INTRODUCTION to VALUE at RISK (Var)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expected Stock Returns and Volatility Kenneth R
University of Pennsylvania ScholarlyCommons Finance Papers Wharton Faculty Research 1987 Expected Stock Returns and Volatility Kenneth R. French G. William Schwert Robert F. Stambaugh University of Pennsylvania Follow this and additional works at: http://repository.upenn.edu/fnce_papers Part of the Finance Commons, and the Finance and Financial Management Commons Recommended Citation French, K. R., Schwert, G., & Stambaugh, R. F. (1987). Expected Stock Returns and Volatility. Journal of Financial Economics, 19 (1), 3-29. http://dx.doi.org/10.1016/0304-405X(87)90026-2 At the time of publication, author Robert F. Stambaugh was affiliated with the University of Chicago. Currently, he is a faculty member at the Wharton School at the University of Pennsylvania. This paper is posted at ScholarlyCommons. http://repository.upenn.edu/fnce_papers/363 For more information, please contact [email protected]. Expected Stock Returns and Volatility Abstract This paper examines the relation between stock returns and stock market volatility. We find ve idence that the expected market risk premium (the expected return on a stock portfolio minus the Treasury bill yield) is positively related to the predictable volatility of stock returns. There is also evidence that unexpected stock market returns are negatively related to the unexpected change in the volatility of stock returns. This negative relation provides indirect evidence of a positive relation between expected risk premiums and volatility. Disciplines Finance | Finance and Financial Management Comments At the time of publication, author Robert F. Stambaugh was affiliated with the University of Chicago. Currently, he is a faculty member at the Wharton School at the University of Pennsylvania. -
Estimation and Decomposition of Downside Risk for Portfolios with Non-Normal Returns
The Journal of Risk (79–103) Volume 11/Number 2, Winter 2008/09 Estimation and decomposition of downside risk for portfolios with non-normal returns Kris Boudt Faculty of Business and Economics, Katholieke Universiteit Leuven and Lessius University College, 69 Naamsestraat, B-3000 Leuven, Belgium; email: [email protected] Brian Peterson Diamond Management & Technology Consultants, Chicago, IL; email: [email protected] Christophe Croux Faculty of Business and Economics, Katholieke Universiteit Leuven and Lessius University College, 69 Naamsestraat, B-3000 Leuven, Belgium; email: [email protected] We propose a new estimator for expected shortfall that uses asymptotic expansions to account for the asymmetry and heavy tails in financial returns. We provide all the necessary formulas for decomposing estimators of value-at-risk and expected shortfall based on asymptotic expansions and show that this new methodology is very useful for analyzing and predicting the risk properties of portfolios of alternative investments. 1 INTRODUCTION Value-at-risk (VaR) and expected shortfall (ES) have emerged as industry standards for measuring downside risk. Despite the variety of complex estimation methods based on Monte Carlo simulation, extreme value theory and quantile regression proposed in the literature (see Kuester et al (2006) for a review), many practitioners either use the empirical or the Gaussian distribution function to predict portfolio downside risk. The potential advantage of using the empirical distribution function over the hypothetical Gaussian distribution function is that only the information in the return series is used to estimate downside risk, without any distributional assumptions. The disadvantage is that the resulting estimates of VaR and ES, called historical VaR and ES, typically have a larger variation from out-of-sample obser- vations than those based on a correctly specified parametric class of distribution functions. -
Estimating Value at Risk
