Drainage Reversals Due to Tectonic Uplift: an Investigation Through Modeling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Rock Cycle Compressed and Cemented to Form What the Original Rocks on Earth Were Like
| The Rock Cycle compressed and cemented to form what the original rocks on Earth were like. sedimentary rock, such as sandstone. IMMG has some excellent examples of Soluble material can be precipitated from these extraterrestrial visitors in our The continual set of processes affecting water to form sedimentary rocks such as meteorite exhibit. rocks is called the rock cycle. All existing limestone and gypsum. Sedimentary rocks rocks on Earth have been changed over can also be exposed at the surface and Various examples of the three different time by various geologic processes. Earth undergo erosion, providing materials for types of rocks are listed below. Specimens was formed about 4.6 billion years ago, and future sedimentary rocks. of some of these rocks can be found the oldest known rock unit is found in throughout the museum. Canada, dated at just over 4 billion years If sedimentary rocks become buried deep old. This rock material was altered by heat within the crust, they can be subjected to How many can you find? and pressure into the metamorphic rock high heat and pressure along with physical gneiss. stresses such as compression or extension, Igneous which transforms them into metamorphic rocks such as schist or gneiss Originally all of Earth’s crustal rocks had Basalt Gabbro Diorite an igneous origin. They start as semi- (“metamorphic” simply means “changed molten magma in the upper mantle and form”). Sometimes igneous rocks can be Rhyolite Syenite Andesite either rise to the surface as extrusive lava metamorphosed by similar processes (like Granite Granodiorite Obsidian (like basalt) in volcanoes and oceanic rifts, granite into gneiss). -
Timescale Dependence in River Channel Migration Measurements
TIMESCALE DEPENDENCE IN RIVER CHANNEL MIGRATION MEASUREMENTS Abstract: Accurately measuring river meander migration over time is critical for sediment budgets and understanding how rivers respond to changes in hydrology or sediment supply. However, estimates of meander migration rates or streambank contributions to sediment budgets using repeat aerial imagery, maps, or topographic data will be underestimated without proper accounting for channel reversal. Furthermore, comparing channel planform adjustment measured over dissimilar timescales are biased because shortand long-term measurements are disproportionately affected by temporary rate variability, long-term hiatuses, and channel reversals. We evaluate the role of timescale dependence for the Root River, a single threaded meandering sand- and gravel-bedded river in southeastern Minnesota, USA, with 76 years of aerial photographs spanning an era of landscape changes that have drastically altered flows. Empirical data and results from a statistical river migration model both confirm a temporal measurement-scale dependence, illustrated by systematic underestimations (2–15% at 50 years) and convergence of migration rates measured over sufficiently long timescales (> 40 years). Frequency of channel reversals exerts primary control on measurement bias for longer time intervals by erasing the record of observable migration. We conclude that using long-term measurements of channel migration for sediment remobilization projections, streambank contributions to sediment budgets, sediment flux estimates, and perceptions of fluvial change will necessarily underestimate such calculations. Introduction Fundamental concepts and motivations Measuring river meander migration rates from historical aerial images is useful for developing a predictive understanding of channel and floodplain evolution (Lauer & Parker, 2008; Crosato, 2009; Braudrick et al., 2009; Parker et al., 2011), bedrock incision and strath terrace formation (C. -
Experimental Evidence for Fluvial Bedrock Incision by Suspended and Bedload Sediment Joel S
Experimental evidence for fl uvial bedrock incision by suspended and bedload sediment Joel S. Scheingross1*, Fanny Brun1,2, Daniel Y. Lo1, Khadijah Omerdin1, and Michael P. Lamb1 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA 2Geosciences Department, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France ABSTRACT regime, the saltation-abrasion model was re- Fluvial bedrock incision sets the pace of landscape evolution and can be dominated by cast (by Lamb et al., 2008) in terms of near-bed abrasion from impacting particles. Existing bedrock incision models diverge on the ability of sediment concentration rather than particle hop sediment to erode within the suspension regime, leading to competing predictions of lowland lengths (herein referred to as the total-load mod- river erosion rates, knickpoint formation and evolution, and the transient response of orogens el). The saltation-abrasion and total-load mod- to external forcing. We present controlled abrasion mill experiments designed to test fl uvial els produce similar results for erosion within incision models in the bedload and suspension regimes by varying sediment size while holding the bedload regime, but within the suspension fi xed hydraulics, sediment load, and substrate strength. Measurable erosion occurred within regime the total-load model predicts nonzero the suspension regime, and erosion rates agree with a mechanistic incision theory for erosion erosion rates that increase with increasing fl uid by mixed suspended and bedload sediment. Our experimental results indicate that suspen- bed stress, leading to contrasting predictions sion-regime erosion can dominate channel incision during large fl oods and in steep channels, for landscape evolution, especially during large with signifi cant implications for the pace of landscape evolution. -
