Also Known As Brute Force Cracking

Total Page:16

File Type:pdf, Size:1020Kb

Also Known As Brute Force Cracking INTRODUCTION 1.1 Background Brute force (also known as brute force cracking) is a trial and error method used by application programs to decode encrypted data such as passwords or Data Encryption Standard (DES) keys, through exhaustive effort (using brute force) rather than employing intellectual strategies. In a brute force attack, automated software is used to generate a large number of consecutive guesses as to the value of the desired data. Brute force tool can be misused to crack encrypted data, or by security analysts to test an organization's network security.[7] Brute-force attacks are simple to understand. An attacker has an encrypted file say, your LastPass or KeePass password database. They know that this file contains data they want to see, and they know that there’s an encryption key that unlocks it. To decrypt it, they can begin to try every single possible password and see if that results in a decrypted file.[5] There’s a difference between online and offline brute-force attacks. For example, if an attacker wants to brute-force their way into your Gmail account, they can begin to try every single possible password but Google will quickly cut them off. Services that provide access to such accounts will throttle access attempts and ban IP addresses that attempt to log in so many times. Thus, an attack against an online service wouldn’t work too well because very few attempts can be made before the attack would be halted.[5] On the other hand, let’s say an attacker snagged an encrypted file from your computer or managed to compromise an online service and download such encrypted files. The attacker now has the encrypted data on their own hardware and can try as many passwords as they want at their leisure. If they have access to the encrypted data, there’s no way to prevent them from trying a large number of passwords in a short period of time. Even if you’re using strong encryption, it’s to your benefit to keep your data safe and ensure others can’t access it. Speed all depends on hardware. Intelligence agencies may build specialized hardware just for brute-force attacks, just as Bitcoin miners build their own specialized hardware optimized for Bitcoin mining. When it comes to consumer hardware, the most effective type of hardware for brute-force attacks is a graphics card. As it’s easy to try many 1 different encryption keys at once, many graphics cards running in parallel are ideal. At the end of 2012, Ars Technica reported that a 25-GPU cluster could crack every Windows password under 8 characters in less than six hours. The NTLM algorithm Microsoft used just wasn’t resilient enough. However, when NTLM was created, it would have taken much longer to try all these passwords. This wasn’t considered enough of a threat for Microsoft to make the encryption stronger.[5] Strong hashing algorithms can slow down brute-force attacks. Essentially, hashing algorithms perform additional mathematical work on a password before storing a value derived from the password on disk. If a slower hashing algorithm is used, it will require thousands of times as much mathematical work to try each password and dramatically slow down brute-force attacks. However, the more work required, the more work a server or other computer has to do each time as user logs in with their password. Software must balance resilience against brute-force attacks with resource usage. There’s no way to protect yourself completely. It’s impossible to say just how fast computer hardware will get and whether any of the encryption algorithms we use today have weaknesses that will be discovered and exploited in the future. However, here are the basics: Keep your encrypted data safe where attackers can’t get access to it. Once they have your data copied to their hardware, they can try brute-force attacks against it at their leisure. If you run any service that accepts logins over the Internet, ensure that it limits login attempts and blocks people who attempt to log in with many different passwords in a short period of time. Server software is generally set to do this out of the box, as it’s a good security practice. Use strong encryption algorithms, such as SHA-512. Ensure you’re not using old encryption algorithms with known weaknesses that are easy to crack. Use long, secure passwords. All the encryption technology in the world isn’t going to help if you’re using “password” or the ever-popular “hunter2”.[5] 2 1.2 Motivation There are many projects to choose, but choice is to be made according to present need and demands of public in current moment. Nowadays, computer as well as network security is the burning issue as development of technology is taking rapid progress. So it becomes a very important part of technology to ensure a good security to network and computer. Our software can be used for such testing purposes to check the loopholes in system. The program designed by us is easy to use and understand. With the help of our respected teachers and scholars, we conclude to choose this project. They gave us several ideas in choosing a good project. In addition we get information about this project from our friends. We knew that we have to choose a project which is different from others and a unique one. So we found this one useful and unique. 