DEFINITION of the DERIVATIVE

Total Page:16

File Type:pdf, Size:1020Kb

DEFINITION of the DERIVATIVE DEFINITION of the DERIVATIVE We define the derivative as follows: The fraction: is called the "difference quotient" and really represents the slope of a line segment drawn between the point (x,y) and the next point produced with x+h . The limit as "h approaches zero" is the way that we make the distance between the two points smaller and smaller and smaller. Eventually, the distance between the points is indistinguishable. In this way, smaller and smaller line segments are produced, literally sliding down to a single point on the curve. When a line touches a curve at a single point, we call the line a tangent. For this reason, we say that the derivative produces the slope of a line tangent to a curve at x. EXAMPLE using conjugates Use the definition of the derivative to find the slope of a line tangent to the following curve at x = 2 First use the definition of the derivative. Notice the two fractions in the numerator. Begin by factoring 2 and then writing the two separate fractions as one fraction with a common denominator. We will now get rid of the radicals in the numerator and cancel a common factor. As you will see, the common factor will turn out to be "h". We do this by multiplying the top and bottom of the fraction by the conjugate of the numerator. If we have two terms a + b, the conjugate is a - b. The conjugate of the numerator in our problem is: We multiply the top and the bottom of the difference quotient by this conjugate. This will look pretty scary, but stay calm and trust your algebra. Remember, our original fraction was being divided by "h": We can now take the limit of this new fraction by using all of the limit laws. Remember: the limit of a quotient is the quotient of the limits; the limit of a constant is the constant; the limit of a product is the product of the limits; and the limit of a sum is the sum of the limits. Whew! In order to find the slope of a line tangent to the curve at x = 2, replace the x by "2" and do the arithmetic. The slope of a line tangent to at x = 2 is .
Recommended publications
  • Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited)
    Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits as ‘ x ’ Approaches Infinity At times you’ll need to know the behavior of a function or an expression as the inputs get increasingly larger … larger in the positive and negative directions. We can evaluate this using the limit limf ( x ) and limf ( x ) . x→ ∞ x→ −∞ Obviously, you cannot use direct substitution when it comes to these limits. Infinity is not a number, but a way of denoting how the inputs for a function can grow without any bound. You see limits for x approaching infinity used a lot with fractional functions. 1 Ex) Evaluate lim using a graph. x→ ∞ x A more general version of this limit which will help us out in the long run is this … GENERALIZATION For any expression (or function) in the form CONSTANT , this limit is always true POWER OF X CONSTANT lim = x→ ∞ xn HOW TO EVALUATE A LIMIT AT INFINITY FOR A RATIONAL FUNCTION Step 1: Take the highest power of x in the function’s denominator and divide each term of the fraction by this x power. Step 2: Apply the limit to each term in both numerator and denominator and remember: n limC / x = 0 and lim C= C where ‘C’ is a constant. x→ ∞ x→ ∞ Step 3: Carefully analyze the results to see if the answer is either a finite number or ‘ ∞ ’ or ‘ − ∞ ’ 6x − 3 Ex) Evaluate the limit lim . x→ ∞ 5+ 2 x 3− 2x − 5 x 2 Ex) Evaluate the limit lim . x→ ∞ 2x + 7 5x+ 2 x −2 Ex) Evaluate the limit lim .
    [Show full text]
  • Elementary Number Theory and Methods of Proof
    CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright © Cengage Learning. All rights reserved. SECTION 4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem Copyright © Cengage Learning. All rights reserved. Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem The quotient-remainder theorem says that when any integer n is divided by any positive integer d, the result is a quotient q and a nonnegative remainder r that is smaller than d. 3 Example 1 – The Quotient-Remainder Theorem For each of the following values of n and d, find integers q and r such that and a. n = 54, d = 4 b. n = –54, d = 4 c. n = 54, d = 70 Solution: a. b. c. 4 div and mod 5 div and mod A number of computer languages have built-in functions that enable you to compute many values of q and r for the quotient-remainder theorem. These functions are called div and mod in Pascal, are called / and % in C and C++, are called / and % in Java, and are called / (or \) and mod in .NET. The functions give the values that satisfy the quotient-remainder theorem when a nonnegative integer n is divided by a positive integer d and the result is assigned to an integer variable. 6 div and mod However, they do not give the values that satisfy the quotient-remainder theorem when a negative integer n is divided by a positive integer d. 7 div and mod For instance, to compute n div d for a nonnegative integer n and a positive integer d, you just divide n by d and ignore the part of the answer to the right of the decimal point.