Field Studies and 3D Modelling of Morphodynamics in a Meandering River Reach Dominated by Tides and Suspended Load
fluids Article Field Studies and 3D Modelling of Morphodynamics in a Meandering River Reach Dominated by Tides and Suspended Load Qiancheng Xie 1,* , James Yang 2,3 and T. Staffan Lundström 1 1 Division of Fluid and Experimental Mechanics, Luleå University of Technology, 97187 Luleå, Sweden; [email protected] 2 Vattenfall AB, Research and Development, Hydraulic Laboratory, 81426 Älvkarleby, Sweden; [email protected] 3 Resources, Energy and Infrastructure, Royal Institute of Technology, 10044 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +4672-2870-381 Received: 9 December 2018; Accepted: 20 January 2019; Published: 22 January 2019 Abstract: Meandering is a common feature in natural alluvial streams. This study deals with alluvial behaviors of a meander reach subjected to both fresh-water flow and strong tides from the coast. Field measurements are carried out to obtain flow and sediment data. Approximately 95% of the sediment in the river is suspended load of silt and clay. The results indicate that, due to the tidal currents, the flow velocity and sediment concentration are always out of phase with each other. The cross-sectional asymmetry and bi-directional flow result in higher sediment concentration along inner banks than along outer banks of the main stream. For a given location, the near-bed concentration is 2−5 times the surface value. Based on Froude number, a sediment carrying capacity formula is derived for the flood and ebb tides. The tidal flow stirs the sediment and modifies its concentration and transport. A 3D hydrodynamic model of flow and suspended sediment transport is established to compute the flow patterns and morphology changes. -
Experimental Study of River Incision: Discussion and Reply Discussion
Experimental study of river incision: Discussion and reply Discussion G. H. DURY Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706 While introducing their experiments on river incision into bed existing streams and ancestral larger streams have proved equally rock, Shepherd and Schumm (1974) claimed that the morphologic capable of developing pool-and-riffle sequences in bed rock. details of interfaces between alluvium and bed rock are essentially Although far more abundant evidence would, of course, be wel- unknown. They referred to highs and lows shaped in bed rock as come, it seems reasonable to suggest that the morphologic details possible analogues of the riffles and pools of alluvial rivers but re- of the alluvium/bedrock interface beneath underfit streams are far garded the longitudinal profiles of bedrock streams as effectively from being essentially unknown. On the contrary, those details unstudied (see their p. 261). The clear implication is that interfaces have been deliberately and extensively studied. Similarly, it would and profiles have not been deliberately investigated. Both here and appear that somewhat more than a little is known of the longitudi- in their review of opinions about the inheritance or noninheritance nal profiles of bedrock streams. Australian serials, especially those of incised meanders (266—267), they overlooked a considerable with a geographical title, might perhaps be regarded as not particu- body of published research and commentary. larly accessible sources, except that Schumm was attached to the The question of the possible inheritance of incised meanders Department of Geography in the University of Sydney, Australia, at from an ancient flood plain at high level has been debated over the about the time when the Colo and Hawkesbury Rivers were being years, the debate involving numbers of workers on the European investigated from that department as a base. -
Channel Morphology and Bedrock River Incision: Theory, Experiments, and Application to the Eastern Himalaya
