Solstice OSI 8.1 Communication Platform Administrator's Guide

Total Page:16

File Type:pdf, Size:1020Kb

Solstice OSI 8.1 Communication Platform Administrator's Guide SunLink ® OSI 8.1 Communication Platform Administrator’s Guide A Sun Microsystems, Inc. Business 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. Part No.: 801-4975-13 Revision A, March 1995 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font software in this product is protected by copyright and licensed from Sun’s font suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Sun, the Sun logo, Sun Microsystems, Solaris and SunLink are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks of their respective owners. All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster, SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements. X Window System is a product of the Massachusetts Institute of Technology. THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME. Please Recycle Contents 1. Software Architecture Overview . 1 OSI Reference Model . 1 Lower Layer Infrastructure . 3 Physical Layer. 3 Data Link Layer . 3 Network Layer . 3 Transport Layer . 4 Upper Layer Infrastructure . 4 Session Layer . 4 Presentation Layer . 4 Application Layer. 4 Introducing SunLink OSI 8.1 . 4 Components of SunLink OSI 8.1 . 6 Stack Boot File. 6 Startup Daemon . 6 iii Configuration File . 6 STREAMS Modules . 6 OSI Administration Tool . 7 Chapter Summary . 7 2. Using the OSI Administration Tool. 9 Before You Start . 9 RPC-Based Utilities . 10 Starting the Stack . 10 Starting ositool. 11 Introducing the OSI Administration Tool (ositool) . 12 ositool Main Window . 12 Save . 13 Command Menu . 14 Stack Manager . 15 ES-IS Configuration . 17 Network Layer Addresses . 18 Route Manager. 19 Configuration Steps . 20 Chapter Summary . 20 3. Using Stack Manager . 21 Stack Parameters Summary . 22 Stack Manager Main Window . 23 Presentation & ACSE Entity . 24 Session Entity . 26 iv SunLink OSI 8.1 Communication Platform Administrator’s Guide—March 1995 Additional Session Options . 29 Transport & CLNS Entity . 30 Additional Transport & CLNS Options. 33 Transport over CONS Entity . 36 Additional Transport over CONS Options . 40 CONS Entity. 43 Configuration Menu . 45 Application Selectors Window. 47 SAP List . 49 Device Configuration . 51 LAN Device. 52 X.25 Subnetwork Device . 53 RFC1006 Subnetwork Device . 55 Resource Configuration . 56 Chapter Summary . 59 4. End System to Intermediate System Configuration . 61 Subnet List . 63 Subnet ID . 64 Route Table Size Options . 65 CLNP Options . 66 ES-IS Options . 68 Chapter Summary . 71 5. Network Layer Addresses . 73 NSAP Family Window . 74 Contents v nbs Address Structure . 75 osinet Address Structure. 77 us-gosip-v1 Address Structure. 79 us-gosip-v2 Address Structure. 81 user-defined Address Structure . 83 hex-pub Address Structure. 85 free-form Address Structure. 86 Chapter Summary . 87 6. Route Manager . 89 Route Manager Main Window . 89 Host Route Configuration. 92 Prefix Routes. 94 Remote X.25 Features . 98 Chapter Summary . 101 7. Addressing . 103 Overview of OSI Addressing . 103 Subnetwork Point of Attachment (SNPA) . 105 Network Service Access Point (NSAP) . 106 Initial Domain Part (IDP) . 107 Domain Specific Part (DSP). 110 NSAP Address Field Lengths and Syntax. 110 Types of NSAP Addresses. 112 Selectors . 115 Network Entity Title (NET) . 116 vi SunLink OSI 8.1 Communication Platform Administrator’s Guide—March 1995 Chapter Summary . 116 8. Dynamic Routing . 117 ES-IS Protocol . 117 How ES-IS Works. 118 End System Responsibilities. 120 Intermediate System Responsibilities . ..