    [Show full text]
  • Section 8.8: Improper Integrals
    Section 8.8: Improper Integrals One of the main applications of integrals is to compute the areas under curves, as you know. A geometric question. But there are some geometric questions which we do not yet know how to do by calculus, even though they appear to have the same form. Consider the curve y = 1=x2. We can ask, what is the area of the region under the curve and right of the line x = 1? We have no reason to believe this area is finite, but let's ask. Now no integral will compute this{we have to integrate over a bounded interval. Nonetheless, we don't want to throw up our hands. So note that b 2 b Z (1=x )dx = ( 1=x) 1 = 1 1=b: 1 − j − In other words, as b gets larger and larger, the area under the curve and above [1; b] gets larger and larger; but note that it gets closer and closer to 1. Thus, our intuition tells us that the area of the region we're interested in is exactly 1. More formally: lim 1 1=b = 1: b − !1 We can rewrite that as b 2 lim Z (1=x )dx: b !1 1 Indeed, in general, if we want to compute the area under y = f(x) and right of the line x = a, we are computing b lim Z f(x)dx: b !1 a ASK: Does this limit always exist? Give some situations where it does not exist. They'll give something that blows up.
    [Show full text]
  • 13 Limits and the Foundations of Calculus
    13 Limits and the Foundations of Calculus We have· developed some of the basic theorems in calculus without reference to limits. However limits are very important in mathematics and cannot be ignored. They are crucial for topics such as infmite series, improper integrals, and multi­ variable calculus. In this last section we shall prove that our approach to calculus is equivalent to the usual approach via limits. (The going will be easier if you review the basic properties of limits from your standard calculus text, but we shall neither prove nor use the limit theorems.) Limits and Continuity Let {be a function defined on some open interval containing xo, except possibly at Xo itself, and let 1 be a real number. There are two defmitions of the· state­ ment lim{(x) = 1 x-+xo Condition 1 1. Given any number CI < l, there is an interval (al> b l ) containing Xo such that CI <{(x) ifal <x < b i and x ;6xo. 2. Given any number Cz > I, there is an interval (a2, b2) containing Xo such that Cz > [(x) ifa2 <x< b 2 and x :;Cxo. Condition 2 Given any positive number €, there is a positive number 0 such that If(x) -11 < € whenever Ix - x 0 I< 5 and x ;6 x o. Depending upon circumstances, one or the other of these conditions may be easier to use. The following theorem shows that they are interchangeable, so either one can be used as the defmition oflim {(x) = l. X--->Xo 180 LIMITS AND CONTINUITY 181 Theorem 1 For any given f.
    [Show full text]
  • Two Fundamental Theorems About the Definite Integral
    Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than that used by Stewart, but is based on the same fundamental ideas. 1 The definite integral Recall that the expression b f(x) dx ∫a is called the definite integral of f(x) over the interval [a,b] and stands for the area underneath the curve y = f(x) over the interval [a,b] (with the understanding that areas above the x-axis are considered positive and the areas beneath the axis are considered negative). In today's lecture I am going to prove an important connection between the definite integral and the derivative and use that connection to compute the definite integral. The result that I am eventually going to prove sits at the end of a chain of earlier definitions and intermediate results. 2 Some important facts about continuous functions The first intermediate result we are going to have to prove along the way depends on some definitions and theorems concerning continuous functions. Here are those definitions and theorems. The definition of continuity A function f(x) is continuous at a point x = a if the following hold 1. f(a) exists 2. lim f(x) exists xœa 3. lim f(x) = f(a) xœa 1 A function f(x) is continuous in an interval [a,b] if it is continuous at every point in that interval. The extreme value theorem Let f(x) be a continuous function in an interval [a,b].