1.3 Statements of Problems During the course of development of the software, we have faced certain problems and difficulties. The main challenge was to embed special characters in it. As it is a brute forcing tool, all characters, numbers and special characters must be embedded. But finally, we have embedded special characters, numbers and characters according to their ASCII code order. Our tool and its functioning depends upon the internet connection and its speed. So problems might occur if internet connection are not available or are of low bandwidth. So to avoid such problems, a good internet connection is preferred. A good internet connection can help to minimize the time complexity of brute forcing. 3 1.4 Objectives The main objectives of our system is to provide tool for testers to test whether brute force attacks can penetrate their system or not. So being based on the current security issues, we have list out the objectives of our tool as follows: To test whether a system is vulnerable to brute force attack. To assure quality website which is safe from brute force attack. To help in load testing as our tool hits the server more than thousand time within seconds. To test the capacity of servers whether it is enough to handle multiple requests in a very short time. 1.5 Scope and Limitation According to the features that we have embedded in our tool, it has got various ranges of scopes. It can be used mainly as the security testing tool. Some of the fields where our tool can be used are: Information Security Information security is the most challenging task in technology field these days. Information are to be kept safe from several possible attacks. Brute force tool can be used in order to test the brute force attack. Brute force tool consumes time but assure high accuracy. It can help security testers whether the web system is vulnerable to the brute force attack or not. Load testing Brute force tool can be helpful in case of load testing purpose as well. This tool hits the server thousands of times within seconds. So a user can test the web server and its capacity to bear load multiple times within very short period of time. Although we have tried our best to reduce errors and limitations, some of the limitation still exist. Some of the limitations are : As it is brute force tool, several hit and trials are carried out simultaneously. So it might take longer time if passwords are too strong. 4 1.6 Report Structure The organization of the report is managed in following ways: Chapter 1: It includes the brief introduction along with its background. Statement of problems, objectives and limitation of project are well mentioned in this chapter. Chapter 2: It includes literature review of the project. Past reference and used tools are described in this chapter. Chapter 3: It includes detail methodology of the projects. Working mechanism along with block diagram is explained. Tools and platforms that are selected for developing project is included here. Chapter 4: This chapter includes detail about results that project generates along with the test cases that are carried out in the course of development of the project. Chapter 5: This chapter includes the conclusion of whole project and the future recommendation and enhancement. Chapter 6: Reference section is included in this chapter. 5 LITERATURE REVIEW Brute-force attacks are fairly simple to understand, but difficult to protect against. Encryption is math, and as computers become faster at math, they become faster at trying all the solutions and seeing which one fits. These attacks can be used against any type of encryption, with varying degrees of success. Brute-force attacks become faster and more effective with each passing day as newer, faster computer hardware is released. Brute force attacks work by calculating every possible combination that could make up a password and testing it to see if it is the correct password. As the password’s length increases, the amount of time, on average, to find the correct password increases exponentially.
Recommended publications
  • Automating Security Checks
    Mag. iur. Dr. techn. Michael Sonntag Automating security checks Institute for Information Processing and Microprocessor Technology (FIM) Johannes Kepler University Linz, Austria E-Mail: [email protected] http://www.fim.uni-linz.ac.at/staff/sonntag.htm © Michael Sonntag 2010 Agenda Why automatization? What can be automated? Example: Skipfish How reliable are these tools? Practical examples of searching for vulnerabilities: Information collection with NMap Password cracking (John the Ripper, Ophcrack) Exploit scanning with Nessus Michael Sonntag Automating security checks 2 Why automatization? Ensuring security is not that hard for a single system You know it in detail When something is discovered, it is implemented and tested But: Many sites with many configuration options? Do you know them all? » Are they identical everywhere (versions!)? Do you have time to change everything accordingly? » Or do you depend on automatic updates/roll-out? Are you sure you did not miss one option somewhere? » Testing the same thing several times is tedious Solution: Automatic testing whether a problem exists Professionals write tests You just apply them » No need to know exactly how the attack works! Regular re-testing is possible Ad-hoc & patchy testing Systematic & comprehensive Michael Sonntag Automating security checks 3 Overlap with monitoring Some overlap with system monitoring exists Failures are just a “different kind” of attack Some problems may occur accidentally or intentionally » Example: Blacklisting of mail
