Everyday Physics for the Curious Scientist in You Phys 181 Class Of

Total Page:16

File Type:pdf, Size:1020Kb

Everyday Physics for the Curious Scientist in You Phys 181 Class Of EVERDAY PHYSICS 1 Everyday Physics for the Curious Scientist in You Phys 181 Class of 2020 Edited by Zi Tong Wang and Michael Hilke McGill University EVERDAY PHYSICS 2 Abstract The goal of this book is to explore the physics behind everyday phenomena. It is written such that every curious and interested mind can follow, regardless of the background. Ne need of a physics degree to understand the underlying mechanism of our daily universe. The book is written by the entire class of 2020 in for the “Everyday Physics” course given at McGill University. Keywords: The Universe, Waves and Quantum, Physics of Life, Human made machines, Physics of food. Table of Contents Abstract ..................................................................................................................... 2 Everyday Physics ................................................................................................... 10 Chapter 1: The Universe ....................................................................................... 10 Important Physical Concepts ................................................................................................. 10 Facts – Theory - Model ......................................................................................................... 10 Interesting questions on the Universe ................................................................................... 13 1. Why does the sun shine? ................................................................................................... 13 2. Why are the colors of the stars different? ......................................................................... 15 3. What would the Earth be like if the Moon didn't exist? ................................................... 17 4. How do we know that the Universe is expanding? ........................................................... 19 5. What is at the very bottom of the ocean? .......................................................................... 21 EVERDAY PHYSICS 3 6. Where did earths water come from? ................................................................................. 23 7. Why do stars shine when we look at them at night? ......................................................... 25 8. Can we realistically populate another planet? .................................................................. 27 9. Where did water come from? ............................................................................................ 29 10. What would happen to Earth if the Sun suddenly exploded? ......................................... 31 11. Is it possible for humans to survive on Mars? ................................................................ 33 12. How do we know the Universe is expanding? ................................................................ 35 13. Is there life in the Andromeda Galaxy? How can we know? .......................................... 37 14. Is it realistically possible for humans to populate to another planet? ............................. 39 15. Why are the colors of stars different? ............................................................................. 41 16. Why are the colors of stars different? ............................................................................. 43 17. Why are the colors of stars different? ............................................................................. 45 18. Why does Earth rotate? ................................................................................................... 47 19. What Is At The Very Bottom Of The Ocean? ................................................................. 49 20. Why are there stars of different colors? .......................................................................... 53 21. What is gravity and where does it come from? ............................................................... 55 22. How do we know the age of the Earth? .......................................................................... 57 23. How do we know the universe is expanding? ................................................................. 59 24. Is the universe infinite? ................................................................................................... 61 25. Is there gravity in space? ................................................................................................. 63 EVERDAY PHYSICS 4 26. Why is the Earth round?.................................................................................................. 65 27. What is gravity and where does it come from? ............................................................... 67 28. Why is the Earth round?.................................................................................................. 69 29. Where do black holes come from? .................................................................................. 71 30. Does the moon cause tides? ............................................................................................ 73 31. What would the Earth be like if the Moon didn't exist? ................................................. 75 32. Can Humans survive on Mars? ....................................................................................... 77 Chapter 2: Quantum and Waves .......................................................................... 80 Important Physical Concepts of Waves ................................................................................ 80 Interesting questions about waves ......................................................................................... 81 33. How do wifi waves travel through walls when light can't? ............................................ 81 34. Why do objects look skewered or bent when it is under water and being viewed from the surface? ............................................................................................................................................. 83 35. What is the physics behind clap-activated lights? .......................................................... 85 36. How do humans perceive sounds as complex as music from the combination of simple sound waves? .................................................................................................................................... 