A Procedure Using Rotylenchulus Reniformis

Total Page:16

File Type:pdf, Size:1020Kb

A Procedure Using Rotylenchulus Reniformis Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2012 A Procedure Using Rotylenchulus Reniformis Nucleotide Sequences to Quantitatively Measure Plant-Parasitic Nematode Infestation Levels using Metagenomic Dna Isolated Directly from Soil Kurtis C. Showmaker Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Showmaker, Kurtis C., "A Procedure Using Rotylenchulus Reniformis Nucleotide Sequences to Quantitatively Measure Plant-Parasitic Nematode Infestation Levels using Metagenomic Dna Isolated Directly from Soil" (2012). Theses and Dissertations. 233. https://scholarsjunction.msstate.edu/td/233 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Automated Template A: Created by James Nail 2011 V2.01 A procedure using Rotylenchulus reniformis nucleotide sequences to quantitatively measure plant-parasitic nematode infestation levels using metagenomic DNA isolated directly from soil By Kurtis C. Showmaker A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Agricultural Life Sciences in the Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology Mississippi State, Mississippi December 2012 Copyright by Kurtis C. Showmaker 2012 A procedure using Rotylenchulus reniformis nucleotide sequences to quantitatively measure plant-parasitic nematode infestation levels using metagenomic DNA isolated directly from soil By Kurtis C. Showmaker Approved: _________________________________ _________________________________ Gary W. Lawrence Shien Lu Associate Professor of Biochemistry, Associate Professor of Biochemistry, Molecular Biology, Entomology and Molecular Biology, Entomology and Plant Pathology Plant Pathology (Co-Director of Thesis) (Co-Director of Thesis) _________________________________ _________________________________ Vincent Klink Clarissa J. Balbalian Assistant Professor of Biological Sciences Committee Participant of Biochemistry, (Committee member) Molecular Biology, Entomology and Plant Pathology (Committee member) _________________________________ _________________________________ Michael A. Caprio George Hopper Professor of Biochemistry, Molecular Dean of the College of Agriculture Biology, Entomology and Plant Pathology Life Sciences (Graduate Coordinator) Name: Kurtis C. Showmaker Date of Degree: December 15, 2012 Institution: Mississippi State University Major Field: Agricultural Life Sciences Major Professor: Major Professor(s) Title of Study: A procedure using Rotylenchulus reniformis nucleotide sequences to quantitatively measure plant-parasitic nematode infestation levels using metagenomic DNA isolated directly from soil Pages in Study: 99 Candidate for Degree of Masters of Science Molecular diagnostic tests have been developed and utilized to diagnose and to confirm diagnoses of many plant-parasitic nematodes. We evaluate the potential of a qPCR assay to detect and quantify Rotylenchulus reniformis in Mississippi directly from soil. A novel pipeline utilizing multiple databases containing nematode DNA and EST sequences was developed to aid in the selection of R. reniformis primers used in a PCR and qPCR assays. In vitro testing showed that the primers and probes developed from the novel pipeline for the qPCR assays could accurately detect the presence of R. reniformis. Subsequent testing resulted in a trend of increasing observed number of R. reniformis resulting in increasing estimates by qPCR DEDICATION I dedicate this research to my son Chase. ii ACKNOWLEDGEMENTS The author expresses his gratitude to his committee members; Clarissa Balbalian, Shi-en Lu, Vincent Klink, and Gary Lawrence. A special thanks is given to my major professor whom taught me the how to identify plant-parasitic nematodes. iii TABLE OF CONTENTS DEDICATION .................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................... iii LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix CHAPTER I. DEVELOPMENT OF MOLECULAR MARKERS FOR ROTYLENCHULUS RENIFORMIS ....................................................1 INTRODUCTION .............................................................................................1 Statement of Problem ...................................................................................1 Life Stage Development of Rotylenchulus reniformis .................................2 Distribution and Host Ranges of Rotylenchulus spp....................................3 The Pathogen Rotylenchulus reniformis ......................................................7 Management Practices for Rotylenchulus reniformis ..................................7 The Development of Molecular Diagnostic Tools for Nematodes ..............8 Quantitative PCR .......................................................................................12 Nematode Genomics Usefulness to Molecular Diagnostics ......................13 Thesis Objective.........................................................................................15 MATERIALS AND METHODS .....................................................................17 Procurement of Nematodes ........................................................................17 Metagenomic Nematode DNA Isolation ...................................................19 Rotylenchulus reniformis ITS1 Primer Design ..........................................19 Rotylenchulus reniformis ITS1 Primer Pair Evaluation .............................20 Rotylenchulus reniformis qPCR Primer and Probe Design .......................21 Evaluation of potential qPCR Primer Pair Specificity ...............................23 Field Nematode Sampling and Extractions for qPCR ...............................24 Metagenomic Nematode DNA Extractions for qPCR ...............................24 PCR Assays on Soil Extracted Nematodes for select qPCR Primer Pairs................................................................................................25 