    [Show full text]
  • Truecrack Bruteforcing Per Volumi Truecrypt
    Luca Vaccaro http://code.google.com/p/truecrack/ [email protected] User development guide. TrueCrypt © . software application used for on-the-fly encryption (OTFE). TrueCrack . bruteforce password cracker for TrueCrypt © (Copyrigth) volume files, optimazed with Nvidia Cuda technology. This software is Based on TrueCrypt, freely available athttp://www.truecrypt.org/ Master key . Crypt the volume of data. Generated one time in the volume creation phase from random value. Write inside the header section of the volume file. Header key . Crypt the header section of the volume file. Generated from a user password and a random salt (64 bytes). The salt is write in plain text in the first 64 bytes of volume file. Hard disk encryption: . Standard block cipher: XTS . Hash availables: AES, Serpent, Twofish . Default: AES Key derivation function: . Standard algorithm: PBKDF2 . Hash availables: RIPEMD160, SHA-512, Whirpool . Default: RIPEMD160 Master Header Key Key Plain Cipher Volume data data + file header Opening a TrueCrypt volume means to retrieve the Master Key from the Header section In the Header there are some fields (true, crc32) for checking the success of the decipher operation . If the password is right or wrong Header key User password salt Volume Master file key CUDA or Compute Unified Device Architecture is a parallel computing architecture developed by Nvidia. CUDA gives developers access to the virtual instruction set and memory of the parallel computational elements in CUDA GPUs. Each GPU is a collection of multicores. Each core can run mmore cuda «block», and each block can run a numbers of parallel «thread» 1. Level of parallilism : block 2.
    [Show full text]
  • Assignment 3 – Authentication July 2021 Due Thursday, August 12, 2021
    CryptoWorks21 Network Security Assignment 3 – Authentication July 2021 due Thursday, August 12, 2021 Assignment 3 – Authentication Assignment reports must be submitted by Thursday, August 12, 2021. Assignment Description In this assignment you will carry out exercises related to the lectures on authentication. You will work on cracking password hashes, as well as investigate two-factor authentication on the Internet. Assignment Requirements and Setup Virtual machines. You will need to use the Kali Linux virtual machines. If you have not downloaded and installed it yet, please check the “Assignment 0” document. John the Ripper. You will need to use a tool called John the Ripper in order to crack password hashes. This tool is pre-installed in the Kali Linux virtual machine. However, John is very computationally intensive, and it might run faster on your main computer rather than inside a virtual machine. If you do decide to install it on your main computer, be sure to use the “jumbo” version, which contains support for many more types of hash algorithms. • For Windows, you can download a jumbo build from the John the Ripper homepage (http://www.openwall.com/john/) • For macOS, you can install John using the command-line package manager “Home- brew”. To install Homebrew, visit https://brew.sh/. Once you’ve installed Home- brew, you can install John using the command brew install john-jumbo . Getting text to and from your virtual machine. During this assignment, you may need to copy text to or from your various virtual machines. This can be somewhat annoying. It is possible to set up shared clipboards in VirtualBox (Settings Ñ General Ñ Advanced Ñ Shared Clipboard Ñ Bidirectional), but these are not always reliable.
    [Show full text]
  • Analysis of Password Cracking Methods & Applications
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Spring 2015 Analysis of Password Cracking Methods & Applications John A. Chester The University Of Akron, [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Information Security Commons Recommended Citation Chester, John A., "Analysis of Password Cracking Methods & Applications" (2015). Honors Research Projects. 7. http://ideaexchange.uakron.edu/honors_research_projects/7 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Analysis of Password Cracking Methods & Applications John A. Chester The University of Akron Abstract -- This project examines the nature of password cracking and modern applications. Several applications for different platforms are studied. Different methods of cracking are explained, including dictionary attack, brute force, and rainbow tables. Password cracking across different mediums is examined. Hashing and how it affects password cracking is discussed. An implementation of two hash-based password cracking algorithms is developed, along with experimental results of their efficiency. I. Introduction Password cracking is the process of either guessing or recovering a password from stored locations or from a data transmission system [1].