    [Show full text]
  • Introduction to Uncertainties (Prepared for Physics 15 and 17)
    Introduction to Uncertainties (prepared for physics 15 and 17) Average deviation. When you have repeated the same measurement several times, common sense suggests that your “best” result is the average value of the numbers. We still need to know how “good” this average value is. One measure is called the average deviation. The average deviation or “RMS deviation” of a data set is the average value of the absolute value of the differences between the individual data numbers and the average of the data set. For example if the average is 23.5cm/s, and the average deviation is 0.7cm/s, then the number can be expressed as (23.5 ± 0.7) cm/sec. Rule 0. Numerical and fractional uncertainties. The uncertainty in a quantity can be expressed in numerical or fractional forms. Thus in the above example, ± 0.7 cm/sec is a numerical uncertainty, but we could also express it as ± 2.98% , which is a fraction or %. (Remember, %’s are hundredths.) Rule 1. Addition and subtraction. If you are adding or subtracting two uncertain numbers, then the numerical uncertainty of the sum or difference is the sum of the numerical uncertainties of the two numbers. For example, if A = 3.4± .5 m and B = 6.3± .2 m, then A+B = 9.7± .7 m , and A- B = - 2.9± .7 m. Notice that the numerical uncertainty is the same in these two cases, but the fractional uncertainty is very different. Rule2. Multiplication and division. If you are multiplying or dividing two uncertain numbers, then the fractional uncertainty of the product or quotient is the sum of the fractional uncertainties of the two numbers.
    [Show full text]
  • Unit 6: Multiply & Divide Fractions Key Words to Know
    Unit 6: Multiply & Divide Fractions Learning Targets: LT 1: Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b) LT 2: Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g. by using visual fraction models or equations to represent the problem. LT 3: Apply and extend previous understanding of multiplication to multiply a fraction or whole number by a fraction. LT 4: Interpret the product (a/b) q ÷ b. LT 5: Use a visual fraction model. Conversation Starters: Key Words § How are fractions like division problems? (for to Know example: If 9 people want to shar a 50-lb *Fraction sack of rice equally by *Numerator weight, how many pounds *Denominator of rice should each *Mixed number *Improper fraction person get?) *Product § 3 pizzas at 10 slices each *Equation need to be divided by 14 *Division friends. How many pieces would each friend receive? § How can a model help us make sense of a problem? Fractions as Division Students will interpret a fraction as division of the numerator by the { denominator. } What does a fraction as division look like? How can I support this Important Steps strategy at home? - Frac&ons are another way to Practice show division. https://www.khanacademy.org/math/cc- - Fractions are equal size pieces of a fifth-grade-math/cc-5th-fractions-topic/ whole. tcc-5th-fractions-as-division/v/fractions- - The numerator becomes the as-division dividend and the denominator becomes the divisor. Quotient as a Fraction Students will solve real world problems by dividing whole numbers that have a quotient resulting in a fraction.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Infinitesimal Calculus
    Infinitesimal Calculus Δy ΔxΔy and “cannot stand” Δx • Derivative of the sum/difference of two functions (x + Δx) ± (y + Δy) = (x + y) + Δx + Δy ∴ we have a change of Δx + Δy. • Derivative of the product of two functions (x + Δx)(y + Δy) = xy + Δxy + xΔy + ΔxΔy ∴ we have a change of Δxy + xΔy. • Derivative of the product of three functions (x + Δx)(y + Δy)(z + Δz) = xyz + Δxyz + xΔyz + xyΔz + xΔyΔz + ΔxΔyz + xΔyΔz + ΔxΔyΔ ∴ we have a change of Δxyz + xΔyz + xyΔz. • Derivative of the quotient of three functions x Let u = . Then by the product rule above, yu = x yields y uΔy + yΔu = Δx. Substituting for u its value, we have xΔy Δxy − xΔy + yΔu = Δx. Finding the value of Δu , we have y y2 • Derivative of a power function (and the “chain rule”) Let y = x m . ∴ y = x ⋅ x ⋅ x ⋅...⋅ x (m times). By a generalization of the product rule, Δy = (xm−1Δx)(x m−1Δx)(x m−1Δx)...⋅ (xm −1Δx) m times. ∴ we have Δy = mx m−1Δx. • Derivative of the logarithmic function Let y = xn , n being constant. Then log y = nlog x. Differentiating y = xn , we have dy dy dy y y dy = nxn−1dx, or n = = = , since xn−1 = . Again, whatever n−1 y dx x dx dx x x x the differentials of log x and log y are, we have d(log y) = n ⋅ d(log x), or d(log y) n = . Placing these values of n equal to each other, we obtain d(log x) dy d(log y) y dy = .