Estimating Value at Risk Eric Marsden <[email protected]> Do you know how risky your bank is? Learning objectives 1 Understand measures of financial risk, including Value at Risk 2 Understand the impact of correlated risks 3 Know how to use copulas to sample from a multivariate probability distribution, including correlation The information presented here is pedagogical in nature and does not constitute investment advice! Methods used here can also be applied to model natural hazards 2 / 41 Warmup. Before reading this material, we suggest you consult the following associated slides: ▷ Modelling correlations using Python ▷ Statistical modelling with Python Available from risk-engineering.org 3 / 41 Risk in finance There are 1011 stars in the galaxy. That used to be a huge number. But it’s only a hundred billion. It’s less than the national deficit! We used to call them astronomical numbers. ‘‘ Now we should call them economical numbers. — Richard Feynman 4 / 41 Terminology in finance Names of some instruments used in finance: ▷ A bond issued by a company or a government is just a loan • bond buyer lends money to bond issuer • issuer will return money plus some interest when the bond matures ▷ A stock gives you (a small fraction of) ownership in a “listed company” • a stock has a price, and can be bought and sold on the stock market ▷ A future is a promise to do a transaction at a later date • refers to some “underlying” product which will be bought or sold at a later time • example: farmer can sell her crop before harvest, -
Risk, Return, and Diversification a Reading Prepared by Pamela Peterson Drake
Risk, return, and diversification A reading prepared by Pamela Peterson Drake O U T L I N E 1. Introduction 2. Diversification and risk 3. Modern portfolio theory 4. Asset pricing models 5. Summary 1. Introduction As managers, we rarely consider investing in only one project at one time. Small businesses and large corporations alike can be viewed as a collection of different investments, made at different points in time. We refer to a collection of investments as a portfolio. While we usually think of a portfolio as a collection of securities (stocks and bonds), we can also think of a business in much the same way -- a portfolios of assets such as buildings, inventories, trademarks, patents, et cetera. As managers, we are concerned about the overall risk of the company's portfolio of assets. Suppose you invested in two assets, Thing One and Thing Two, having the following returns over the next year: Asset Return Thing One 20% Thing Two 8% Suppose we invest equal amounts, say $10,000, in each asset for one year. At the end of the year we will have $10,000 (1 + 0.20) = $12,000 from Thing One and $10,000 (1 + 0.08) = $10,800 from Thing Two, or a total value of $22,800 from our original $20,000 investment. The return on our portfolio is therefore: ⎛⎞$22,800-20,000 Return = ⎜⎟= 14% ⎝⎠$20,000 If instead, we invested $5,000 in Thing One and $15,000 in Thing Two, the value of our investment at the end of the year would be: Value of investment =$5,000 (1 + 0.20) + 15,000 (1 + 0.08) = $6,000 + 16,200 = $22,200 and the return on our portfolio would be: ⎛⎞$22,200-20,000 Return = ⎜⎟= 11% ⎝⎠$20,000 which we can also write as: Risk, return, and diversification, a reading prepared by Pamela Peterson Drake 1 ⎡⎤⎛⎞$5,000 ⎡ ⎛⎞$15,000 ⎤ Return = ⎢⎥⎜⎟(0.2) +=⎢ ⎜⎟(0.08) ⎥ 11% ⎣⎦⎝⎠$20,000 ⎣ ⎝⎠$20,000 ⎦ As you can see more immediately by the second calculation, the return on our portfolio is the weighted average of the returns on the assets in the portfolio, where the weights are the proportion invested in each asset. -
A Securitization-Based Model of Shadow Banking with Surplus Extraction and Credit Risk Transfer
A Securitization-based Model of Shadow Banking with Surplus Extraction and Credit Risk Transfer Patrizio Morganti∗ August, 2017 Abstract The paper provides a theoretical model that supports the search for yield motive of shadow banking and the traditional risk transfer view of securitization, which is consistent with the factual background that had characterized the U.S. financial system before the recent crisis. The shadow banking system is indeed an important provider of high-yield asset-backed securi- ties via the underlying securitized credit intermediation process. Investors' sentiment on future macroeconomic conditions affects the reservation prices related to the demand for securitized assets: high-willing payer (\optimistic") investors are attracted to these investment opportu- nities and offer to intermediaries a rent extraction incentive. When the outside wealth is high enough that securitization occurs, asset-backed securities are used by intermediaries to extract the highest feasible surplus from optimistic investors and to offload credit risk. Shadow banking is pro-cyclical and securitization allows risks to be spread among market participants coherently with their risk attitude. Keywords: