Estimation and Decomposition of Downside Risk for Portfolios with Non-Normal Returns
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Post-Modern Portfolio Theory Supports Diversification in an Investment Portfolio to Measure Investment's Performance
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Rasiah, Devinaga Article Post-modern portfolio theory supports diversification in an investment portfolio to measure investment's performance Journal of Finance and Investment Analysis Provided in Cooperation with: Scienpress Ltd, London Suggested Citation: Rasiah, Devinaga (2012) : Post-modern portfolio theory supports diversification in an investment portfolio to measure investment's performance, Journal of Finance and Investment Analysis, ISSN 2241-0996, International Scientific Press, Vol. 1, Iss. 1, pp. 69-91 This Version is available at: http://hdl.handle.net/10419/58003 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend -
Portfolio Construction and Risk Management: Theory Versus Practice
The current issue and full text archive of this journal is available on Emerald Insight at: www.emeraldinsight.com/2531-0488.htm Portfolio Portfolio construction and construction risk management: theory versus practice Stefan Colza Lee and William Eid Junior 345 Fundação Getulio Vargas, São Paulo/SP, Brazil Received 17 November 2016 Accepted 18 July 2017 Abstract Purpose – This paper aims to identify a possible mismatch between the theory found in academic research and the practices of investment managers in Brazil. Design/methodology/approach – The chosen approach is a field survey. This paper considers 78 survey responses from 274 asset management companies. Data obtained are analyzed using independence tests between two variables and multiple regressions. Findings – The results show that most Brazilian investment managers have not adopted current best practices recommended by the financial academic literature and that there is a significant gap between academic recommendations and asset management practices. The modern portfolio theory is still more widely used than the post-modern portfolio theory, and quantitative portfolio optimization is less often used than the simple rule of defining a maximum concentration limit for any single asset. Moreover, the results show that the normal distribution is used more than parametrical distributions with asymmetry and kurtosis to estimate value at risk, among other findings. Originality/value – This study may be considered a pioneering work in portfolio construction, risk management and performance evaluation in Brazil. Although academia in Brazil and abroad has thoroughly researched portfolio construction, risk management and performance evaluation, little is known about the actual implementation and utilization of this research by Brazilian practitioners. -
Capturing Downside Risk in Financial Markets: the Case of the Asian Crisis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics Journal of International Money and Finance 18 (1999) 853–870 www.elsevier.nl/locate/econbase Capturing downside risk in financial markets: the case of the Asian Crisis Rachel A.J. Pownall *, Kees G. Koedijk Faculty of Business Administration, Financial Management, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands and CEPR Abstract Using data on Asian equity markets, we observe that during periods of financial turmoil, deviations from the mean-variance framework become more severe, resulting in periods with additional downside risk to investors. Current risk management techniques failing to take this additional downside risk into account will underestimate the true Value-at-Risk with greater severity during periods of financial turnoil. We provide a conditional approach to the Value- at-Risk methodology, known as conditional VaR-x, which to capture the time variation of non-normalities allows for additional tail fatness in the distribution of expected returns. These conditional VaR-x estimates are then compared to those based on the RiskMetrics method- ology from J.P. Morgan, where we find that the model provides improved forecasts of the Value-at-Risk. We are therefore able to show that our conditional VaR-x estimates are better able to capture the nature of downside risk, particularly crucial in times of financial crises. 1999 Elsevier Science Ltd. All rights reserved. Keywords: Financial regulation; Value-at-risk; Riskmetrics; Extreme value theory 1. Introduction A number of Asian economies have recently been characterized by highly volatile financial markets, which when coupled with high returns, should have been seen as an attractive avenue down which one could diversify portfolios. -
Exposure-Based Cash-Flow-At-Risk Under Macroeconomic Uncertainty