PCR Assays on Metagenomic DNA Isolated Directly from Soil Using the qPCR Primer Pairs .........................................................25 Quantitative PCR Probe and Instrumentation ............................................26 iv Hit 2 alt qPCR Assay Conducted on Cultured Extracted Rotylenchulus reniformis ...............................................................27 Hit 2 alt qPCR Assay Conducted on Extracted Nematodes from Field Samples .................................................................................27 Hit 7 qPCR Assay Conducted on Extracted Cultured Rotylenchulus reniformis .......................................................................................28 Hit 7 qPCR Assay Conducted on Extracted Nematodes from Field Samples ..........................................................................................29 Hit 7 qPCR Assay on Direct Soil Metagenomic DNA ..............................29 Confirmation of PCR amplification in PCR and the qPCR reactions .........................................................................................29 RESULTS ........................................................................................................30 Procurement of Nematodes ........................................................................30 Rotylenchulus reniformis ITS1 Primer Pair Evaluation .............................31 Rotylenchulus reniformis Specific PCR Primer Pair and Probe Design ............................................................................................31 Evaluation of Potential qPCR Primer Pair Specificity ..............................32 Field Nematode Sampling and Extractions for qPCR ...............................33 PCR Assays on Soil Extracted Nematodes for select qPCR Primer Pairs................................................................................................33 PCR Assays on Metagenomic DNA Isolated Directly from Soil using the qPCR Primer Pairs..........................................................34 Hit 2 alt qPCR Assay Conducted on Cultured Extracted Rotylenchulus reniformis ...............................................................35 Hit 2 alt qPCR Assay Conducted on Extracted Nematodes from Field Samples .................................................................................35 Hit 7 qPCR Assay Conducted on Extracted Cultured Rotylenchulus reniformis .......................................................................................35 Hit 7 qPCR Assay Conducted on Extracted Nematodes from Field Samples ..........................................................................................36 Hit 7 qPCR Assay on Direct Soil Metagenomic DNA ..............................36 Confirmation of PCR Amplification in PCR and the qPCR Reactions ........................................................................................37
Recommended publications
  • Population Variability of Rotylenchulus Reniformis in Cotton Agroecosystems Megan Leach Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2010 Population Variability of Rotylenchulus reniformis in Cotton Agroecosystems Megan Leach Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Plant Pathology Commons Recommended Citation Leach, Megan, "Population Variability of Rotylenchulus reniformis in Cotton Agroecosystems" (2010). All Dissertations. 669. https://tigerprints.clemson.edu/all_dissertations/669 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. POPULATION VARIABILITY OF ROTYLENCHULUS RENIFORMIS IN COTTON AGROECOSYSTEMS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Plant and Environmental Sciences by Megan Marie Leach December 2010 Accepted by: Dr. Paula Agudelo, Committee Chair Dr. Halina Knap Dr. John Mueller Dr. Amy Lawton-Rauh Dr. Emerson Shipe i ABSTRACT Rotylenchulus reniformis, reniform nematode, is a highly variable species and an economically important pest in many cotton fields across the southeast. Rotation to resistant or poor host crops is a prescribed method for management of reniform nematode. An increase in the incidence and prevalence of the nematode in the United States has been reported over the
    [Show full text]
  • Management Strategies for Control of Soybean Cyst Nematode and Their Effect on Nematode Community
    Management Strategies for Control of Soybean Cyst Nematode and Their Effect on Nematode Community A Thesis SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Zane Grabau IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Dr. Senyu Chen June 2013 © Zane Grabau 2013 Acknowledgements I would like to acknowledge my committee members John Lamb, Robert Blanchette, and advisor Senyu Chen for their helpful feedback and input on my research and thesis. Additionally, I would like to thank my advisor Senyu Chen for giving me the opportunity to conduct research on nematodes and, in many ways, for making the research possible. Additionally, technicians Cathy Johnson and Wayne Gottschalk at the Southern Research and Outreach Center (SROC) at Waseca deserve much credit for the hours of technical work they devoted to these experiments without which they would not be possible. I thank Yong Bao for his patient in initially helping to train me to identify free-living nematodes and his assistance during the first year of the field project. Similarly, I thank Eyob Kidane, who, along with Senyu Chen, trained me in the methods for identification of fungal parasites of nematodes. Jeff Vetsch from SROC deserves credit for helping set up the field project and advising on all things dealing with fertilizers and soil nutrients. I want to acknowledge a number of people for helping acquire the amendments for the greenhouse study: Russ Gesch of ARS in Morris, MN; SROC swine unit; and Don Wyse of the University of Minnesota. Thanks to the University of Minnesota Plant Disease Clinic for contributing information for the literature review.
