Comparing the Effects of Morphological Variation In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pond-Breeding Amphibian Guild
Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Pond-breeding Amphibians Guild Primary Species: Flatwoods Salamander Ambystoma cingulatum Carolina Gopher Frog Rana capito capito Broad-Striped Dwarf Siren Pseudobranchus striatus striatus Tiger Salamander Ambystoma tigrinum Secondary Species: Upland Chorus Frog Pseudacris feriarum -Coastal Plain only Northern Cricket Frog Acris crepitans -Coastal Plain only Contributors (2005): Stephen Bennett and Kurt A. Buhlmann [SCDNR] Reviewed and Edited (2012): Stephen Bennett (SCDNR), Kurt A. Buhlmann (SREL), and Jeff Camper (Francis Marion University) DESCRIPTION Taxonomy and Basic Descriptions This guild contains 4 primary species: the flatwoods salamander, Carolina gopher frog, dwarf siren, and tiger salamander; and 2 secondary species: upland chorus frog and northern cricket frog. Primary species are high priority species that are directly tied to a unifying feature or habitat. Secondary species are priority species that may occur in, or be related to, the unifying feature at some time in their life. The flatwoods salamander—in particular, the frosted flatwoods salamander— and tiger salamander are members of the family Ambystomatidae, the mole salamanders. Both species are large; the tiger salamander is the largest terrestrial salamander in the eastern United States. The Photo by SC DNR flatwoods salamander can reach lengths of 9 to 12 cm (3.5 to 4.7 in.) as an adult. This species is dark, ranging from black to dark brown with silver-white reticulated markings (Conant and Collins 1991; Martof et al. 1980). The tiger salamander can reach lengths of 18 to 20 cm (7.1 to 7.9 in.) as an adult; maximum size is approximately 30 cm (11.8 in.). -
<I>Ichthyosaura Alpestris</I>
Volume 26 (January 2016), 49–56 FULL PAPER Herpetological Journal Published by the British Provenance of Ichthyosaura alpestris (Caudata: Herpetological Society Salamandridae) introductions to France and New Zealand assessed by mitochondrial DNA analysis Jan W. Arntzen1, Tania M. King2, Mathieu Denoël3, Iñigo Martínez-Solano4,5 & Graham P. Wallis2 1Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 2Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand 3Behavioural Biology Unit, Department of Biology, Ecology and Evolution, University of Liège, Quai van Beneden 22, 4020 Liège, Belgium 4CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Rua Padre Armando Quintas, s/n 4485-661 Vairão, Portugal 5(present address) Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, c/ Americo Vespucio, s/n, 41092, Seville, Spain The last century has seen an unparalleled movement of species around the planet as a direct result of human activity, which has been a major contributor to the biodiversity crisis. Amphibians represent a particularly vulnerable group, exacerbated by the devastating effects of chytrid fungi. We report the malicious translocation and establishment of the alpine newt (Ichthyosaura alpestris) to its virtual antipode in North Island of New Zealand. We use network analysis of mitochondrial DNA haplotypes to identify the original source population as I. a. apuana from Tuscany, Italy. Additionally, a population in southern France, presumed to be introduced, is identified as I. a. alpestris from western Europe. However, the presence of two differentiated haplotypes suggests a mixed origin. -
Western Tiger Salamander,Ambystoma Mavortium
COSEWIC Assessment and Status Report on the Western Tiger Salamander Ambystoma mavortium Southern Mountain population Prairie / Boreal population in Canada Southern Mountain population – ENDANGERED Prairie / Boreal population – SPECIAL CONCERN 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Western Tiger Salamander Ambystoma mavortium in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 63 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 33 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Schock, D.M. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada, in COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. Production note: COSEWIC would like to acknowledge Arthur Whiting for writing the status report on the Western Tiger Salamander, Ambystoma mavortium, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Kristiina Ovaska, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Salamandre tigrée de l’Ouest (Ambystoma mavortium) au Canada. -