Channel morphology and bedrock river incision: Theory, experiments, and application to the eastern Himalaya Noah J. Finnegan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2007 Program Authorized to Offer Degree: Department of Earth and Space Sciences University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Noah J. Finnegan and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Co-Chairs of the Supervisory Committee: ___________________________________________________________ Bernard Hallet ___________________________________________________________ David R. Montgomery Reading Committee: ____________________________________________________________ Bernard Hallet ____________________________________________________________ David R. Montgomery ____________________________________________________________ Gerard Roe Date:________________________ In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of the dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred -
Exhumation Processes
Exhumation processes UWE RING1, MARK T. BRANDON2, SEAN D. WILLETT3 & GORDON S. LISTER4 1Institut fur Geowissenschaften,Johannes Gutenberg-Universitiit,55099 Mainz, Germany 2Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 3Department of Geosciences, Pennsylvania State University, University Park, PA I 6802, USA Present address: Department of Geological Sciences, University of Washington, Seattle, WA 98125, USA 4Department of Earth Sciences, Monash University, Clayton, Victoria VIC 3168,Australia Abstract: Deep-seated metamorphic rocks are commonly found in the interior of many divergent and convergent orogens. Plate tectonics can account for high-pressure meta morphism by subduction and crustal thickening, but the return of these metamorphosed crustal rocks back to the surface is a more complicated problem. In particular, we seek to know how various processes, such as normal faulting, ductile thinning, and erosion, con tribute to the exhumation of metamorphic rocks, and what evidence can be used to distin guish between these different exhumation processes. In this paper, we provide a selective overview of the issues associated with the exhuma tion problem. We start with a discussion of the terms exhumation, denudation and erosion, and follow with a summary of relevant tectonic parameters. Then, we review the charac teristics of exhumation in differenttectonic settings. For instance, continental rifts, such as the severely extended Basin-and-Range province, appear to exhume only middle and upper crustal rocks, whereas continental collision zones expose rocks from 125 km and greater. Mantle rocks are locally exhumed in oceanic rifts and transform zones, probably due to the relatively thin crust associated with oceanic lithosphere. -
River Incision Into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion and Cavitation
River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion and cavitation Kelin X. Whipple* Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Gregory S. Hancock Department of Geology, College of William and Mary, Williamsburg, Virginia 23187 Robert S. Anderson Department of Earth Sciences, University of California, Santa Cruz, California 95064 ABSTRACT long term (Howard et al., 1994). These conditions are commonly met in Improved formulation of bedrock erosion laws requires knowledge mountainous and tectonically active landscapes, and bedrock channels are of the actual processes operative at the bed. We present qualitative field known to dominate steeplands drainage networks (e.g., Wohl, 1993; Mont- evidence from a wide range of settings that the relative efficacy of the gomery et al., 1996; Hovius et al., 1997). As the three-dimensional structure various processes of fluvial erosion (e.g., plucking, abrasion, cavitation, of drainage networks sets much of the form of terrestrial landscapes, it is solution) is a strong function of substrate lithology, and that joint spac- clear that a deep appreciation of mountainous landscapes requires knowl- ing, fractures, and bedding planes exert the most direct control. The edge of the controls on bedrock channel morphology. Moreover, bedrock relative importance of the various processes and the nature of the in- channels play a critical role in the dynamic evolution of mountainous land- terplay between them are inferred from detailed observations of the scapes (Anderson, 1994; Anderson et al., 1994; Howard et al., 1994; Tucker morphology of erosional forms on channel bed and banks, and their and Slingerland, 1996; Sklar and Dietrich, 1998; Whipple and Tucker, spatial distributions. -
CLASSIFICATION of CALIFORNIA ESTUARIES BASED on NATURAL CLOSURE PATTERNS: TEMPLATES for RESTORATION and MANAGEMENT Revised
CLASSIFICATION OF CALIFORNIA ESTUARIES BASED ON NATURAL CLOSURE PATTERNS: TEMPLATES FOR RESTORATION AND MANAGEMENT Revised David K. Jacobs Eric D. Stein Travis Longcore Technical Report 619.a - August 2011 Classification of California Estuaries Based on Natural Closure Patterns: Templates for Restoration and Management David K. Jacobs1, Eric D. Stein2, and Travis Longcore3 1UCLA Department of Ecology and Evolutionary Biology 2Southern California Coastal Water Research Project 3University of Southern California - Spatial Sciences Institute August 2010 Revised August 2011 Technical Report 619.a ABSTRACT Determining the appropriate design template is critical to coastal wetland restoration. In seasonally wet and semi-arid regions of the world coastal wetlands tend to close off from the sea seasonally or episodically, and decisions regarding estuarine mouth closure have far