    [Show full text]
  • Password Cracking Using Cain & Abel
    Password Cracking Using Cain & Abel Learning Objectives: This exercise demonstrates how password could be cracked through ​ various methods, specifically regarding MD5 encrypted passwords. Summary: You will use Cain & Abel for this exercise. ​ Deliverables: Submit a lab report by answering the review questions. In some review ​ questions, you may provide screen captures. Dictionary attack Dictionary attack uses a predetermined list of words from a dictionary to generate possible passwords that may match the MD5 encrypted password. This is one of the easiest and quickest way to obtain any given password. 1. Start Cain & Abel via the Desktop Shortcut ‘Cain’ or Start menu. ​ ​ ​ ​ ​ ​ a. (Start > Programs > Cain > Cain). 2. Choose ‘Yes’ to proceed when a ‘User Account Control’ notification pops up regarding ​ ​ software authorization. 3. Once on, select the ‘Cracker’ tab with the key symbol, then click on MD5 Hashes. The ​ ​ ​ result should look like the image below. 1 Collaborative Virtual Computer Lab (CVCLAB) Penn State Berks 4. As you might have noticed we don’t have any passwords to crack, thus for the next few steps we will create our own MD5 encrypted passwords. First, locate the Hash Calculator among a row of icons near the top. Open it. 5. Next, type into ‘Text to Hash’ the word password. It will generate a list of hashes ​ ​ ​ pertaining to different types of hash algorithms. We will be focusing on MD5 hash so ​ copy it. Then exit calculator by clicking ‘Cancel’ (Fun Fact: Hashes are case sensitive so ​ any slight changes to the text will change the hashes generated, try changing a letter or two and you will see.
    [Show full text]
  • User Authentication and Cryptographic Primitives
    User Authentication and Cryptographic Primitives Brad Karp UCL Computer Science CS GZ03 / M030 16th November 2016 Outline • Authenticating users – Local users: hashed passwords – Remote users: s/key – Unexpected covert channel: the Tenex password- guessing attack • Symmetric-key-cryptography • Public-key cryptography usage model • RSA algorithm for public-key cryptography – Number theory background – Algorithm definition 2 Dictionary Attack on Hashed Password Databases • Suppose hacker obtains copy of password file (until recently, world-readable on UNIX) • Compute H(x) for 50K common words • String compare resulting hashed words against passwords in file • Learn all users’ passwords that are common English words after only 50K computations of H(x)! • Same hashed dictionary works on all password files in world! 3 Salted Password Hashes • Generate a random string of bytes, r • For user password x, store [H(r,x), r] in password file • Result: same password produces different result on every machine – So must see password file before can hash dictionary – …and single hashed dictionary won’t work for multiple hosts • Modern UNIX: password hashes salted; hashed password database readable only by root 4 Salted Password Hashes • Generate a random string of bytes, r Dictionary• For user password attack still x, store possible [H(r,x after), r] in attacker seespassword password file file! Users• Result: should same pick password passwords produces that different aren’t result close to ondictionary every machine words. – So must see password file
    [Show full text]
  • Attack Frameworks and Tools
    Network Architectures and Services, Georg Carle Faculty of Informatics Technische Universität München, Germany Attack Frameworks and Tools Pranav Jagdish Betreuer: Nadine Herold Seminar Innovative Internet Technologies and Mobile Communication WS2014 Lehrstuhl Netzarchitekturen und Netzdienste Fakultät für Informatik, Technische Universität München Overview Introduction Overview of Tools Password Crackers Network Poisoners Network Security Tools Denial of Service Tools Concluding remarks AttackTitel Frameworks and Tools 2 Introduction Network Security – perhaps the most important aspect of communications in todays world How easy it is to attack a target system or network today? . Tools automate most of the work . From fingerprinting your target to attacking . Knowledge requirements decrease day by day AttackTitel Frameworks and Tools 3 Introduction The CIA Triangle Confidentiality Integrity Availability AttackTitel Frameworks and Tools 4 Overview of the Tools Password Crackers • Free • Free • Free • Windows • Various • Linux, Only GUI Platforms OSX and Hashcat Windows Cain and Abel and Cain John the Ripper John AttackTitel Frameworks and Tools 5 Overview of the Tools Network Poisoners • Free • Free • Python • Various ZARP Script Platforms Ettercap AttackTitel Frameworks and Tools 6 Overview of the Tools Network Security Tools • Free • Free • Free • Various (Signup • Python Nmap Platforms Required) Script • Windows Sqlmap Metasploit and Linux AttackTitel Frameworks and Tools 7 Overview of the Tools Denial of Service Tools • Free • Free • Windows • Python LOIC Only GUI HULK Script AttackTitel Frameworks and Tools 8 Password Crackers Attack: Confidentiality Crack passwords or keys Crack various kind of hashes Initially used to crack local system passwords like for Windows and Linux Have extended to include numerous kinds of hashes New versions are faster and use different kind of cracking methods .