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics THE RESEARCH INSTITUTE OF INDUSTRIAL ECONOMICS Working Paper No. 635, 2005 Exposure-based Cash-Flow-at-Risk under Macroeconomic Uncertainty by Niclas Andrén, Håkan Jankensgård and Lars Oxelheim IUI, The Research Institute of Industrial Economics P.O. Box 5501 SE-114 85 Stockholm Sweden Exposure-based Cash-Flow-at-Risk under Macroeconomic Uncertainty Forthcoming in Journal of Applied Corporate Finance, Summer Issue, 2005 Authors Niclas Andrén, Department of Business Administration, Lund University, P.O. Box 7080, 220 07 Lund, Sweden.A Håkan Jankensgård, Department of Business Administration, Lund University, P.O. Box 7080, 220 07 Lund, Sweden. Lars Oxelheim, Lund Institute of Economic Research, Lund University, P.O.Box 7080, 220 07 Lund, Sweden and the Research Institute of Industrial Economics (IUI), P.O.Box 5501, 114 53 Stockholm, Sweden.A Abstract In this paper we derive an exposure-based measure of Cash-Flow-at-Risk (CFaR). Existing approaches to calculating CFaR either only focus on cash flow conditional on market changes or neglect market-risk exposures entirely. We argue here that an essential first step in a risk- management program is to quantify cash-flow exposure to macroeconomic and market risk. This is the information relevant for corporate hedging. However, it is the total level of cash flow in relation to the firm’s capital needs that is the information relevant for decision- making. The firm’s overall CFaR is then calculated based on an assessment of corporate risk exposure. -
Applied Quantitative Finance
Applied Quantitative Finance Wolfgang H¨ardle Torsten Kleinow Gerhard Stahl In cooperation with G¨okhanAydınlı, Oliver Jim Blaskowitz, Song Xi Chen, Matthias Fengler, J¨urgenFranke, Christoph Frisch, Helmut Herwartz, Harriet Holzberger, Steffi H¨ose, Stefan Huschens, Kim Huynh, Stefan R. Jaschke, Yuze Jiang Pierre Kervella, R¨udigerKiesel, Germar Kn¨ochlein, Sven Knoth, Jens L¨ussem,Danilo Mercurio, Marlene M¨uller,J¨ornRank, Peter Schmidt, Rainer Schulz, J¨urgenSchumacher, Thomas Siegl, Robert Wania, Axel Werwatz, Jun Zheng June 20, 2002 Contents Preface xv Contributors xix Frequently Used Notation xxi I Value at Risk 1 1 Approximating Value at Risk in Conditional Gaussian Models 3 Stefan R. Jaschke and Yuze Jiang 1.1 Introduction . 3 1.1.1 The Practical Need . 3 1.1.2 Statistical Modeling for VaR . 4 1.1.3 VaR Approximations . 6 1.1.4 Pros and Cons of Delta-Gamma Approximations . 7 1.2 General Properties of Delta-Gamma-Normal Models . 8 1.3 Cornish-Fisher Approximations . 12 1.3.1 Derivation . 12 1.3.2 Properties . 15 1.4 Fourier Inversion . 16 iv Contents 1.4.1 Error Analysis . 16 1.4.2 Tail Behavior . 20 1.4.3 Inversion of the cdf minus the Gaussian Approximation 21 1.5 Variance Reduction Techniques in Monte-Carlo Simulation . 24 1.5.1 Monte-Carlo Sampling Method . 24 1.5.2 Partial Monte-Carlo with Importance Sampling . 28 1.5.3 XploRe Examples . 30 2 Applications of Copulas for the Calculation of Value-at-Risk 35 J¨ornRank and Thomas Siegl 2.1 Copulas . 36 2.1.1 Definition . -
Return to Riskmetrics: the Evolution of a Standard
Return to RiskMetrics: The Evolution of a Standard Jorge Mina and Jerry Yi Xiao Introduction by Christopher C. Finger RiskMetrics www.riskmetrics.com 44 Wall St. New York, NY 10005 Return to RiskMetrics: The Evolution of a Standard, April 2001. Copyright © 2001 RiskMetrics Group, Inc. All rights reserved. Certain risk measurement technology of RiskMetrics Group, Inc. is patent pending. RiskMetrics, RiskManager, CreditMetrics, CreditManager, LongRun, CorporateMetrics, and DataMetrics, among others, are trademarks or service marks owned by or licensed to RiskMetrics Group, Inc. in the United States and other countries. RiskMetrics Group, Inc. disclaims any and all warranties as to any results to be obtained from any use of the content or methodology provided by RiskMetrics Group, Inc. or any representation or warranty that such content or methodology are in any way guidance for any investor or investors in general to determine the suitability or desirability of the investment in a particular security, or securities in general. RiskMetrics Group, Inc. does not guarantee the sequence, timeliness, accuracy, completeness, or continued availability of such content or methodology. Such content and methodology are based on historical observations and should not be relied upon to predict future market movements. The information contained in this document is believed to be reliable, but RiskMetrics Group does not guarantee its completeness or accuracy. Opinions and estimates constitute our judgment and are subject to change without notice. Foreword This document is an update and restatement of the mathematical models in the 1996 RiskMetrics Technical Document, now known as RiskMetrics Classic. RiskMetrics Classic was the fourth edition, with the original document having been published in 1994. -
Think on the Downside Multifactor Asset Pricing Models Based on Downside Risk and Their Performance Relative to the CAPM, FF3F and Momentum