securitization, shadow banking, credit risk transfer, surplus extraction JEL classification: E44, G21, G23 1 Introduction During the last four decades we witnessed to fundamental changes in financial techniques and financial regulation that have gradually transformed the \originate-to-hold" banking model into a \originate-to-distribute" model based on a securitized credit intermediation process relying upon i) securitization techniques, ii) securities financing transactions, and iii) mutual funds industry.1 ∗Tuscia University in Viterbo, Department of Economics and Engineering. E-mail: [email protected]. I am most grateful to Giuseppe Garofalo for his continuous guidance and support. -
The History and Ideas Behind Var
Available online at www.sciencedirect.com ScienceDirect Procedia Economics and Finance 24 ( 2015 ) 18 – 24 International Conference on Applied Economics, ICOAE 2015, 2-4 July 2015, Kazan, Russia The history and ideas behind VaR Peter Adamkoa,*, Erika Spuchľákováb, Katarína Valáškováb aDepartment of Quantitative Methods and Economic Informatics, Faculty of Operations and Economic of Transport and Communications, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia b,cDepartment of Economics, Faculty of Operations and Economic of Transport and Communications, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia Abstract The value at risk is one of the most essential risk measures used in the financial industry. Even though from time to time criticized, the VaR is a valuable method for many investors. This paper describes how the VaR is computed in practice, and gives a short overview of value at risk history. Finally, paper describes the basic types of methods and compares their similarities and differences. © 20152015 The The Authors. Authors. Published Published by Elsevier by Elsevier B.V. This B.V. is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Selection and/or and/or peer peer-review-review under under responsibility responsibility of the Organizing of the Organizing Committee Committee of ICOAE 2015. of ICOAE 2015. Keywords: Value at risk; VaR; risk modeling; volatility; 1. Introduction The risk management defines risk as deviation from the expected result (as negative as well as positive). Typical indicators of risk are therefore statistical concepts called variance or standard deviation. These concepts are the cornerstone of the amount of financial theories, Cisko and Kliestik (2013). -
Value-At-Risk Under Systematic Risks: a Simulation Approach
International Research Journal of Finance and Economics ISSN 1450-2887 Issue 162 July, 2017 http://www.internationalresearchjournaloffinanceandeconomics.com Value-at-Risk Under Systematic Risks: A Simulation Approach Arthur L. Dryver Graduate School of Business Administration National Institute of Development Administration, Thailand E-mail: [email protected] Quan N. Tran Graduate School of Business Administration National Institute of Development Administration, Thailand Vesarach Aumeboonsuke International College National Institute of Development Administration, Thailand Abstract Daily Value-at-Risk (VaR) is frequently reported by banks and financial institutions as a result of regulatory requirements, competitive pressures, and risk management standards. However, recent events of economic crises, such as the US subprime mortgage crisis, the European Debt Crisis, and the downfall of the China Stock Market, haveprovided strong evidence that bad days come in streaks and also that the reported daily VaR may be misleading in order to prevent losses. This paper compares VaR measures of an S&P 500 index portfolio under systematic risks to ones under normal market conditions using a historical simulation method. Analysis indicates that the reported VaR under normal conditions seriously masks and understates the true losses of the portfolio when systematic risks are present. For highly leveraged positions, this means only one VaR hit during a single day or a single week can wipe the firms out of business. Keywords: Value-at-Risks, Simulation methods, Systematic Risks, Market Risks JEL Classification: D81, G32 1. Introduction Definition Value at risk (VaR) is a common statistical technique that is used to measure the dollar amount of the potential downside in value of a risky asset or a portfolio from adverse market moves given a specific time frame and a specific confident interval (Jorion, 2007). -