87 37. How are we able to see images with our eyes? ............................................................... 89 38. When we use the microwave oven to heat food, how is the energy transmitted? .......... 91 39. How do eyeglasses work? ............................................................................................... 93 40. Qu’est-ce qu’un rayon X et comment cela fonctionne ?................................................. 95 EVERDAY PHYSICS 5 41. When we use a microwave oven to heat food, how is the energy being transmitted? .... 97 42. How do household microwaves use waves to heat up our food? ................................... 99 43. Why do objects look skewered or bent went its underwater, being viewed from the surface? ........................................................................................................................................... 101 44. How do Wi-Fi waves travel through walls when light can’t? ....................................... 103 45. Why is it said that light does not need a medium through which to travel? ................. 105 46. Why do objects look skewered or bent went its underwater, being viewed from the surface? ........................................................................................................................................... 107 47. Why can the wifi waves penetrate the wall but the light wave cannot? ....................... 109 48. How does a camera capture an image and turn it into picture? ..................................... 111 49. What is the difference between the way the brain sends signals and how an electronic device sends signals? .......................................................................................................................113 50. How do eyeglasses work? ..............................................................................................116 Important Physical Concepts of Quantum Physics ............................................................ 118 Interesting questions about Quantum .................................................................................. 119 51. How is light both a particle and a wave? .......................................................................119 52. How does an MRI work? What are the physics behind it? ........................................... 121 53. What are X-rays? .......................................................................................................... 123 Chapter 3: The Physics of Life ........................................................................... 125 Important Physical Concepts of the Physics of Life and Biophysics................................ 125 EVERDAY PHYSICS 6 Interesting questions about the physics of life .................................................................... 127 54. How much force does it require to knock out an average human? ............................... 127 55. What happens to the human body when it's exposed in outer space? How long can you survive? ........................................................................................................................................... 129 56. How does the electrical conduction of the nerve
Recommended publications
  • Advantages and Disadvantages of Using Mobile Devices in a University Language Classroom
    1 Advantages and Disadvantages of Using Mobile Devices in a University Language Classroom Robert CHARTRAND Abstract Advances in tablet computers and cell phone technology have greatly improved recently and such devices are now widely used. Language teachers have especially been interested in using these devices as a means of providing learning opportunities. Reading online content from eBooks or the Internet, listening to music and watching videos are all activities which support the learning of languages. There are, however, a number of problems that have arisen when using mobile learning in a language classroom. The smaller screen, for example, makes it difficult to read content and input text with the online keyboard. Technical problems such as difficulty connecting the Internet, hardware failures and software issues are all common problems. Moreover, distractions from students who do not stay focused on the assigned tasks are becoming a classroom management issue as well. Some of the advantages and disadvantages of using mobile devices in a language classroom at a university setting are discussed in this paper. Keywords: Mobile device, language learning, classroom management, advantages, disadvantages The Advent of Mobile Devices A mobile device can be defined as a small handheld computer that has a touch display or a small keyboard for text input. Mobile phones, smartphones, tablet computers, eBook readers, personal digital assistants (PDAs), and other similar devices can all be defined as mobile devices (Kukulska-Hulme, Sharples, Milrad, Arnedillo-Sánchez, & Vavoula, 2009). Although handheld devices have been available commercially since Apple Computer released the Apple Newton MessagePad in 1993, Palm Inc. released the Palm Pilot in 1996, and Microsoft Corporation released the Tablet PC in 2001.
    [Show full text]
  • Lecture-29 (PDF)
    Life in the Universe Orin Harris and Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Spring 2021 c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 1 / 95 Overview Dating Rocks Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 2 / 95 Dating Rocks Zircon Dating Sedimentary Grand Canyon Life on Earth How Did Life Arise? Life in the Solar System Life Around Dating Rocks Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 3 / 95 Zircon Dating Zircon, (ZrSiO4), minerals incorporate trace amounts of uranium but reject lead. Naturally occuring uranium: • U-238: 99.27% • U-235: 0.72% Decay chains: • 238U −→ 206Pb, τ =4.47 Gyrs. • 235U −→ 207Pb, τ = 704 Myrs. 1956, Clair Camron Patterson dated the Canyon Diablo meteorite: τ =4.55 Gyrs. c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 4 / 95 Dating Sedimentary Rocks • Relative ages: Deeper layers were deposited earlier • Absolute ages: Decay of radioactive isotopes old (deposited last) oldest (depositedolder first) c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 5 / 95 Grand Canyon: Earth History from 200 million - 2 billion yrs ago. Dating Rocks Life on Earth Earth History Timeline Late Heavy Bombardment Hadean Shark Bay Stromatolites Cyanobacteria Q: Earliest Fossils? Life on Earth O2 History Q: Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G.
