<<

ME338A CONTINUUM

lecture notes 10

thursday, february 4th, 2010 3 Balance equations

Classical of closed systems in classical continuum mechanics (here), r = 0 and = 0, such that the ρ is constant in R , i.e. Dt (ρ v) = ρ Dtv and thus

t ρ Dtv = div (σ ) + b (3.3.12) the above equation is referred to as ’Cauchy’s first equation of ’, Cauchy [1827]

3.4 Balance of angular total l of a body ¯ B

l := x Dtu d m = x v d m = ρ x v dV (3.4.1) ¯ × ¯ × ¯ × ZB ZB ZB angular momentum exchange of body ¯ with B through momentum from contact lsur and momentum from at-a- forces lvol

sur vol l := x tσ d A l := x b d V (3.4.2) ∂ ¯ × ¯ × Z B ZB with momentum due to contact/surface forces x t = x × σ × σt n and volume forces x b, assumption: no additional · × external

3.4.1 Global form of balance of angular momentum

”The time rate of change of the total angular momentum l of a body ¯ is balanced with the angular momentum exchange B 82 3 Balance equations due to contact momentum flux / surface lsur and due to the at-a-distance momentum exchange / volume force lvol.”

sur vol Dtl = l + l (3.4.3) and thus

Dt ρ x v dV = x tσ d A + x b d V (3.4.4) ¯ × ∂ ¯ × ¯ × ZB Z B ZB

3.4.2 Local form of balance of angular momentum modification of rate term Dt p

¯fixed Dt l = Dt ρ x vdV B= Dt(ρ x v)dV (3.4.5) ¯ × ¯ × ZB ZB modification of surface term lsur

sur Cauchy t l = x tσ d A = x σ n d A ∂ ¯ × ∂ ¯ × · Gauss Z B Z B = div (x σt) d V (3.4.6) ¯ × ZB = x div (σt) d V + x σt d V ¯ × ¯ ∇ × ZB ZB and thus

t Dt(ρ x v) dV = x div (σ ) d V ¯ × ¯ × ZB ZB (3.4.7) + I σt d V + x b d V ¯ × ¯ × ZB ZB for arbitrary bodies ¯ local form of ang. mom. balance B →

D (ρ x v) = x div (σt) + I σt + x b (3.4.8) t × × × ×

83 3 Balance equations

3.4.3 Reduction with lower order balance equations modification with the help of lower order balance equations

Dt(ρ x v) = Dt x (ρ v) + x Dt (ρ v) × × × (3.4.9) = x div (σt) + I σt + x b × × × vector x fixed, thus Dt x = 0, with balance of linear momentum multiplied by position x

x D (ρ v) = x div (σt) + x b (3.4.10) × t × × local angular momentum balance in reduced format

3 I σt =e: σ = 2axl (σ) = 0 σ = σt (3.4.11) × − the above equation is referred to as ’Cauchy’s equa- tion of motion’, Cauchy [1827] in the absense of stresses, surface and body couples, the is symmetric, σ = σt, else: micropolar / Cosserat continua 3 vector product of second order A B =e: [A Bt] × ·

84 3 Balance equations

3.5 Balance of total energy E of a body ¯ as the sum of the B K and the internal energy I

E := e dV = k + i dV = K + I ¯ ¯ ZB ZB 1 K := k dV = ρ v v dV (3.5.1) ¯ ¯ 2 · ZB ZB I := i dV ¯ ZB energy exchange of body ¯ with environment esur and evol B sur E := v tσ d A qn d A ∂ ¯ · − ∂ ¯ Z B Z B (3.5.2) Evol := v b d V + d V ¯ · ∂ ¯ Q ZB Z B with contact flux q = r n and heat source n · Q

3.5.1 Global form of balance of energy

”The time rate of change of the total energy E of a body ¯ B is balanced with the energy exchange due to contact energy flux Esur and the at-a-distance energy exchange Evol.”

sur vol DtE = E + E (3.5.3) and thus

Dt e dV = v tσ qn dA + v b + dV (3.5.4) ¯ ∂ ¯ · − ¯ · Q ZB Z B ZB

85 3 Balance equations

3.5.2 Local form of balance of energy modification of rate term Dt E

¯fixed Dt E = Dt e dV B= Dte dV (3.5.5) ¯ ¯ ZB ZB modification of surface term Esur

sur E = v tσ qn d A ∂ ¯ · − Cauchy Z B = v σt n q n d A (3.5.6) ∂ ¯ · · − · Z B Gauss= div (v σt) + div ( q) d V ¯ · − ZB and thus t Dte dV = div (v · σ q) d V + v b + d V (3.5.7) ¯ ¯ − ¯ · Q ZB ZB ZB for arbitrary bodies ¯ local form of energy balance B →

D e = div (v · σt q) + v b + (3.5.8) t − · Q

3.5.3 Reduction with lower order balance equations modification with the help of lower order balance equations with

Dt e = Dt ( k + i ) = v Dt (ρ v) + Dt i (3.5.9) = div (v · σt q) + v b + − · Q with

D k = D (1ρv v) = 1D (ρv) v + 1v D (ρv) = v D (ρv) t t 2 · 2 t · 2 · t · t 86 3 Balance equations

(3.5.10) with balance of momentum multiplied by v v D (ρ v) = v div (σt) + v b = div (v σt) v : σt + v b t · −∇ · (3.5.11) with stress

t t t v : σ = σ : v = σ : Dtϕ ∇ ∇ ∇ (3.5.12) = σt : D ϕ = σt : D symϕ = σt : D ǫ t∇ t∇ t local energy balance in reduced format/balance of int. energy

D i = σt : D ǫ div (q) + (3.5.13) t t − Q

3.5.4 First law of alternative definitions pext := div (v σt)+v b ... external mechanical power · · pint := σt : v=σt : D ǫ ... internal mechanical power ∇ t qext := div ( q)+ ...external thermal power − Q (3.5.14) Balance of total energy / first law of thermodynamics the rate of change of the total energy e, i.e. the sum of the ki- netic energy k and the i is in equilibrium with the external mechanical power pext and the external thermal power qext

87 3 Balance equations

ext ext Dt e = Dt k + Dt i = p + q (3.5.15) the above equation is typically referred to as ”principle of interconvertibility of heat and mechanical ” , Carnot [1832], [1843], Duhem [1892]

first law of thermodynamics does not provide any informa- tion about the direction of a thermodynamic process balance of kinetic energy

D k = pext pint (3.5.16) t − the balance of kinetic energy is an alternative statement of the balance of linear momentum balance of internal energy

ext int Dt i = q + p (3.5.17) kinetic energy k and internal energy i are no conservation properties, they exchange the internal mechanical energy pint

88