How to Analyse Risk in Securitisation Portfolios: a Case Study of European SME-Loan-Backed Deals1
18.10.2016 Number: 16-44a Memo How to Analyse Risk in Securitisation Portfolios: A Case Study of European SME-loan-backed deals1 Executive summary Returns on securitisation tranches depend on the performance of the pool of assets against which the tranches are secured. The non-linear nature of the dependence can create the appearance of regime changes in securitisation return distributions as tranches move more or less “into the money”. Reliable risk management requires an approach that allows for this non-linearity by modelling tranche returns in a ‘look through’ manner. This involves modelling risk in the underlying loan pool and then tracing through the implications for the value of the securitisation tranches that sit on top. This note describes a rigorous method for calculating risk in securitisation portfolios using such a look through approach. Pool performance is simulated using Monte Carlo techniques. Cash payments are channelled to different tranches based on equations describing the cash flow waterfall. Tranches are re-priced using statistical pricing functions calibrated through a prior Monte Carlo exercise. The approach is implemented within Risk ControllerTM, a multi-asset-class portfolio model. The framework permits the user to analyse risk return trade-offs and generate portfolio-level risk measures (such as Value at Risk (VaR), Expected Shortfall (ES), portfolio volatility and Sharpe ratios), and exposure-level measures (including marginal VaR, marginal ES and position-specific volatilities and Sharpe ratios). We implement the approach for a portfolio of Spanish and Portuguese SME exposures. Before the crisis, SME securitisations comprised the second most important sector of the European market (second only to residential mortgage backed securitisations). -
The Cross-Section of Volatility and Expected Returns
THE JOURNAL OF FINANCE • VOL. LXI, NO. 1 • FEBRUARY 2006 The Cross-Section of Volatility and Expected Returns ANDREW ANG, ROBERT J. HODRICK, YUHANG XING, and XIAOYAN ZHANG∗ ABSTRACT We examine the pricing of aggregate volatility risk in the cross-section of stock returns. Consistent with theory, we find that stocks with high sensitivities to innovations in aggregate volatility have low average returns. Stocks with high idiosyncratic volatility relative to the Fama and French (1993, Journal of Financial Economics 25, 2349) model have abysmally low average returns. This phenomenon cannot be explained by exposure to aggregate volatility risk. Size, book-to-market, momentum, and liquidity effects cannot account for either the low average returns earned by stocks with high exposure to systematic volatility risk or for the low average returns of stocks with high idiosyncratic volatility. IT IS WELL KNOWN THAT THE VOLATILITY OF STOCK RETURNS varies over time. While con- siderable research has examined the time-series relation between the volatility of the market and the expected return on the market (see, among others, Camp- bell and Hentschel (1992) and Glosten, Jagannathan, and Runkle (1993)), the question of how aggregate volatility affects the cross-section of expected stock returns has received less attention. Time-varying market volatility induces changes in the investment opportunity set by changing the expectation of fu- ture market returns, or by changing the risk-return trade-off. If the volatility of the market return is a systematic risk factor, the arbitrage pricing theory or a factor model predicts that aggregate volatility should also be priced in the cross-section of stocks. -
Value-At-Risk (Var) Application at Hypothetical Portfolios in Jakarta Islamic Index
VALUE-AT-RISK (VAR) APPLICATION AT HYPOTHETICAL PORTFOLIOS IN JAKARTA ISLAMIC INDEX Dewi Tamara1 BINUS University International, Jakarta Grigory Ryabtsev2 BINUS University International, Jakarta ABSTRACT The paper is an exploratory study to apply the method of historical simulation based on the concept of Value at Risk on hypothetical portfolios on Jakarta Islamic Index (JII). Value at Risk is a tool to measure a portfolio’s exposure to market risk. We construct four portfolios based on the frequencies of the companies in Jakarta Islamic Index on the period of 1 January 2008 to 2 August 2010. The portfolio A has 12 companies, Portfolio B has 9 companies, portfolio C has 6 companies and portfolio D has 4 companies. We put the initial investment equivalent to USD 100 and use the rate of 1 USD=Rp 9500. The result of historical simulation applied in the four portfolios shows significant increasing risk on the year 2008 compared to 2009 and 2010. The bigger number of the member in one portfolio also affects the VaR compared to smaller member. The level of confidence 99% also shows bigger loss compared to 95%. The historical simulation shows the simplest method to estimate the event of increasing risk in Jakarta Islamic Index during the Global Crisis 2008. Keywords: value at risk, market risk, historical simulation, Jakarta Islamic Index. 