    [Show full text]
  • The Complete Mitochondrial Genome of the Columbia Lance Nematode
    Ma et al. Parasites Vectors (2020) 13:321 https://doi.org/10.1186/s13071-020-04187-y Parasites & Vectors RESEARCH Open Access The complete mitochondrial genome of the Columbia lance nematode, Hoplolaimus columbus, a major agricultural pathogen in North America Xinyuan Ma1, Paula Agudelo1, Vincent P. Richards2 and J. Antonio Baeza2,3,4* Abstract Background: The plant-parasitic nematode Hoplolaimus columbus is a pathogen that uses a wide range of hosts and causes substantial yield loss in agricultural felds in North America. This study describes, for the frst time, the complete mitochondrial genome of H. columbus from South Carolina, USA. Methods: The mitogenome of H. columbus was assembled from Illumina 300 bp pair-end reads. It was annotated and compared to other published mitogenomes of plant-parasitic nematodes in the superfamily Tylenchoidea. The phylogenetic relationships between H. columbus and other 6 genera of plant-parasitic nematodes were examined using protein-coding genes (PCGs). Results: The mitogenome of H. columbus is a circular AT-rich DNA molecule 25,228 bp in length. The annotation result comprises 12 PCGs, 2 ribosomal RNA genes, and 19 transfer RNA genes. No atp8 gene was found in the mitog- enome of H. columbus but long non-coding regions were observed in agreement to that reported for other plant- parasitic nematodes. The mitogenomic phylogeny of plant-parasitic nematodes in the superfamily Tylenchoidea agreed with previous molecular phylogenies. Mitochondrial gene synteny in H. columbus was unique but similar to that reported for other closely related species. Conclusions: The mitogenome of H. columbus is unique within the superfamily Tylenchoidea but exhibits similarities in both gene content and synteny to other closely related nematodes.
    [Show full text]
  • Ecology and Pathogenicity of the Hoplolaimidae (Nemata) from the Sahelian Zone of West Mrica
    Fundam. appl. Nematol., 1995,18 (6), 513-522 Ecology and pathogenicity of the Hoplolaimidae (Nemata) from the sahelian zone of West Mrica. 8. Senegalonema sorghi Germani, Luc & Baldwin, 1984 and comparison with Rotylenchulus reniformis Linford & Oliveira, 1940 Pierre BAuJARD* and Bernard rvtARTINY ORSTOM, Laboratoire de Nématologie, B.P. 1386, Dakar, Sénégal. Accepted for publication 29 August 1994. Summary - The geographical distribution, host plants, population dynamics and vertical distribution were srudied for the nematode Senegalonema sorghi in Senegal. The observations of sorghum roots parasitized by S. sorghi showed the absence of gelatinous matrix and the presence of a shell around the marure females. The development of the female inside the roots induced the bursting and tearing of the cortical tissues of the roots. The factors influencing the multiplication rate and the effects of anhydrobio­ sis were srudied in the laboratory for S. sorghi and ROlylenchulus ren~formis. The results showed that the highest multiplication rates of both species were recorded at relatively low soil temperarure and high soil moisrure. Both species were able to enter anhydrobiosis during the dry season, with survival rates of 20-40 %. S. sorghi parasitized only wild and cropped cereals. During the dry season, it was under hydrobiotic conditions at depth in cropped soils and under anhydrobiosis in the upper layers of the soils under fal1ow. The restricted distribution of R. reniformis in the vegetable crops under irrigation might be explained by its narrow host range; ail other ecological characteristics were the same as for S. sorghi. Résum.é - Écologie et nocuité des Hoplolaimidae (Nemata) de la zone sahélienne de ['Afrique de l'Ouest.