High Diversity of Frankia and Ectomycorrhizal Fungi Revealed from Alnus Glutinosa Subsp
Alder and the Golden Fleece: high diversity of Frankia and ectomycorrhizal fungi revealed from Alnus glutinosa subsp. barbata roots close to a Tertiary and glacial refugium Melanie Roy, Adrien Pozzi, Raphaëlle Gareil, Melissande Nagati, Sophie Manzi, Imen Nouioui, Nino Sharikadze, Patricia Jargeat, Hervé Gryta, Pierre-Arthur Moreau, et al. To cite this version: Melanie Roy, Adrien Pozzi, Raphaëlle Gareil, Melissande Nagati, Sophie Manzi, et al.. Alder and the Golden Fleece: high diversity of Frankia and ectomycorrhizal fungi revealed from Alnus glutinosa subsp. barbata roots close to a Tertiary and glacial refugium. PeerJ, PeerJ, 2017, 10.7717/peerj.3479. hal-01570368 HAL Id: hal-01570368 https://hal.archives-ouvertes.fr/hal-01570368 Submitted on 29 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Alder and the Golden Fleece: high diversity of Frankia and ectomycorrhizal fungi revealed from Alnus glutinosa subsp. barbata roots close to a Tertiary and glacial refugium Melanie Roy1, Adrien C. Pozzi2, Raphaëlle Gareil1, Melissande Nagati1, Sophie -
Status and Protection of Globally Threatened Species in the Caucasus
STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N. -
Is the Danube Crested Newt Triturus Dobrogicus Polytypic? a Review and New Nuclear DNA Data
This is a repository copy of Is the Danube crested newt Triturus dobrogicus polytypic? A review and new nuclear DNA data. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/104514/ Version: Accepted Version Article: Wielstra, B. orcid.org/0000-0002-7112-5965, Voeroes, J. and Arntzen, J.W. (2016) Is the Danube crested newt Triturus dobrogicus polytypic? A review and new nuclear DNA data. Amphibia-Reptilia , 37 (2). pp. 167-177. ISSN 0173-5373 https://doi.org/10.1163/15685381-00003041 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Is the Danube crested newt Triturus dobrogicus polytypic? A review and new nuclear DNA data 2 3 Short title: Is the Danube crested newt Triturus dobrogicus polytypic? 4 5 Ben Wielstra1,2,*, Judit Vörös3, Jan W. Arntzen2 6 1Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, UK. 7 2Naturalis Biodiversity Center, P. -
Comparative Osteology and Evolution of the Lungless Salamanders, Family Plethodontidae David B
COMPARATIVE OSTEOLOGY AND EVOLUTION OF THE LUNGLESS SALAMANDERS, FAMILY PLETHODONTIDAE DAVID B. WAKE1 ABSTRACT: Lungless salamanders of the family Plethodontidae comprise the largest and most diverse group of tailed amphibians. An evolutionary morphological approach has been employed to elucidate evolutionary rela tionships, patterns and trends within the family. Comparative osteology has been emphasized and skeletons of all twenty-three genera and three-fourths of the one hundred eighty-three species have been studied. A detailed osteological analysis includes consideration of the evolution of each element as well as the functional unit of which it is a part. Functional and developmental aspects are stressed. A new classification is suggested, based on osteological and other char acters. The subfamily Desmognathinae includes the genera Desmognathus, Leurognathus, and Phaeognathus. Members of the subfamily Plethodontinae are placed in three tribes. The tribe Hemidactyliini includes the genera Gyri nophilus, Pseudotriton, Stereochilus, Eurycea, Typhlomolge, and Hemidac tylium. The genera Plethodon, Aneides, and Ensatina comprise the tribe Pleth odontini. The highly diversified tribe Bolitoglossini includes three super genera. The supergenera Hydromantes and Batrachoseps include the nominal genera only. The supergenus Bolitoglossa includes Bolitoglossa, Oedipina, Pseudoeurycea, Chiropterotriton, Parvimolge, Lineatriton, and Thorius. Manculus is considered to be congeneric with Eurycea, and Magnadig ita is congeneric with Bolitoglossa. Two species are assigned to Typhlomolge, which is recognized as a genus distinct from Eurycea. No. new information is available concerning Haptoglossa. Recognition of a family Desmognathidae is rejected. All genera are defined and suprageneric groupings are defined and char acterized. Range maps are presented for all genera. Relationships of all genera are discussed. -