    [Show full text]
  • Cryptanalytic Tools
    Cryptanalytic Tools Authors: Prof. Dr.-Ing. Tim Güneysu Dipl. Ing. Alexander Wild B. Sc. Tobias Schneider Ruhr-Universität Bochum Module Cryptanalytic Tools Chapter 3: Introduction to Cryptanalysis Chapter 4: Computational Complexity and Parallelism Chapter 5: Secret Parameters and Keys Chapter 6: Tools for Symmetric Cryptanalysis Chapter 7: Tools for Asymmetric Cryptanalysis Authors: Prof. Dr.-Ing. Tim Güneysu Dipl. Ing. Alexander Wild B. Sc. Tobias Schneider 1. edition Ruhr-Universität Bochum © 2015 Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum 1. edition (31. March 2015) Das Werk einschließlich seiner Teile ist urheberrechtlich geschützt. Jede Ver- wendung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung der Verfasser unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspe- icherung und Verarbeitung in elektronischen Systemen. Um die Lesbarkeit zu vereinfachen, wird auf die zusätzliche Formulierung der weiblichen Form bei Personenbezeichnungen verzichtet. Wir weisen deshalb darauf hin, dass die Verwendung der männlichen Form explizit als geschlechtsunabhängig verstanden werden soll. Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung, und Forschung unter dem Förderkennze- ichen 16OH12026 gefördert. Die Verantwortung für den Inhalt dieser Veröf- fentlichung liegt beim Autor. Contents Page3 Contents Introduction to the module books 5 I. Icons and colour codes . 5 Chapter 3 Introduction to Cryptanalysis 7 3.1 Definition of Security . 7 3.1.1 Security of Cryptographic Systems . 7 3.1.2 Categories of Attacks . 8 3.1.3 Categories of Attackers . 9 3.1.4 Secret Key Lengths . 10 3.2 Outline of this Lecture . 11 3.3 Further Reading Materials . 11 Chapter 4 Computational Complexity and Parallelism 13 4.1 Asymptotic Computational Complexity .
    [Show full text]
  • Hash Crack: Password Cracking Manual
    Hash Crack. Copyright © 2017 Netmux LLC All rights reserved. Without limiting the rights under the copyright reserved above, no part of this publication may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without prior written permission. ISBN-10: 1975924584 ISBN-13: 978-1975924584 Netmux and the Netmux logo are registered trademarks of Netmux, LLC. Other product and company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of this work, neither the author nor Netmux LLC, shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it. While every effort has been made to ensure the accuracy and legitimacy of the references, referrals, and links (collectively “Links”) presented in this book/ebook, Netmux is not responsible or liable for broken Links or missing or fallacious information at the Links. Any Links in this book to a specific product, process, website, or service do not constitute or imply an endorsement by Netmux of same, or its producer or provider. The views and opinions contained at any Links do not necessarily express or reflect those of Netmux.
