A −→ R ⊕ C x 7→ (σ1(x), ..., σr(x), τ1(x), ..., τs(x)) where the σi are the real embeddings of K and the τi are the complex embeddings, with one embedding chosen from each conjugate pair, so that n = r + 2s.
    [Show full text]
  • Complex Number
    Nature and Science, 4(2), 2006, Wikipedia, Complex number Complex Number From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Complex_number Editor: Ma Hongbao Department of Medicine, Michigan State University, East Lansing, Michigan, USA. [email protected] Abstract: For the recent issues of Nature and Science, there are several articles that discussed the numbers. To offer the references to readers on this discussion, we got the information from the free encyclopedia Wikipedia and introduce it here. Briefly, complex numbers are added, subtracted, and multiplied by formally applying the associative, commutative and distributive laws of algebra. The set of complex numbers forms a field which, in contrast to the real numbers, is algebraically closed. In mathematics, the adjective "complex" means that the field of complex numbers is the underlying number field considered, for example complex analysis, complex matrix, complex polynomial and complex Lie algebra. The formally correct definition using pairs of real numbers was given in the 19th century. A complex number can be viewed as a point or a position vector on a two-dimensional Cartesian coordinate system called the complex plane or Argand diagram. The complex number is expressed in this article. [Nature and Science. 2006;4(2):71-78]. Keywords: add; complex number; multiply; subtract Editor: For the recnet issues of Nature and Science, field considered, for example complex analysis, there are several articles that discussed the numbers. To complex matrix, complex polynomial and complex Lie offer the references to readers on this discussion, we got algebra. the information from the free encyclopedia Wikipedia and introduce it here (Wikimedia Foundation, Inc.
    [Show full text]
  • Local-Global Methods in Algebraic Number Theory
    LOCAL-GLOBAL METHODS IN ALGEBRAIC NUMBER THEORY ZACHARY KIRSCHE Abstract. This paper seeks to develop the key ideas behind some local-global methods in algebraic number theory. To this end, we first develop the theory of local fields associated to an algebraic number field. We then describe the Hilbert reciprocity law and show how it can be used to develop a proof of the classical Hasse-Minkowski theorem about quadratic forms over algebraic number fields. We also discuss the ramification theory of places and develop the theory of quaternion algebras to show how local-global methods can also be applied in this case. Contents 1. Local fields 1 1.1. Absolute values and completions 2 1.2. Classifying absolute values 3 1.3. Global fields 4 2. The p-adic numbers 5 2.1. The Chevalley-Warning theorem 5 2.2. The p-adic integers 6 2.3. Hensel's lemma 7 3. The Hasse-Minkowski theorem 8 3.1. The Hilbert symbol 8 3.2. The Hasse-Minkowski theorem 9 3.3. Applications and further results 9 4. Other local-global principles 10 4.1. The ramification theory of places 10 4.2. Quaternion algebras 12 Acknowledgments 13 References 13 1. Local fields In this section, we will develop the theory of local fields. We will first introduce local fields in the special case of algebraic number fields. This special case will be the main focus of the remainder of the paper, though at the end of this section we will include some remarks about more general global fields and connections to algebraic geometry.
    [Show full text]
  • Arxiv:0906.3146V1 [Math.NT] 17 Jun 2009
    Λ-RINGS AND THE FIELD WITH ONE ELEMENT JAMES BORGER Abstract. The theory of Λ-rings, in the sense of Grothendieck’s Riemann– Roch theory, is an enrichment of the theory of commutative rings. In the same way, we can enrich usual algebraic geometry over the ring Z of integers to produce Λ-algebraic geometry. We show that Λ-algebraic geometry is in a precise sense an algebraic geometry over a deeper base than Z and that it has many properties predicted for algebraic geometry over the mythical field with one element. Moreover, it does this is a way that is both formally robust and closely related to active areas in arithmetic algebraic geometry. Introduction Many writers have mused about algebraic geometry over deeper bases than the ring Z of integers. Although there are several, possibly unrelated reasons for this, here I will mention just two. The first is that the combinatorial nature of enumer- ation formulas in linear algebra over finite fields Fq as q tends to 1 suggests that, just as one can work over all finite fields simultaneously by using algebraic geome- try over Z, perhaps one could bring in the combinatorics of finite sets by working over an even deeper base, one which somehow allows q = 1. It is common, follow- ing Tits [60], to call this mythical base F1, the field with one element. (See also Steinberg [58], p. 279.) The second purpose is to prove the Riemann hypothesis. With the analogy between integers and polynomials in mind, we might hope that Spec Z would be a kind of curve over Spec F1, that Spec Z ⊗F1 Z would not only make sense but be a surface bearing some kind of intersection theory, and that we could then mimic over Z Weil’s proof [64] of the Riemann hypothesis over function fields.1 Of course, since Z is the initial object in the category of rings, any theory of algebraic geometry over a deeper base would have to leave the usual world of rings and schemes.
    [Show full text]
  • Arithmetic Duality Theorems
    Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126
    [Show full text]