    [Show full text]
  • New and Emerging Technologies for Sustainable Fisheries: a Comprehensive Landscape Analysis
    Photo by Pablo Sanchez Quiza New and Emerging Technologies for Sustainable Fisheries: A Comprehensive Landscape Analysis Environmental Defense Fund | Oceans Technology Solutions | April 2021 New and Emerging Technologies for Sustainable Fisheries: A Comprehensive Landscape Analysis Authors: Christopher Cusack, Omisha Manglani, Shems Jud, Katie Westfall and Rod Fujita Environmental Defense Fund Nicole Sarto and Poppy Brittingham Nicole Sarto Consulting Huff McGonigal Fathom Consulting To contact the authors please submit a message through: edf.org/oceans/smart-boats edf.org | 2 Contents List of Acronyms ...................................................................................................................................................... 5 1. Introduction .............................................................................................................................................................7 2. Transformative Technologies......................................................................................................................... 10 2.1 Sensors ........................................................................................................................................................... 10 2.2 Satellite remote sensing ...........................................................................................................................12 2.3 Data Collection Platforms ......................................................................................................................
    [Show full text]
  • Newton Mail V User's Guide
    Newton Mail V User’s Guide This booklet tells you how to set up and use the Newton Mail V internet e-mail transport. For the background on Newton e-mail, please refer to Apple’s Newton E-Mail guide [1]. Mail V supports the SMTP and IMAP4 protocols for sending and receiving e-mail. Getting Started There are several things you need to do in order to use e-mail. ■ You need to create an Internet setup using the Newton Internet Enabler (NIE) [5] so that your Newton device can communicate with your Internet Service Provider (ISP) or intranet. ■ If you’re using a modem, you need to set your modem preferences. ■ You need to set up Mail V [7], of course. Once these steps are done, you should be able to use e-mail on your Newton device. Note Because Mail V uses the Newton Internet Enabler, it will only work with Newton 2.x devices. It will not work on the Original MessagePad (OMP), MP100, MP110 or early models of the MP120 which use Newton 1.x. ◆ 1 Installation System Update If you don’t already have the latest Newton System Update [4], you should install that first. To find out your system version: 1! Open the Extras Drawer and tap the Information button. 2! In the list that appears, tap Memory Info. A slip appears showing you your ROM Version at the bottom left. When Apple abandoned Newton on 27 February 1998, the versions were: ! US & International English! German MP120! 2.0 (516263)! 2.0 (536205) MP130! 2.0 (526205)! 2.0 (536205) MP2000! 2.1 (717145)! 2.1 (747260) MP2100! 2.1 (717260)! 2.1 (747260) eMate 300! 2.1 (737246) Since then Paul Guyot has created a 2.1 (710031) update for the English MP2000 and MP2100 that fixes a Dates/Find bug.
    [Show full text]
  • Materials Challenges for the Starshot Lightsail
    PERSPECTIVE https://doi.org/10.1038/s41563-018-0075-8 Materials challenges for the Starshot lightsail Harry A. Atwater 1*, Artur R. Davoyan1, Ognjen Ilic1, Deep Jariwala1, Michelle C. Sherrott 1, Cora M. Went2, William S. Whitney2 and Joeson Wong 1 The Starshot Breakthrough Initiative established in 2016 sets an audacious goal of sending a spacecraft beyond our Solar System to a neighbouring star within the next half-century. Its vision for an ultralight spacecraft that can be accelerated by laser radiation pressure from an Earth-based source to ~20% of the speed of light demands the use of materials with extreme properties. Here we examine stringent criteria for the lightsail design and discuss fundamental materials challenges. We pre- dict that major research advances in photonic design and materials science will enable us to define the pathways needed to realize laser-driven lightsails. he Starshot Breakthrough Initiative has challenged a broad nanocraft, we reveal a balance between the high reflectivity of the and interdisciplinary community of scientists and engineers sail, required for efficient photon momentum transfer; large band- Tto design an ultralight spacecraft or ‘nanocraft’ that can reach width, accounting for the Doppler shift; and the low mass necessary Proxima Centauri b — an exoplanet within the habitable zone of for the spacecraft to accelerate to near-relativistic speeds. We show Proxima Centauri and 4.2 light years away from Earth — in approxi- that nanophotonic structures may be well-suited to meeting such mately
    [Show full text]
  • Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
    Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided.