Recommended publications
  • Draft Stable Implementation Agreement for Open
    NBS PUBLICATIONS U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Institute for Computer Sciences and Technology A 11 IDE 7 E T M NBSIR 87-3674 Draft Stable Implementation Agreements for Open Systems Interconnection Protocols NBS Workshop for Implementors of Open Systems Interconnection Version 1 Edition 0 October 1987 DRAFT STABLE IMPLEMENTATION AGREEMENTS Based on the Proceeding of the NBS/OSI Implementor’s Workshop Plenary Assembly Held October 9, 1987 National Bureau of Standards Gaithersburg, MD 20899 U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS — QC 100 - U 5 6 87-3674 1987 C • 2 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Institute for Computer Sciences and Technology Research Information Center NBSIR 87-3674 National r>ureau of Standards Gaithersburg, Maryland 20899 A) BSc DRAFT STABLE IMPLEMENTATION QCtoo AGREEMENTS FOR OPEN SYSTEMS < USy INTERCONNECTION PROTOCOLS m., 1921 c.> NBS Workshop for Implementors of Open Systems Interconnection Version 1 Edition 0 October 1987 DRAFT STABLE IMPLEMENTATION AGREEMENTS Based on the Proceeding of the NBS/OSI Implementor’s Workshop Plenary Assembly Held October 9, 1987 National Bureau of Standards Gaithersburg, MD 20899 U.S. DEPARTMENT OF COMMERCE, C. William Verity, Acting Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director 21 Table of Contents 1. GENERAL INFORMATION 1 1.1 PURPOSE OF THIS DOCUMENT * 1 1.2 PURPOSE OF THE WORKSHOP 1 1.3 WORKSHOP ORGANIZATION 1 2. SUB NETWORKS 1 2.1 LOCAL AREA NETWORKS 1 2.1.1 IEEE 802.2 LOGICAL LINK CONTROL 1 2.1.2 IEEE 802.3 CSMA/CD ACCESS METHOD 1 2.1.3 IEEE 802.4 TOKEN BUS ACCESS METHOD 1 2.1.4 IEEE 802.5 Token Ring Access Method 3 2.2 WIDE AREA NETWORKS 4 2.2.1 CCITT RECOMMENDATION X.25 4 2.3 PRIVATE SUBNETWORKS 4 2.3.1 PRIVATE SUBNETWORKS' 4 3.
    [Show full text]
  • QUESTION 20-1/2 Examination of Access Technologies for Broadband Communications
    International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies eport on broadband access technologies QUESTION 20-1/2 R International Telecommunication Union ITU-D THE STUDY GROUPS OF ITU-D The ITU-D Study Groups were set up in accordance with Resolutions 2 of the World Tele- communication Development Conference (WTDC) held in Buenos Aires, Argentina, in 1994. For the period 2002-2006, Study Group 1 is entrusted with the study of seven Questions in the field of telecommunication development strategies and policies. Study Group 2 is entrusted with the study of eleven Questions in the field of development and management of telecommunication services and networks. For this period, in order to respond as quickly as possible to the concerns of developing countries, instead of being approved during the WTDC, the output of each Question is published as and when it is ready. For further information: Please contact Ms Alessandra PILERI Telecommunication Development Bureau (BDT) ITU Place des Nations CH-1211 GENEVA 20 Switzerland Telephone: +41 22 730 6698 Fax: +41 22 730 5484 E-mail: [email protected] Free download: www.itu.int/ITU-D/study_groups/index.html Electronic Bookshop of ITU: www.itu.int/publications © ITU 2006 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies DISCLAIMER This report has been prepared by many volunteers from different Administrations and companies.
    [Show full text]
  • Medium Access Control Layer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access ..