MSc Thesis, Fall 2012 Stockholm School of Economics Department of Finance Think on the Downside Multifactor asset pricing models based on downside risk and their performance relative to the CAPM, FF3F and Momentum Author: Daniil Bargman1 Supervisor: Roméo Tédongap Abstract This paper introduces two new measures of asset performance in a downside risk-reward framework. The first measure, Omega-H, is an extension of the Omega ratio from Keating and Shadwick (2002a) that captures an asset’s idiosyncratic downside risk and upside potential. The second measure, the Vega, captures the asset’s systematic downside risk and upside potential. The two measures are used to construct two factor portfolios which act as an extension of the CAPM, thus forming a three-factor model incorporating downside risk. As a control, an alternative three- factor model is introduced that extends the CAPM to include factors formed on asset co-skewness and co-kurtosis with the market. The two models, called MOV (Market-Omega-Vega) and MCC (Market-Co-skewness-Co-kurtosis), are tested in a time series and in the cross-section together with the CAPM, the Fama-French three-factor model, and the Fama-French three-factor model extended by Momentum (Carhart, 1997). The Co-skewness and Co-kurtosis portfolios are priced by the other factor models, and the MCC model performs poorly in the cross-section. At the same time, the MOV model outperforms the FF3F model in the cross-section and prices the Momentum factor. Further tests show that the performance of all factor models in the cross-section is conditional on the market return for the period, consistent with conditionally varying risk premia. -
The Use of Downside Risk Measures in Portfolio Construction and Evaluation by Dr. Brian J. Jacobsen Assistant Professor Business
The Use of Downside Risk Measures in Portfolio Construction and Evaluation By Dr. Brian J. Jacobsen Assistant Professor Business Economics Wisconsin Lutheran College And Chief Economist Capital Market Consultants Wisconsin Lutheran College 8800 West Bluemound Rd. Milwaukee, WI 53226 414-443-8936 [email protected] JEL Codes: G11 Abstract One of the challenges of using downside risk measures as an alternative constructor of portfolios and diagnostic devise is in their computational intensity. This paper outlines how to use downside risk measures to construct efficient portfolios and to evaluate portfolio performance in light of investor loss aversion. Further, this paper advocates the use of distributional scaling to forecast price movement distributions. This paper could be subtitled, “Strategic Asset Allocation is Dead,” in light of the simulation results. What is so efficient about the “efficient frontier?” The standard method of constructing the set of efficient portfolios, from which investors are to choose from, is to use the Markowitz (1952) model which defines risk as the standard deviation of a portfolio. Markowitz (1952) recognized that there are many different ways to define risk, but the standard deviation (or variance) of a portfolio is easier to calculate than alternatives. All portfolio optimization problems can be described as a sequence of mathematical programming problems. First, an analyst must construct a set of efficient frontiers, which are portfolios that maximize the expected return for any given level of risk over different investment horizons. Second, for each period, an investor’s utility is to be maximized by picking the portfolio that the investor most prefers (in terms of risk-return combinations). -
Evaluating the Riskmetrics Methodology in Measuring Volatility
Evaluating the RiskMetrics Methodology in Measuring Volatility and Value-at-Risk in Financial Markets Szil´ard Pafka a,1, Imre Kondor a,b,2 aDepartment of Physics of Complex Systems, E¨otv¨os University, P´azm´any P. s´et´any 1/a, H-1117 Budapest, Hungary bMarket Risk Research Department, Raiffeisen Bank, Akad´emia u. 6, H-1054 Budapest, Hungary Abstract We analyze the performance of RiskMetrics, a widely used methodology for mea- suring market risk. Based on the assumption of normally distributed returns, the RiskMetrics model completely ignores the presence of fat tails in the distribution function, which is an important feature of financial data. Nevertheless, it was com- monly found that RiskMetrics performs satisfactorily well, and therefore the tech- nique has become widely used in the financial industry. We find, however, that the success of RiskMetrics is the artifact of the choice of the risk measure. First, the outstanding performance of volatility estimates is basically due to the choice of a very short (one-period ahead) forecasting horizon. Second, the satisfactory perfor- mance in obtaining Value-at-Risk by simply multiplying volatility with a constant factor is mainly due to the choice of the particular significance level. Key words: RiskMetrics, market risk, risk measurement, volatility, Value-at-Risk 1 Introduction arXiv:cond-mat/0103107v1 [cond-mat.stat-mech] 5 Mar 2001 Risk management is one of the top priorities in the financial industry today. A huge effort is being invested into developing reliable risk measurement meth- ods and sound risk management techniques by academics and practitioners alike. -
Post-Modern Portfolio Theory Comes of Age