Pseudoeurycea Naucampatepetl. the Cofre De Perote Salamander Is Endemic to the Sierra Madre Oriental of Eastern Mexico. This
Pseudoeurycea naucampatepetl. The Cofre de Perote salamander is endemic to the Sierra Madre Oriental of eastern Mexico. This relatively large salamander (reported to attain a total length of 150 mm) is recorded only from, “a narrow ridge extending east from Cofre de Perote and terminating [on] a small peak (Cerro Volcancillo) at the type locality,” in central Veracruz, at elevations from 2,500 to 3,000 m (Amphibian Species of the World website). Pseudoeurycea naucampatepetl has been assigned to the P. bellii complex of the P. bellii group (Raffaëlli 2007) and is considered most closely related to P. gigantea, a species endemic to the La specimens and has not been seen for 20 years, despite thorough surveys in 2003 and 2004 (EDGE; www.edgeofexistence.org), and thus it might be extinct. The habitat at the type locality (pine-oak forest with abundant bunch grass) lies within Lower Montane Wet Forest (Wilson and Johnson 2010; IUCN Red List website [accessed 21 April 2013]). The known specimens were “found beneath the surface of roadside banks” (www.edgeofexistence.org) along the road to Las Lajas Microwave Station, 15 kilometers (by road) south of Highway 140 from Las Vigas, Veracruz (Amphibian Species of the World website). This species is terrestrial and presumed to reproduce by direct development. Pseudoeurycea naucampatepetl is placed as number 89 in the top 100 Evolutionarily Distinct and Globally Endangered amphib- ians (EDGE; www.edgeofexistence.org). We calculated this animal’s EVS as 17, which is in the middle of the high vulnerability category (see text for explanation), and its IUCN status has been assessed as Critically Endangered. -
EVER-EARLIER BREEDING MIGRATIONS by ALPINE NEWTS (TRITURUS ALPESTRIS) LIVING WILD in BRITAIN 434 Falmer Road, Woodingdean, Brigh
Bntish Herpetological Society Bulletin, No. 51, 1995. EVER-EARLIER BREEDING MIGRATIONS BY ALPINE NEWTS (TRITURUS ALPESTRIS) LIVING WILD IN BRITAIN TREVOR J.C. BEEBEE 434 Falmer Road, Woodingdean, Brighton BN2 6LG Alpine Newts have been living and breeding in my garden and its ponds ever since the introduction of just a few individuals nearly 20 years ago, before the Wildlife & Countryside Act rendered such deviant behaviour inadmissable. Triturus alpestris proved very successful, rapidly building up to such numbers as to become the second most abundant of the four species using my ponds every year. One aspect of Alpine Newt behaviour that became apparent very early on, however, was late arrival at the ponds in spring. Over the first five years when the colony was becoming established the average day of first sighting an Alpine Newt was March 17th; this was a good six weeks later than the first Smooth Newts, which arrived around the start of February, and some five weeks later than the Palmates and Crested Newts that share the same pools. One thing I have tried to do over the years is to keep accurate records of the dates upon which newts first enter my ponds. This is not difficult since it involves no more than stepping outside the back door for a few minutes after dark and inspecting the ponds (which are cleared of weed every autumn) with a powerful torch. I am therefore pretty confident that my records are accurate, at least to within a day or two. On the basis of these observations, a dramatic trend is apparent over the 17 years since the newts were first introduced. -
Vernacular Name AMPHIUMA, ONE-TOED (Aka: Congo Eel, Congo Snake, Ditch Eel, Fish Eel and Lamprey Eel)