    [Show full text]
  • Af-Saa-Api-Dlpi-0091.000
    Technical Committee Native ATM Services Data Link Provider Interface (DLPI) Addendum Version 1.0 AF-SAA-API-DLPI-0091.000 February, 1998 af-saa-api-dlpi-0091.000 Native ATM Services DLPI Addendum Version 1.0 © 1998 by The ATM Forum. The ATM Forum hereby grants its members the limited right to reproduce in whole, but not in part, this specification for its members internal use only and not for further distribution. This right shall not be, and is not, transferable. All other rights reserved. Except as expressly stated in this notice, no part of this document may be reproduced or transmitted in any form or by any means, or stored in any information storage and retrieval system, without the prior written permission of The ATM Forum. The information in this publication is believed to be accurate as of its publication date. Such information is subject to change without notice and The ATM Forum is not responsible for any errors. The ATM Forum does not assume any responsibility to update or correct any information in this publication. Notwithstanding anything to the contrary, neither The ATM Forum nor the publisher make any representation or warranty, expressed or implied, concerning the completeness, accuracy, or applicability of any information contained in this publication. No liability of any kind shall be assumed by The ATM Forum or the publisher as a result of reliance upon any information contained in this publication. The receipt or any use of this document or its contents does not in any way create by implication or otherwise: • Any
    [Show full text]
  • Medium Access Control Sublayer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Prof. Dr. Mesut Güneş Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Distributed, embedded Systems Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (()MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus ● Network Infrastructure ● Token Ring ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Prof. Dr. Mesut Güneş ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Prof. Dr. Mesut Güneş ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● PtProtoco ls use dtdtd to determ ine w ho gets next access to the channel Data Link Layer ● Medium Access Control (()MAC) sublay er Phy sical Laye r Prof. Dr. Mesut Güneş ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Rang e ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access - LLC IEEE 802.2 Logical Link Control ..
    [Show full text]
  • Chapter 2. Network Interfaces
    Chapter 2. Network interfaces This chapter provides an overview of the protocols and interfaces that allow TCP/IP traffic to flow over various kinds of physical networks. TCP/IP, as an internetwork protocol suite, can operate over a vast number of physical networks. The most common and widely used of these protocols is, of course, Ethernet. The number of network protocols that have provisions for natively supporting IP is clearly beyond the scope of this redbook. However, we provide a summary of some of the different networks most commonly used with TCP/IP. 2.1 Ethernet and IEEE 802.x Local Area Networks (LANs) Two frame formats can be used on the Ethernet coaxial cable: 1. The standard issued in 1978 by Xerox Corporation, Intel Corporation and Digital Equipment Corporation, usually called Ethernet (or DIX Ethernet). 2. The international IEEE 802.3 standard, a more recently defined standard. See Figure 6 for more details. The difference between the two standards is in the use of one of the header fields, which contains a protocol-type number for Ethernet and the length of the data in the frame for IEEE 802.3. Dest Source Preamble Addr Addr Type Info FCS 8bytes 6bytes 6bytes 2bytes 46<=N<=1500 bytes 4 bytes Ethernet IEEE 802.2 header Dest Source Preamble SFD Addr Addr Length DSAP SSAP Ctrl Info FCS 7 bytes1byte 6 bytes 6 bytes 2 bytes 1byte 1byte 1byte variable 4bytes IEEE 802.3 3376\3376F2AE Figure 6. ARP - Frame formats for Ethernet and IEEE 802.3 • The type field in Ethernet is used to distinguish between different protocols running on the coaxial cable, and allows their coexistence on the same physical cable.
    [Show full text]
  • Computer Networks(2015 Pattern) Unit I- Physical Layer
    Computer Networks(2015 Pattern) Unit I- Physical Layer By Prof. B.A.Khivsara Note: Material for this presentations are taken from Internet and books and only being used for student reference Outline Introduction of LAN; MAN; WAN; PAN, Ad-hoc Network Topologies Network Architectures OSI Model TCP/IP Model Design issues for Layers Transmission Mediums Network Devices Manchester and Differential Manchester Encodings; IEEE802.11: Frequency Hopping (FHSS) and Direct Sequence (DSSS) Introduction of Network Network: A network is defined as a group of two or more computer systems linked together. Types of Networks: LAN MAN WAN PAN Ad-hoc Network Local Area Networks (LAN) floor/building-wide single communication medium no routing, broadcast segments connected by switches or hubs high bandwidth, low latency Ethernet - 10Mbps, 100Mbps, 1Gbps no latency guarantees LAN- Local Area Network It is designed for small physical areas such as an office, group of buildings or a factory. LANs are used widely as it is easy to design and to troubleshoot. Personal computers and workstations are connected to each other through LANs. We can use different types of topologies through LAN, these are Star, Ring, Bus, Tree etc. LAN can be a simple network like connecting two computers, to share files and network among each other while it can also be as complex as interconnecting an entire building. LAN networks are also widely used to share resources like printers, shared hard-drive etc. LAN Diagram LAN Advantages • Cost reductions through sharing of information and databases, resources and network services. • Increased information exchange between different departments in an organization, or between individuals.