POST-MODERN PORTFOLIO THEORY COMES OF AGE Brian M. Rom Kathleen W. Ferguson Sponsor-Software Systems, Inc. It has been a generation since Harry Markowitz laid the foundations and built much of the structure of what we now know as Modern Portfolio Theory (“MPT”). The greatest contribution of MPT is the establishment of a formal risk/return framework for investment decision-making. By defining investment risk in quantitative terms, Markowitz gave investors a mathematical approach to asset selection and portfolio management. But as Markowitz himself and William Sharpe, the other giant of MPT, acknowledge, there are important limitations to the original MPT formulation. Under certain conditions, the mean-variance approach can be shown to lead to unsatisfactory predictions of behavior. Markowitz suggeststhat a model based on the semi-variance would be preferable; in light of the formidable computational problems, however, he bases his analysis on the variance and standard deviation.’ The causesof these “unsatisfactory” aspectsof MPT are the assumptions that 1) variance of portfolio returns is the correct measureof investment risk, and 2) that the investment returns of all securities and assetscan be adequately represented by the normal distribution. Stated another way, MPT is limited by measuresof risk and return that do not always represent the realities of the investment markets. Fortunately, recent advancesin portfolio and financial theory, coupled with today’s increased computing power, have overcome these limitations. The resulting expanded risk/return paradigm is known as Post-Modern Portfolio Theory (“PMPT”). MPT thus becomes nothing more than a special (symmetrical) case of the PMPT formulation. This article discussesreturn and risk under MPT and PMPT and demonstratesan approach to asset allocation basedon the more general rules permitted by PMPT. -
Var Vs Cvar in Risk Management and Optimization Stan Uryasev
VaR vs CVaR in Risk Management and Optimization Stan Uryasev Joint presentation with Sergey Sarykalin, Gaia Serraino and Konstantin Kalinchenko Risk Management and Financial Engineering Lab, University of Florida and American Optimal Decisions 1 Agenda ` Compare Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) ` definitions of VaR and CVaR ` basic properties of VaR and CVaR ` axiomatic definition of Risk and Deviation Measures ` reasons affecting the choice between VaR and CVaR ` risk management/optimization case studies conducted with Portfolio Safeguard package by AORDA.com 2 Risk Management ` Risk Management is a procedure for shaping a loss distribution ` Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are popular function for measuring risk ` The choice between VaR and CVaR is affected by: ` differences in mathematical properties, ` stability of statistical estimation, ` simplicity of optimization procedures, ` acceptance by regulators ` Conclusions from these properties are contradictive 3 Risk Management ` Key observations: ` CVaR has superior mathematical properties versus VaR ` Risk management with CVaR functions can be done very efficiently ` VaR does not control scenarios exceeding VaR ` CVaR accounts for losses exceeding VaR ` Deviation and Risk are different risk management concepts ` CVaR Deviation is a strong competitor to the Standard Deviation 4 VaR and CVaR Representation 5 VaR, CVaR, CVaR+ and CVaR- CVaR+ Risk CVaR CVaR- VaR x 6 Value-at-Risk X a loss random variable α ∈ [1,0] VaR( )α X= min{ zX | F≥ -
Financial Risk Forecasting Chapter 4 Risk Measures
What is risk? Value–at–Risk Issues Coherence Manipulation ES Scaling Regulations Financial Risk Forecasting Chapter 4 Risk Measures Jon Danielsson ©2021 London School of Economics To accompany Financial Risk Forecasting www.financialriskforecasting.com Published by Wiley 2011 Version 6.0, August 2021 Financial Risk Forecasting © 2011-2021 Jon Danielsson, page 1 of 99 What is risk? Value–at–Risk Issues Coherence Manipulation ES Scaling Regulations Financial Risk Forecasting © 2011-2021 Jon Danielsson, page 2 of 99 What is risk? Value–at–Risk Issues Coherence Manipulation ES Scaling Regulations The focus of this chapter is on Defining and measuring risk • Volatility • VaR (Value–at–Risk) • ES (Expected Shortfall) • Holding periods • Scaling and the square–root–of–time • Financial Risk Forecasting © 2011-2021 Jon Danielsson, page 3 of 99 What is risk? Value–at–Risk Issues Coherence Manipulation ES Scaling Regulations Notation p Probability Q Profit and loss q Observed profit and loss w Vector of portfolio weights X and Y Refer to two different assets ϕ(.) Risk measure ϑ Portfolio value Financial Risk Forecasting © 2011-2021 Jon Danielsson, page 4 of 99 What is risk? Value–at–Risk Issues Coherence Manipulation ES Scaling Regulations Defining Risk Financial Risk Forecasting © 2011-2021 Jon Danielsson, page 5 of 99 What is risk? Value–at–Risk Issues Coherence Manipulation ES Scaling Regulations General Definition No universal definition of what constitutes risk • On a very general level, financial risk could be defined as • “the chance of losing a part