    [Show full text]
  • NCL Password Cracking--Key Getting Started You Can Install a Pre-Built Vmware VM from Here
    NCL Password Cracking--Key Getting Started You can install a pre-built VMware VM from here. You just need to open the VM, not install it. The login credentials are kali, kali. https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/ Then read this excellent blog from NCL. https://cryptokait.com/2019/09/24/everything-you-need-to-know-about-password-cracking-for-the- national-cyber-league-games/ A Note about Hashcat Hashcat, and the older John the Ripper, keep a list of hashes they have already cracked. If the hash is in the list, it will not appear in the output. This can be confusing if you are having problems and run the same hash file repeatedly. If you think some cracked hashes are missing, look in .hashcat/hashcat.potfile in your home directory, or perhaps where you ran hashcat from. If you want to start from scratch, just delete .hashcat/hashcat.potfile A Crack to Start With This is from the paragraph in the NCL Blog, “Using a Pre-Made Wordlist on Kali.” Follow the procedure to unzip (actually Gnu unzip or gunzip) the password list from the rockyou.com breach (I moved rockyou.txt to my home directory instead of Downloads.) Then run the hashcat line, hashcat -m 0 {means the hashes are MD5} -a 0 {attack will be wordlist only} -o outputfile {where the output goes} hashlist pwlist Here are the hashes. 8549137cd494c22ae87eef3e18a46986 0f96a320a8c0bf7e3f6d375b0d9d3a4c 1a8cb8d148b513dfa1d285077fc4e3fb 22a313110bf5b84c0a58eecc27deaa30 e4fd50109f0e40e8c1a895d8e5c71199 These are easy and should crack in under a minute. Solution Save the hashes in a file on Kali.
    [Show full text]
  • Chapter 5 Results
    CHAPTER 5 RESULTS 5.1 Results This chapter will discuss the results of the testing and comparison of the password cracking tools used. This chapter can be summarized as follows: • Research Data and Result Analysis (Locally) • Research Data and Result Analysis (Remotely) • Research Data and Result Analysis (Alphabets only) • Research Data and Result Analysis (Alphabets and a special character) 5.2 Research Data and Result Analysis (Locally) In Figure 16, Ophcrack was used to crack the local users' password with different combinations of password, alphabets, alphanumeric, alphanumeric special characters, english and non-english words. In Figure 17, Ophcrack was used to crack the same password, but excluding the 3 password that were not cracked in the previous attempt. In Figure 18, Cain was used to crack the local users' password. 35 36 Figure 16 - Ophcrack cracked 7 of 10 passwords Figure 17 - Ophcrack cracked 7 of 7 passwords 37 Figure 18 - Cain cracked 5 of 10 passwords 5.3 Research Data and Result Analysis (Remotely) First, the author scans the network for active IP address with NMAP (Figure 19). He used the command of "nmap -O 192.168.1.1-254" to scan the network, it would scan each IP address for active computer. The command -O enabled operating system detection. From the result of the scanning, there were few ports in the state of open and the services that were using those ports, 135/TCP, 139/TCP, 445/TCP and 1984/TCP. Another important detail was the OS details; it showed that the computer was running under Microsoft Windows XP Professional SP2 or Windows Server 2003.
    [Show full text]
  • Password Security - When Passwords Are There for the World to See
    Password Security - When Passwords are there for the World to see Eleanore Young Marc Ruef (Editor) Offense Department, scip AG Research Department, scip AG [email protected] [email protected] https://www.scip.ch https://www.scip.ch Keywords: Bitcoin, Exchange, GitHub, Hashcat, Leak, OWASP, Password, Policy, Rapid, Storage 1. Preface password from a hash without having to attempt a reversal of the hashing algorithm. This paper was written in 2017 as part of a research project at scip AG, Switzerland. It was initially published online at Furthermore, if passwords are fed through hashing https://www.scip.ch/en/?labs.20170112 and is available in algorithms as is, two persons who happen to use the same English and German. Providing our clients with innovative password, will also have the same hash value. As a research for the information technology of the future is an countermeasure, developers have started adding random essential part of our company culture. user-specific values (the salt) to the password before calculating the hash. The salt will then be stored alongside 2. Introduction the password hash in the user account database. As such, even if two persons use the same password, their resulting The year 2016 has seen many reveals of successful attacks hash value will be different due to the added salt. on user account databases; the most notable cases being the attacks on Yahoo [1] and Dropbox [2]. Thanks to recent Modern GPU architectures are designed for large scale advances not only in graphics processing hardware (GPUs), parallelism. Currently, a decent consumer-grade graphics but also in password cracking software, it has become card is capable of performing on the order of 1000 dangerously cheap to determine the actual passwords from calculations simultaneously.
    [Show full text]