    [Show full text]
  • MAC Layer Protocols for Internet of Things: a Survey
    future internet Review MAC Layer Protocols for Internet of Things: A Survey Luiz Oliveira 1, Joel J. P. C. Rodrigues 1,2,3,* , Sergei A. Kozlov 3 , Ricardo A. L. Rabêlo 4 and Victor Hugo C. de Albuquerque 5 1 National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí MG 37540-000, Brazil; [email protected] 2 Instituto de Telecomunicações, 1049-001 Lisboa, Portugal 3 International Institute of Photonics and Optoinformatics, ITMO University, 197101 Saint Petersburg, Russia; [email protected] 4 Department of Computing (DC), Graduate Program in Computer Science (PPGCC), Federal University of Piaui (UFPI), Ministro Petronio Portela Campus, Teresina 64049-550, Piaui, Brazil; [email protected] 5 Graduate Program in Applied Informatics, University of Fortaleza (UNIFOR), Fortaleza CE 60811-905, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-35-3471-9200 Received: 27 November 2018; Accepted: 18 December 2018; Published: 14 January 2019 Abstract: Due to the wide variety of uses and the diversity of features required to meet an application, Internet of Things (IoT) technologies are moving forward at a strong pace to meet this demand while at the same time trying to meet the time-to-market of these applications. The characteristics required by applications, such as coverage area, scalability, transmission data rate, and applicability, refer to the Physical and Medium Access Control (MAC) layer designs of protocols. This paper presents a deep study of medium access control (MAC) layer protocols that are used in IoT with a detailed description of such protocols grouped (by short and long distance coverage).
    [Show full text]
  • UNIT II DATA-LINK LAYER & MEDIA ACCESS Introduction – Link-Layer
    UNIT II DATA-LINK LAYER & MEDIA ACCESS Introduction – Link-Layer Addressing – DLC Services – Data-Link Layer Protocols – HDLC – PPP - Media Access Control - Wired LANs: Ethernet - Wireless LANs – Introduction – IEEE 802.11, Bluetooth – Connecting Devices. 2.1 Introduction What is DLL (Data Link Layer)? The Data Link Layer is the second layer in the OSI model, above the Physical Layer, which ensures that the error free data is transferred between the adjacent nodes in the network. It breaks the datagram passed down by above layers and converts them into frames ready for transfer. This is called Framing. It provides two main functionalities Reliable data transfer service between two peer network layers Flow Control mechanism which regulates the flow of frames such that data congestion is not there at slow receivers due to fast senders. 2.2 LINK-LAYER ADDRESSING In a connectionless internetwork such as the Internet we cannot make a datagram reach its destination using only IP addresses. The reason is that each datagram in the Internet, from the same source host to the same destination host, may take a different path. The source and destination IP addresses define the two ends but cannot define which links the datagram should pass through. Three Types of addresses Some link-layer protocols define three types of addresses: unicast, multicast, and broadcast. Unicast Address Each host or each interface of a router is assigned a unicast address. Unicasting means one-to-one communication. A frame with a unicast address destination is destined only for one entity in the link. A3:34:45:11:92:F1 Multicast Address Some link-layer protocols define multicast addresses.