    [Show full text]
  • Notes Chapter 4(Integration) Definition of an Antiderivative
    1 Notes Chapter 4(Integration) Definition of an Antiderivative: A function F is an antiderivative of f on an interval I if for all x in I. Representation of Antiderivatives: If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form G(x) = F(x) + C, for all x in I where C is a constant. Sigma Notation: The sum of n terms a1,a2,a3,…,an is written as where I is the index of summation, ai is the ith term of the sum, and the upper and lower bounds of summation are n and 1. Summation Formulas: 1. 2. 3. 4. Limits of the Lower and Upper Sums: Let f be continuous and nonnegative on the interval [a,b]. The limits as n of both the lower and upper sums exist and are equal to each other. That is, where are the minimum and maximum values of f on the subinterval. Definition of the Area of a Region in the Plane: Let f be continuous and nonnegative on the interval [a,b]. The area if a region bounded by the graph of f, the x-axis and the vertical lines x=a and x=b is Area = where . Definition of a Riemann Sum: Let f be defined on the closed interval [a,b], and let be a partition of [a,b] given by a =x0<x1<x2<…<xn-1<xn=b where xi is the width of the ith subinterval.
    [Show full text]
  • Calculus Formulas and Theorems
    Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9.
    [Show full text]
  • Integration by Parts
    3 Integration By Parts Formula ∫∫udv = uv − vdu I. Guidelines for Selecting u and dv: (There are always exceptions, but these are generally helpful.) “L-I-A-T-E” Choose ‘u’ to be the function that comes first in this list: L: Logrithmic Function I: Inverse Trig Function A: Algebraic Function T: Trig Function E: Exponential Function Example A: ∫ x3 ln x dx *Since lnx is a logarithmic function and x3 is an algebraic function, let: u = lnx (L comes before A in LIATE) dv = x3 dx 1 du = dx x x 4 v = x 3dx = ∫ 4 ∫∫x3 ln xdx = uv − vdu x 4 x 4 1 = (ln x) − dx 4 ∫ 4 x x 4 1 = (ln x) − x 3dx 4 4 ∫ x 4 1 x 4 = (ln x) − + C 4 4 4 x 4 x 4 = (ln x) − + C ANSWER 4 16 www.rit.edu/asc Page 1 of 7 Example B: ∫sin x ln(cos x) dx u = ln(cosx) (Logarithmic Function) dv = sinx dx (Trig Function [L comes before T in LIATE]) 1 du = (−sin x) dx = − tan x dx cos x v = ∫sin x dx = − cos x ∫sin x ln(cos x) dx = uv − ∫ vdu = (ln(cos x))(−cos x) − ∫ (−cos x)(− tan x)dx sin x = −cos x ln(cos x) − (cos x) dx ∫ cos x = −cos x ln(cos x) − ∫sin x dx = −cos x ln(cos x) + cos x + C ANSWER Example C: ∫sin −1 x dx *At first it appears that integration by parts does not apply, but let: u = sin −1 x (Inverse Trig Function) dv = 1 dx (Algebraic Function) 1 du = dx 1− x 2 v = ∫1dx = x ∫∫sin −1 x dx = uv − vdu 1 = (sin −1 x)(x) − x dx ∫ 2 1− x ⎛ 1 ⎞ = x sin −1 x − ⎜− ⎟ (1− x 2 ) −1/ 2 (−2x) dx ⎝ 2 ⎠∫ 1 = x sin −1 x + (1− x 2 )1/ 2 (2) + C 2 = x sin −1 x + 1− x 2 + C ANSWER www.rit.edu/asc Page 2 of 7 II.
    [Show full text]