    [Show full text]
  • Observations on the Genus Doronchus Andrássy
    Vol. 20, No. 1, pp.91-98 International Journal of Nematology June, 2010 Occurrence and distribution of nematodes in Idaho crops Saad L. Hafez*, P. Sundararaj*, Zafar A. Handoo** and M. Rafiq Siddiqi*** *University of Idaho, 29603 U of I Lane, Parma, Idaho 83660, USA **USDA-ARS-Nematology Laboratory, Beltsville, Maryland 20705, USA ***Nematode Taxonomy Laboratory, 24 Brantwood Road, Luton, LU1 1JJ, England, UK E-mail: [email protected] Abstract. Surveys were conducted in Idaho, USA during the 2000-2006 cropping seasons to study the occurrence, population density, host association and distribution of plant-parasitic nematodes associated with major crops, grasses and weeds. Eighty-four species and 43 genera of plant-parasitic nematodes were recorded in soil samples from 29 crops in 20 counties in Idaho. Among them, 36 species are new records in this region. The highest number of species belonged to the genus Pratylenchus; P. neglectus was the predominant species among all species of the identified genera. Among the endoparasitic nematodes, the highest percentage of occurrence was Pratylenchus (29.7) followed by Meloidogyne (4.4) and Heterodera (3.4). Among the ectoparasitic nematodes, Helicotylenchus was predominant (8.3) followed by Mesocriconema (5.0) and Tylenchorhynchus (4.8). Keywords. Distribution, Helicotylenchus, Heterodera, Idaho, Meloidogyne, Mesocriconema, population density, potato, Pratylenchus, survey, Tylenchorhynchus, USA. INTRODUCTION and cropping systems in Idaho are highly conducive for nematode multiplication. Information concerning the revious reports have described the association of occurrence and distribution of nematodes in Idaho is plant-parasitic nematode species associated with important to assess their potential to cause economic damage P several crops in the Pacific Northwest (Golden et al., to many crop plants.
    [Show full text]
  • Evaluation of Catenaria Anguillulae and Its Potential Use As a Biological Control Agent Of
    Evaluation of Catenaria anguillulae and its potential use as a biological control agent of Meloidogyne incognita, Heterodera glycines, and Rotylenchulus reniformis by David Robert Dyer A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 16, 2017 Copyright © 2017 David R. Dyer Approved by Dr. Kathy Lawrence, Chair, Professor of Entomology and Plant Pathology Dr. Jeffrey Coleman, Assistant Professor of Entomology and Plant Pathology Dr. Yucheng Feng, Professor of Crop, Soil and Environmental Science Dr. Edward Sikora, Extension Specialist Professor of Entomology and Plant Pathology Abstract The overall objectives of this study are 1) to isolate Catenaria sp. from nematode samples, grow them in pure culture, and determine the best culture media and incubation temperatures; 2) identify species of Catenaria found through morphological and molecular techniques; 3) test pathogenicity of Catenaria sp. on Rotylenchulus reniformis, Meloidogyne incognita, and Heterodera glycines in vitro to determine biological control potential; 4) evaluate biological control potential of isolated Catenaria sp. in greenhouse, microplot, and field settings. Catenaria sp. was isolated from R. reniformis and H. glycines and increased on 0.4% beef extract agar (BEA) plates. Sequencing of the internal transcribed spacer (ITS1) and ITS4 regions of Catenaria sp. DNA indicated that isolates of Catenaria sp. obtained from both H. glycines and R. reniformis shared a 95% identity with C. anguillulae. Growth tests were conducted on five different medium and BEA was the only media tested that supported growth of C. anguillulae. Six incubation temperatures ranging from 10-40°C indicated that C.
    [Show full text]
  • Phylogenetic Implications of Phasmid Absence in Males of Three Genera in Heteroderinae 1 L
    Journal of Nematology 22(3):386-394. 1990. © The Society of Nematologists 1990. Phylogenetic Implications of Phasmid Absence in Males of Three Genera in Heteroderinae 1 L. K. CARTA2 AND J. G. BALDWINs Abstract: Absence of the phasmid was demonstrated with the transmission electron microscope in immature third-stage (M3) and fourth-stage (M4) males and mature fifth-stage males (M5) of Heterodera schachtii, M3 and M4 of Verutus volvingentis, and M5 of Cactodera eremica. This absence was supported by the lack of phasmid staining with Coomassie blue and cobalt sulfide. All phasmid structures, except the canal and ampulla, were absent in the postpenetration second-stagejuvenile (]2) of H. schachtii. The prepenetration V. volvingentis J2 differs from H. schachtii by having only a canal remnant and no ampulla. This and parsimonious evidence suggest that these two types of phasmids probably evolved in parallel, although ampulla and receptor cavity shape are similar. Absence of the male phasmid throughout development might be associated with an amphimictic mode of reproduction. Phasmid function is discussed, and female pheromone reception ruled out. Variations in ampulla shape are evaluated as phylogenetic character states within the Heteroderinae and putative phylogenetic outgroup Hoplolaimidae. Key words: anaphimixis, ampulla, cell death, Cactodera eremica, Heterodera schachtii, Heteroderinae, parallel evolution, parthenogenesis, phasmid, phylogeny, ultrastructure, Verutus volvingentis. Phasmid sensory organs on the tails of phasmid openings in the males of most gen- secernentean nematodes are sometimes era within the plant-parasitic Heteroderi- notoriously difficult to locate with the light nae, except Meloidodera (24) and perhaps microscope (18). Because the assignment Cryphodera (10) and Zelandodera (43).