reaching implications for cost, management, and ultimate success of coastal wetland restoration. In the past restoration planners relied on an incomplete understanding of the factors that influence estuarine mouth closure. Consequently, templates from other climatic/physiographic regions are often inappropriately applied. The first step to addressing this issue is to develop a classification system based on an understanding of the processes that formed the estuaries and thus define their pre-development structure. Here we propose a new classification system for California estuaries based on the geomorphic history and the dominant physical processes that govern the formation of the estuary space or volume. It is distinct from previous estuary closure models, which focused primarily on the relationship between estuary size and tidal prism in constraining closure. This classification system uses geologic origin, exposure to littoral process, watershed size and runoff characteristics as the basis of a conceptual model that predicts likely frequency and duration of closure of the estuary mouth. -
Sedimentological Constraints on the Initial Uplift of the West Bogda Mountains in Mid-Permian
www.nature.com/scientificreports OPEN Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian Received: 14 August 2017 Jian Wang1,2, Ying-chang Cao1,2, Xin-tong Wang1, Ke-yu Liu1,3, Zhu-kun Wang1 & Qi-song Xu1 Accepted: 9 January 2018 The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Published: xx xx xxxx Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid- Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confrmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large- scale intracontinental orogeny in the region. The Central Asia Orogenic Belt (CAOB) is the largest accretionary orogen on Earth, which was formed by the amalgamation of multiple micro-continents, island arcs and accretionary wedges1–5. -
Stream Visual Assessment Manual
U.S. Fish & Wildlife Service Stream Visual Assessment Manual Cane River, credit USFWS/Gary Peeples U.S. Fish & Wildlife Service Conasauga River, credit USFWS Table of Contents Introduction ..............................................................................................................................1 What is a Stream? .............................................................................................................1 What Makes a Stream “Healthy”? .................................................................................1 Pollution Types and How Pollutants are Harmful ........................................................1 What is a “Reach”? ...........................................................................................................1 Using This Protocol..................................................................................................................2 Reach Identification ..........................................................................................................2 Context for Use of this Guide .................................................................................................2 Assessment ........................................................................................................................3 Scoring Details ..................................................................................................................4 Channel Conditions ...........................................................................................................4 -
Appendices for the White River Base Flow Study
APPENDIX 1 Habitat types and descriptions adapted from Bisson et al. 1982 and Upper Colorado River Basin Database _____________________________________________________________________________ Habitat Category Habitat Description _____________________________________________________________________________ Riffles Shallow (<20 cm deep), moderate current velocity (20-50 cm/sec), moderate turbulence, substrate gravel, pebble, and cobble-sized particles (2-256 mm), gradient <4% Rapids Gradient >4%, swiftly flowing water (>50 cm/sec), considerable turbulence, substrate largely composed of boulders Pools A portion of stream that is deep and less velocity than run; often lies between riffles Eddies Presence of counter- current; usually deep and less velocity than main- channel Runs Possess attributes of both riffles and pools; characterized by moderately shallow water (10-30 cm deep) with laminar flow; substrate gravel and cobble. _____________________________________________________________________________ 50 APPENDIX 2 - Habitat Suitability Criteria Table 1. Habitat use curve for adult Colorado pikeminnow for daytime resting (bottom velocities); from Miller and Modde (1999). ________________________________________ Velocity HSI Depth HSI (m/s) (m) ________________________________________ 0.000 0.25 0.000 0.00 0.027 0.50 0.427 0.00 0.030 1.00 0.792 0.125 0.244 1.00 0.914 0.25 0.366 0.500 1.158 0.50 0.396 0.25 1.280 1.00 0.427 0.00 6.096 1.00 ________________________________________ Table 2. Habitat use curve for adult Colorado pikeminnow for