    [Show full text]
  • Newton Solutions 1
    page1 9/22/95 9:55 AM Page 1 Solutions Guide Software, Peripherals and Accessories for Newton PDAs Information Management Desktop Integration Communications Vertical Market Solutions Newton Accessories Newton Software Development page2 9/22/95 9:59 AM Page 1 Suddenly Newton understands everything you write. All you need is Graffiti.® The And here is what some of fastest, most accurate way to the over 20,000 real users are enter text on saying about Graffiti: a Newton.™ Guaranteed. “Graffiti makes a useful device How fast? twice as useful. I now use my Try over 30 Newton constantly.” words a minute. How accurate? “I can take notes at a meeting About 100%. as fast as I print… Every bit as fast And Graffiti takes only twen- as paper and pen.” ty minutes to learn. That’s “I have been using my Newton because it’s really just a simpli- much more than before because fied version of the same Graffiti makes it much easier to alphabet you learned in the first enter data on the fly.” grade. “Just received Graffiti. It’s all they claim and more. I think it’s a must for Newton.”* See for yourself how much you need Graffiti. Call 1-800-881-7256 to order Graffiti for only $79—with a 60-day money-back guarantee. From outside the USA, please call 408-848-5604. *Unsolicited user comments from Graffiti registration cards and Internet news groups. ©1994 Graffiti is a registered trademark and ShortCuts is a trademark of Palm Computing. All other trademarks are property of their respective holders.
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Optimizing a Solar Sailing Polar Mission to the Sun
    Optimizing a Solar Sailing Polar Mission to the Sun Development and Application of a New Ant Colony Optimizer Giacomo Acciarini Optimizing a Solar Sailing Polar Mission to the Sun Development and Application of a New Ant Colony Optimizer by Giacomo Acciarini to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Friday November 1, 2019 at 1:30 PM. Student number: 4754883 Project duration: January 4, 2019 – November 1, 2019 Thesis committee: Prof. Dr. P. Visser, TU Delft, chair Dr. ir. E. Mooij, TU Delft, supervisor Dr. F. Oliviero, TU Delft Dr. D. Izzo, European Space Agency This thesis is confidential and cannot be made public until December 31, 2020. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover image credit: https://www.theguardian.com/science/2015/jun/11/ spacewatch-lightsail-deploys-solar-sail, date of access: August 2019. ii Preface After months of hard work, I am proud to present to you my thesis to obtain the Master of Science degree at the faculty of Aerospace Engineering, at the Delft University of Technology. It has been an amazing experience that allowed me to come in contact with many researchers from all over the world who share my same love and interest in space exploration. I have always felt privileged and honored to be able to study such a marvelous and challenging subject. First of all, I would thus like to thank my parents, Andrea and Manuela, and my sister, Chiara, without your help and support I would have never been able to reach this point.
    [Show full text]
  • Accessionindex: TCD-SCSS-T.20170830.010 Accession Date: 30-Aug-2017 Accession By: Hans-Jurgen Kugler Object Name: Apple Newton M
    AccessionIndex: TCD-SCSS-T.20170830.010 Accession Date: 30-Aug-2017 Accession By: Hans-Jurgen Kugler Object name: Apple Newton MessagePad 2000 Vintage: c.1997 Synopsis: Apple personal digital assistant (PDA) with handwriting recognition, plus keyboard and power supply, Model: H0149, S/N: ????. Description: The Apple Newton was introduced in Aug-1993 after a 6-year gestation that also involved gestation of the company Advanced RISC Machines (ARM). It began with ambitious goals but eventually was re-imagined as a personal digital assistant (PDA). Similar devices had existed for a decade, for example the Psion Organiser was introduced in 1984, but they were not called PDAs. Not only did the Newton introduce the term PDA, but it also became the first such device to feature handwriting recognition. The Newton was championed by John Sculley, and then discontinued by his rival Steve Jobs in 1998 after the latter rejoined Apple. It is very likely that the concept led directly to the iPad and iPhone. An operating system, NewtonOS , and a language, NewtonScript , were invented for it, with garbage collection, soup storage and user-interface toolkit, specifically tuned for designs with large ROM and small RAM capacities. The original Newton MessagePad (Model H1000 or Junior ) had a 20MHz ARM 610 CPU, 4MB of ROM, 640kB of RAM, a 336 x 240 monochrome display, RS422 serial and LocalTalk interfaces, and SHARP ASK infrared communications. It also had one PCMCIA-II slot (5V or 12V). It ran NewtonOS versions 1.0-1.11, and it could be powered either from four internal AAA or NiCd rechargeable batteries or an external power supply.