    [Show full text]
  • Diversidad De Nemátodos Fitoparásitos Asociados Al Cultivo De Maíz En El Municipio De Guasave, Sinaloa
    INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE INVESTIGACIÓN PARA EL DESARROLLO INTEGRAL REGIONAL UNIDAD SINALOA Diversidad de nemátodos fitoparásitos asociados al cultivo de maíz en el municipio de Guasave, Sinaloa. TESIS QUE PARA OBTENER EL GRADO DE MAESTRÍA EN RECURSOS NATURALES Y MEDIO AMBIENTE PRESENTA ULISES GONZÁLEZ GÜITRÓN GUASAVE, SINALOA; MÉXICO DICIEMBRE DE 2013 I II III RECONOCIMIENTO A PROYECTOS Y BECAS La investigación se realizó en los laboratorios de Nemátodos y Nutrición Vegetal pertenecientes al centro interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-SIN) del Instituto Politécnico Nacional (IPN). El trabajo de maestría estuvo asesorado por el Dr. Manuel Mundo Ocampo y el M.C. Jesús Ricardo Camacho Báez, contando con el apoyo otorgado por el Consejo Nacional de Ciencia y Tecnologia CONACyT, con número de CVU 418291. Se agradece el apoyo al programa Institucional de Formación de Investigadores (PIFI) con el proyecto “Búsqueda de nemátodos potencialmente entomopatógenos asociados al cultivo de maíz en el norte de Sinaloa (segunda etapa)” con clave 20131792. Así como el reconocimiento a INAPI SINALOA por su beca de terminación de tesis y a la Organización de Nematólogos de los Trópicos Americanos (ONTA) por su premio económico con el cual pude asistir al congreso número XLIV en Cancún, México. IV DEDICATORIA El presente trabajo está dedicado a dos personas muy especiales que quiero con todo mi corazón, que supieron hacer de mí una persona consiente y con valores. Las cuales me han ayudado a sobrellevar todo tipo de problemas y situaciones. Me refiero a mis padres Joel González Betancourt e Irma María Güitrón Padilla.
    [Show full text]
  • Exotic Nematodes of Grains CP
    INDUSTRY BIOSECURITY PLAN FOR THE GRAINS INDUSTRY Generic Contingency Plan Exotic nematodes affecting the grains industry Specific examples detailed in this plan: Maize cyst nematode (Heterodera zeae), Soybean cyst nematode (Heterodera glycines) and Chickpea cyst nematode (Heterodera ciceri) Plant Health Australia August 2013 Disclaimer The scientific and technical content of this document is current to the date published and all efforts have been made to obtain relevant and published information on these pests. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Level 1, 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au An electronic copy of this plan is available from the web site listed above. © Plant Health Australia Limited 2013 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person.