1/6 Vernacular Name AMPHIUMA, ONE-TOED (aka: Congo Eel, Congo Snake, Ditch Eel, Fish Eel and Lamprey Eel) GEOGRAPHIC RANGE Eastern Gulf coast. HABITAT Wetlands: slow moving or stagnant freshwater rivers/streams/creeks and bogs, marshes, swamps, fens and peat lands. CONSERVATION STATUS IUCN: Near Threatened (2016). Population Trend: Decreasing. Because of the limited extent of its occurrence and because of the declining extent and quality of its habitat, this species is close to qualifying for Vulnerable. COOL FACTS Amphiumas are commonly known as "Congo eels," a misnomer. First of all, amphiumas are amphibians, rather than fish (which eels are). This notwithstanding, amphiumas bear resemblance to the elongate fishes. It is easy to overlook the diminutive legs, and the lack of any external gills adds to the similarity between the amphiumas and eels. Amphiumas are adapted for digging and tunneling. They seem to spend most of the time in muddy burrows and are rarely observed in the wild. They never fully metamorphose and retain larval characteristics in varying degrees into adulthood: one pair of the larval gill slits is retained and never disappears, no eyelids, no tongue and the presence of 4 gill arches with a single respiratory opening between the 3 rd--4th arches. Amphiumas have two pairs of limbs, and the three species, all of which occur in the S.E. U.S, differ in regard to the number of toes at the ends of these limbs: one, two or three. These amphiumas possess tiny, single-toed limbs, one pair just behind the small gill opening at each side of the neck and another pair just ahead of the longitudinal anal slit . -
Successful Reproduction of the Mole Salamander Ambystoma Talpoideum in Captivity, with an Emphasis on Stimuli Environmental Determinants
SHORT NOTE The Herpetological Bulletin 141, 2017: 28-31 Successful reproduction of the mole salamander Ambystoma talpoideum in captivity, with an emphasis on stimuli environmental determinants AXEL HERNANDEZ Department of Environmental Sciences, Faculty of Sciences and Technics, University Pasquale Paoli of Corsica, Corte, 20250, France Author Email: [email protected] ABSTRACT - Generating and promoting evidence-based husbandry protocols for urodeles, commonly known as newts and salamanders, is urgently needed because most of the up-to-date ex situ programs are focused on frogs and toads than Urodela. Data on biology, life history, ecology and environmental parameters are lacking for many species and are needed to establish suitable husbandry and breeding conditions in captive environments. Two adult females and two adult males, of the mole salamander Ambystoma talpoideum successfully reproduced in captivity. It was found that reproduction of this species depends on various complex stimuli: including natural photoperiod 12:12, rainwater (acidic to neutral pH) and an aquarium full of various debris. Additionally high temperature variations ranging from 2 °C to 17 °C (a decrease followed by an increase) between November and February showed that it is possible to breed adults in aquariums provided the right stimuli are applied at the right moment of time in winter. A. talpoideum shows an explosive breeding mode as previously reported for the whole genus Ambystoma. INTRODUCTION with an emphasis on the environmental determinant stimuli involved. These data may assist in improving breeding these ince the 1980s, the current global amphibian extinction salamanders under artificial conditions. crisis has been discussed and acknowledged (Wake, A. -
Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus Axanthus, in Southern Florida Zachary Cole Adcock University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus axanthus, in Southern Florida Zachary Cole Adcock University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Biology Commons Scholar Commons Citation Adcock, Zachary Cole, "Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus axanthus, in Southern Florida" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/3941 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus axanthus, in Southern Florida by Zachary C. Adcock A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Integrative Biology College of Arts and Sciences University of South Florida Co-Major Professor: Earl D. McCoy, Ph.D. Co-Major Professor: Henry R. Mushinsky, Ph.D. Stephen M. Deban, Ph.D. Date of Approval: July 10, 2012 Keywords: aquatic salamander, life history, oviposition, clutch size, size at maturity Copyright © 2012, Zachary C. Adcock ACKNOWLEDGMENTS I thank my co-major professors, Henry Mushinsky and Earl McCoy, for their patience and guidance through a couple of thesis projects lasting several years. I also thank my committee member, Steve Deban, for providing excellent comments to improve this thesis document.