    [Show full text]
  • Science Exploration and Instrumentation of the OKEANOS Mission to a Jupiter Trojan Asteroid Using the Solar Power Sail
    Planetary and Space Science xxx (2018) 1–8 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail Tatsuaki Okada a,b,*, Yoko Kebukawa c,d, Jun Aoki d, Jun Matsumoto a, Hajime Yano a, Takahiro Iwata a, Osamu Mori a, Jean-Pierre Bibring e, Stephan Ulamec f, Ralf Jaumann g, Solar Power Sail Science Teama a Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, 252-5210, Japan b The University of Tokyo, Hongo, Bunkyo, Tokyo, Japan c Faculty of Engineering, Yokohama National University, Japan d Graduate School of Science, Osaka University, Toyonaka, Japan e Institut dʼAstrophysique Spatiale, Orsay, France f German Aerospace Center, Cologne, Germany g German Aerospace Center, Berlin, Germany ARTICLE INFO ABSTRACT Keywords: An engineering mission OKEANOS to explore a Jupiter Trojan asteroid, using a Solar Power Sail is currently under Solar system formation study. After a decade-long cruise, it will rendezvous with the target asteroid, conduct global mapping of the Jupiter trojans asteroid from the spacecraft, and in situ measurements on the surface, using a lander. Science goals and enabling Solar power sail instruments of the mission are introduced, as the results of the joint study between the scientists and engineers Lander from Japan and Europe. Mass spectrometry OKEANOS 1. Introduction ocean water and life. Lucy (Levison et al., 2017), a Jupiter Trojan multi-flyby mission, has Jupiter Trojan asteroids are located in the long-term stable orbits been selected as a NASA Discovery class mission, which aims for un- around the Sun-Jupiter Lagrange points (L4 or L5) Most of them are derstanding the variation and diversity of Jupiter Trojans.
    [Show full text]
  • Biodiversity and Ecological Potential of Plum Island, New York
    Biodiversity and ecological potential of Plum Island, New York New York Natural Heritage Program i New York Natural Heritage Program The New York Natural Heritage Program The NY Natural Heritage Program is a partnership NY Natural Heritage has developed two notable between the NYS Department of Environmental online resources: Conservation Guides include the Conservation (NYS DEC) and The Nature Conservancy. biology, identification, habitat, and management of many Our mission is to facilitate conservation of rare animals, of New York’s rare species and natural community rare plants, and significant ecosystems. We accomplish this types; and NY Nature Explorer lists species and mission by combining thorough field inventories, scientific communities in a specified area of interest. analyses, expert interpretation, and the most comprehensive NY Natural Heritage also houses iMapInvasives, an database on New York's distinctive biodiversity to deliver online tool for invasive species reporting and data the highest quality information for natural resource management. planning, protection, and management. In 1990, NY Natural Heritage published Ecological NY Natural Heritage was established in 1985 and is a Communities of New York State, an all inclusive contract unit housed within NYS DEC’s Division of classification of natural and human-influenced Fish, Wildlife & Marine Resources. The program is communities. From 40,000-acre beech-maple mesic staffed by more than 25 scientists and specialists with forests to 40-acre maritime beech forests, sea-level salt expertise in ecology, zoology, botany, information marshes to alpine meadows, our classification quickly management, and geographic information systems. became the primary source for natural community NY Natural Heritage maintains New York’s most classification in New York and a fundamental reference comprehensive database on the status and location of for natural community classifications in the northeastern rare species and natural communities.
    [Show full text]