    [Show full text]
  • Asynchronous Transfer Mode (ATM)
    ATM v1.03 – Aaron Balchunas 1 - Asynchronous Transfer Mode - Asynchronous Transfer Mode (ATM) Asynchronous Transfer Mode (ATM) is a high-speed, non-broadcast Layer 2 technology, similar in many respects to Frame Relay. In addition to supporting higher bandwidths, ATM integrates QoS mechanisms directly into the technology. ATM is thus a very flexible technology, supporting data, voice and video traffic. Other Layer 2 technologies, such as Ethernet or Token Ring, support variable-sized packets. For example, Ethernet packets are 1514 bytes by default, but the MTU can be changed. ATM utilizes fixed-sized packets called cells. Each cell is exactly 53 bytes. Because the cell size is always consistent, traffic can be routed or switched far more efficiently. Two ATM interface types exist: • User-Network Interface (UNI) – connects an ATM end-user device to an ATM switch or router • Network-Network Interface (NNI) – connects an ATM switch to another ATM switch ATM, like Frame Relay, builds Virtual Channels ( or Circuits ) between ATM devices. These virtual channels can be permanent (PVC) or switched (SVC) , and are one-way . Each virtual channel is identified by a Virtual Channel Identifier (VCI), the equivalent of a Frame-Relay DLCI. The VCI is only locally significant to the router/switch. Multiple virtual channels can then be bundled together into a Virtual Path, which is identified by a Virtual Path Identifier (VPI) . Like VCI’s, a VPI is only locally significant. A VPI essentially identifies a “route” between two ATM devices. * * * All original material copyright © 2007 by Aaron Balchunas ( [email protected] ), unless otherwise noted. All other material copyright © of their respective owners.
    [Show full text]
  • 13 Network Layer
    13 THE NETWORK LAYER Like all the other OSI layers, the network layer provides both connection- less and connection-oriented services. The upper layers and transport provide these two types of service to satisfy a broad range of application and end-user needs. This is universally recognized as a “good thing.” In the network layer, the presence of two types of service is generally con- sidered to be a “bad thing.” The reason for this is simple: everything above the network layer is host-specific and can be tailored to suit a par- ticular application running among some set of mutually consenting hosts without affecting the communications of other hosts using the same internetwork; the network layer, however, provides the fundamental connectivity without which no communication of any kind can take place among hosts. Most people agree that having one type of service at the network layer would be preferable to having two; as always, though, the problem stems from having to decide which one.1 The TCP/IP architecture, which from the beginning was based on an “internetworking” model of the network layer,2 avoided this contro- versy entirely; the TCP/IP network layer is exclusively connectionless.3 1. There are people who attempt to justify a “diversity of needs” at the network layer, but their sense of what constitutes interoperability is quite different from ours. 2. The best (and certainly the most succinct) description of the fundamental architec- tural premise of the TCP/IP network layer is the one that Vint Cerf uses to describe the TCP/IP internetworking model: “I P on everything.” 3.
    [Show full text]
  • Atn) Ground-Ground Router Description
    INTERNATIONAL CIVIL AVIATION ORGANIZATION ASIA AND PACIFIC OFFICE ASIA/PACIFIC REGIONAL AERONAUTICAL TELECOMMUNICATION NETWORK (ATN) GROUND-GROUND ROUTER DESCRIPTION Edition 1.2 – May 2004 Reference Document for the ATN Router Description ISSUE 1.2- MAY 2004 Table of Contents 1.0 INTRODUCTION............................................................................................................................3 1.1 SCOPE .............................................................................................................................................3 1.2 SARPS COMPLIANCE......................................................................................................................4 2.0 DOCUMENTS..................................................................................................................................5 2.1 APPLICABLE DOCUMENTS ..............................................................................................................5 2.2 REFERENCE DOCUMENTS ...............................................................................................................6 3.0 ATN GROUND-GROUND ROUTER REQUIREMENTS..........................................................7 3.1 OVERVIEW ......................................................................................................................................7 3.1.1 ATN G/G Router Protocol Characteristics .............................................................................8 3.1.1.1 Application Layer................................................................................................................8
    [Show full text]