    [Show full text]
  • JOURNAL of NEMATOLOGY Integrative Taxonomy, Distribution
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2021-015 e2021-15 | Vol. 53 Integrative taxonomy, distribution, and host associations of Geocenamus brevidens and Quinisulcius capitatus from southern Alberta, Canada Maria Munawar1, Dmytro P. 1, 2 Yevtushenko * and Pablo Castillo Abstract 1Department of Biological Sciences, University of Lethbridge, 4401 Two stunt nematode species, Geocenamus brevidens and University Drive W, Lethbridge, Quinisulcius capitatus, were recovered from the potato growing regions AB, T1K 3M4, Canada. of southern Alberta, described and characterized based on integrative taxonomy. Morphometrics, distribution, and host associations 2Institute for Sustainable of both species are discussed. The Canadian populations of both Agriculture (IAS), Spanish National species displayed minor variations in morphometrical characteristics Research Council (CSIC), Campus (viz., slightly longer bodies and tails) from the original descriptions. de Excelencia Internacional The populations of G. brevidens and Q. capitatus species examined Agroalimentario, ceiA3, Avenida in this study are proposed as standard and reference populations Menéndez Pidal s/n, 14004 for each respective species until topotype specimens become Córdoba, Spain. available and molecularly characterized. Phylogenetic analyses, *E-mail: dmytro.yevtushenko@ based on partial 18S, 28S, and ITS sequences, placed both species uleth.ca with related stunt nematode species. The present study updates the taxonomic records of G. brevidens and Q. capitatus from a This
    [Show full text]
  • Prevalence and Molecular Diversity of Reniform Nematodes of the Genus Rotylenchulus (Nematoda: Rotylenchulinae) in the Mediterranean Basin
    Eur J Plant Pathol (2018) 150:439–455 DOI 10.1007/s10658-017-1292-8 Prevalence and molecular diversity of reniform nematodes of the genus Rotylenchulus (Nematoda: Rotylenchulinae) in the Mediterranean Basin Juan E. Palomares-Rius & Carolina Cantalapiedra-Navarrete & Antonio Archidona-Yuste & Emmanuel A. Tzortzakakis & Ioannis G. Birmpilis & Nicola Vovlas & Sergei A. Subbotin & Pablo Castillo Accepted: 11 July 2017 /Published online: 21 July 2017 # Koninklijke Nederlandse Planteziektenkundige Vereniging 2017 Abstract The reniform nematodes of the genus R. macrodoratus and R. macrosoma,respectively. Rotylenchulus are semi-endoparasites of numerous The parasitism of R. macrosoma on hazelnut in herbaceous and woody plant roots and distributed northern Spain was also confirmed for the first time. in regions with Mediterranean, subtropical and trop- This study demonstrates that R. macrodoratus and ical climates. In this study, we provide morpholog- R. macrosoma have two distinct rRNA gene types in ical and molecular characterisation of three out of 11 their genomes, specifically the two types of D2-D3 valid species of the genus Rotylenchulus: for R. macrosoma and R. macrodoratus,thetwo R. macrodoratus, R. macrosoma, and R. reniformis types of ITS for R. macrodoratus and the testing from Greece (Crete), Italy and Spain. The overall of the ITS variability in other R. macrosoma popu- prevalence of reniform nematodes in wild and culti- lations in different countries. Rotylenchulus vated olives in Greece, Italy, and Spain was 11.5%, macrosoma from Greece and Spain showed differ- 19.0% and 0.6%, respectively. In Greece, ences in nucleotide sequences in the ITS region and R. macrodoratus and R. macrosoma were detected D2-D3 of 28S rRNA gene.
    [Show full text]
  • Description of Helicotylenchus Persiaensis Sp. N. (Nematoda: Hoplolaimidae) from Iran
    Zootaxa 3785 (4): 575–588 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3785.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:987B039E-9EF7-475C-BFC4-ECBB8E0EB95F Description of Helicotylenchus persiaensis sp. n. (Nematoda: Hoplolaimidae) from Iran LEILA KASHI & AKBAR KAREGAR1 Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran 1Corresponding author. E-mail: [email protected] Abstract In order to identify the species of Helicotylenchus Steiner, 1945 present in Iran, 497 soil and root samples were collected from the rhizosphere of different plants and localities throughout the country during 2009-2010. A new and several known species of Helicotylenchus were identified from the collected material. H. persiaensis sp. n. is characterized by its short tail (8-11 µm , c = 54.2–79.0, c′ = 0.6–1.2), usually with smooth terminus or with 1–3 very coarse annules, rarely with minor ventral, dorsal or lateral projection, conical and truncate head with 4–5 distinct annules, stylet 22–26 µm long with anteriorly flattened knobs, relatively short body length (570–730 µm) and absence of males. This species was collected from the rhizosphere of zelkova (Zelkova carpinifolia) and maple (Acer sp.) forest trees in Golestan province, northern Iran. Also observed were H. abunaamai Siddiqi, 1972, with a small ventral projection at the tail terminus, and H. crena- cauda Sher, 1966, with long projection and indented terminus, collected from sugarcane (Haft-Tapeh, Khuzestan prov- ince) and rice rhizosphere (Chabok-Sar, Gilan province), respectively.
    [Show full text]