1 Faculty of Business, School of Accounting & Finance - BINUS Business School, [email protected] 2 Alumni of BINUS Business School Tamara, D. & Ryabtsev, G. / Journal of Applied Finance and Accounting 3(2) 153-180 (153 INTRODUCTION Modern portfolio theory aims to allocate assets by maximising the expected risk premium per unit of risk. -
CHAPTER 7 Smart Excel Appendix Appendix Contents
CHAPTER 7 Smart Excel Appendix Appendix Contents Excel prerequisites Relative, absolute, and mixed cell references, covered in Chapter 4 Learn to solve for Expected stock returns using the historical approach Expected stock returns using the probabilistic approach Expected stock returns using the CAPM approach Expected portfolio return and risk measures Use the Smart Excel spreadsheets and animated tutorials at the Smart Finance section of http://www.cengage.co.uk/megginson. EXCEL PREREQUISITES There are no new Excel features used in this appendix, but there is extensive use of absolute and mixed cell references. This material is reviewed and extended on the Excel Prereqs tab of the Chapter 7 file located at the Smart Finance Web site. EXPECTED RETURN Problem: You are considering investing in four companies and want to determine the expected return on each investment, if held on its own, over the next year. You are interested in comparing the expected return using three approaches: historical, probabilistic, and CAPM. You also want to find the return on a portfolio invested equally in each of the four investments. Last, you want to assess the risk of the potential investments. Information on the investments and current market conditions is provided here and below. You have return information for the 1964–2003 period. The current Treasury bill rate is 2.2%, and the average Treasury bill return over the period 1964–2003 was 4.1%. The expected return on a market portfolio is 11%. You want to consider returns under three possible economic scenarios over the next year: weak economy, average economy, strong economy. -
Capturing Downside Risk in Financial Markets: the Case of the Asian Crisis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics Journal of International Money and Finance 18 (1999) 853–870 www.elsevier.nl/locate/econbase Capturing downside risk in financial markets: the case of the Asian Crisis Rachel A.J. Pownall *, Kees G. Koedijk Faculty of Business Administration, Financial Management, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands and CEPR Abstract Using data on Asian equity markets, we observe that during periods of financial turmoil, deviations from the mean-variance framework become more severe, resulting in periods with additional downside risk to investors. Current risk management techniques failing to take this additional downside risk into account will underestimate the true Value-at-Risk with greater severity during periods of financial turnoil. We provide a conditional approach to the Value- at-Risk methodology, known as conditional VaR-x, which to capture the time variation of non-normalities allows for additional tail fatness in the distribution of expected returns. These conditional VaR-x estimates are then compared to those based on the RiskMetrics method- ology from J.P. Morgan, where we find that the model provides improved forecasts of the Value-at-Risk. We are therefore able to show that our conditional VaR-x estimates are better able to capture the nature of downside risk, particularly crucial in times of financial crises. 1999 Elsevier Science Ltd. All rights reserved. Keywords: Financial regulation; Value-at-risk; Riskmetrics; Extreme value theory 1. Introduction A number of Asian economies have recently been characterized by highly volatile financial markets, which when coupled with high returns, should have been seen as an attractive avenue down which one could diversify portfolios.