Introduction to Symplectic and Hamiltonian Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Density of Thin Film Billiard Reflection Pseudogroup in Hamiltonian Symplectomorphism Pseudogroup Alexey Glutsyuk
Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroup Alexey Glutsyuk To cite this version: Alexey Glutsyuk. Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomor- phism pseudogroup. 2020. hal-03026432v2 HAL Id: hal-03026432 https://hal.archives-ouvertes.fr/hal-03026432v2 Preprint submitted on 6 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroup Alexey Glutsyuk∗yzx December 3, 2020 Abstract Reflections from hypersurfaces act by symplectomorphisms on the space of oriented lines with respect to the canonical symplectic form. We consider an arbitrary C1-smooth hypersurface γ ⊂ Rn+1 that is either a global strictly convex closed hypersurface, or a germ of hy- persurface. We deal with the pseudogroup generated by compositional ratios of reflections from γ and of reflections from its small deforma- tions. In the case, when γ is a global convex hypersurface, we show that the latter pseudogroup is dense in the pseudogroup of Hamiltonian diffeomorphisms between subdomains of the phase cylinder: the space of oriented lines intersecting γ transversally. We prove an analogous local result in the case, when γ is a germ. -
Gromov Receives 2009 Abel Prize
Gromov Receives 2009 Abel Prize . The Norwegian Academy of Science Medal (1997), and the Wolf Prize (1993). He is a and Letters has decided to award the foreign member of the U.S. National Academy of Abel Prize for 2009 to the Russian- Sciences and of the American Academy of Arts French mathematician Mikhail L. and Sciences, and a member of the Académie des Gromov for “his revolutionary con- Sciences of France. tributions to geometry”. The Abel Prize recognizes contributions of Citation http://www.abelprisen.no/en/ extraordinary depth and influence Geometry is one of the oldest fields of mathemat- to the mathematical sciences and ics; it has engaged the attention of great mathema- has been awarded annually since ticians through the centuries but has undergone Photo from from Photo 2003. It carries a cash award of revolutionary change during the last fifty years. Mikhail L. Gromov 6,000,000 Norwegian kroner (ap- Mikhail Gromov has led some of the most impor- proximately US$950,000). Gromov tant developments, producing profoundly original will receive the Abel Prize from His Majesty King general ideas, which have resulted in new perspec- Harald at an award ceremony in Oslo, Norway, on tives on geometry and other areas of mathematics. May 19, 2009. Riemannian geometry developed from the study Biographical Sketch of curved surfaces and their higher-dimensional analogues and has found applications, for in- Mikhail Leonidovich Gromov was born on Decem- stance, in the theory of general relativity. Gromov ber 23, 1943, in Boksitogorsk, USSR. He obtained played a decisive role in the creation of modern his master’s degree (1965) and his doctorate (1969) global Riemannian geometry. -
Lecture 1: Basic Concepts, Problems, and Examples
LECTURE 1: BASIC CONCEPTS, PROBLEMS, AND EXAMPLES WEIMIN CHEN, UMASS, SPRING 07 In this lecture we give a general introduction to the basic concepts and some of the fundamental problems in symplectic geometry/topology, where along the way various examples are also given for the purpose of illustration. We will often give statements without proofs, which means that their proof is either beyond the scope of this course or will be treated more systematically in later lectures. 1. Symplectic Manifolds Throughout we will assume that M is a C1-smooth manifold without boundary (unless specific mention is made to the contrary). Very often, M will also be closed (i.e., compact). Definition 1.1. A symplectic structure on a smooth manifold M is a 2-form ! 2 Ω2(M), which is (1) nondegenerate, and (2) closed (i.e. d! = 0). (Recall that a 2-form ! 2 Ω2(M) is said to be nondegenerate if for every point p 2 M, !(u; v) = 0 for all u 2 TpM implies v 2 TpM equals 0.) The pair (M; !) is called a symplectic manifold. Before we discuss examples of symplectic manifolds, we shall first derive some im- mediate consequences of a symplectic structure. (1) The nondegeneracy condition on ! is equivalent to the condition that M has an even dimension 2n and the top wedge product !n ≡ ! ^ ! · · · ^ ! is nowhere vanishing on M, i.e., !n is a volume form. In particular, M must be orientable, and is canonically oriented by !n. The nondegeneracy condition is also equivalent to the condition that M is almost complex, i.e., there exists an endomorphism J of TM such that J 2 = −Id. -
Hamiltonian Systems on Symplectic Manifolds
This is page 147 Printer: Opaque this 5 Hamiltonian Systems on Symplectic Manifolds Now we are ready to geometrize Hamiltonian mechanics to the context of manifolds. First we make phase spaces nonlinear, and then we study Hamiltonian systems in this context. 5.1 Symplectic Manifolds Definition 5.1.1. A symplectic manifold is a pair (P, Ω) where P is a manifold and Ω is a closed (weakly) nondegenerate two-form on P .IfΩ is strongly nondegenerate, we speak of a strong symplectic manifold. As in the linear case, strong nondegeneracy of the two-form Ω means that at each z ∈ P, the bilinear form Ωz : TzP × TzP → R is nondegenerate, that is, Ωz defines an isomorphism → ∗ Ωz : TzP Tz P. Fora(weak) symplectic form, the induced map Ω : X(P ) → X∗(P )be- tween vector fields and one-forms is one-to-one, but in general is not sur- jective. We will see later that Ω is required to be closed, that is, dΩ=0, where d is the exterior derivative, so that the induced Poisson bracket sat- isfies the Jacobi identity and so that the flows of Hamiltonian vector fields will consist of canonical transformations. In coordinates zI on P in the I J finite-dimensional case, if Ω = ΩIJ dz ∧ dz (sum over all I<J), then 148 5. Hamiltonian Systems on Symplectic Manifolds dΩ=0becomes the condition ∂Ω ∂Ω ∂Ω IJ + KI + JK =0. (5.1.1) ∂zK ∂zJ ∂zI Examples (a) Symplectic Vector Spaces. If (Z, Ω) is a symplectic vector space, then it is also a symplectic manifold. -
Time-Dependent Hamiltonian Mechanics on a Locally Conformal
Time-dependent Hamiltonian mechanics on a locally conformal symplectic manifold Orlando Ragnisco†, Cristina Sardón∗, Marcin Zając∗∗ Department of Mathematics and Physics†, Universita degli studi Roma Tre, Largo S. Leonardo Murialdo, 1, 00146 , Rome, Italy. ragnisco@fis.uniroma3.it Department of Applied Mathematics∗, Universidad Polit´ecnica de Madrid. C/ Jos´eGuti´errez Abascal, 2, 28006, Madrid. Spain. [email protected] Department of Mathematical Methods in Physics∗∗, Faculty of Physics. University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland. [email protected] Abstract In this paper we aim at presenting a concise but also comprehensive study of time-dependent (t- dependent) Hamiltonian dynamics on a locally conformal symplectic (lcs) manifold. We present a generalized geometric theory of canonical transformations and formulate a time-dependent geometric Hamilton-Jacobi theory on lcs manifolds. In contrast to previous papers concerning locally conformal symplectic manifolds, here the introduction of the time dependency brings out interesting geometric properties, as it is the introduction of contact geometry in locally symplectic patches. To conclude, we show examples of the applications of our formalism, in particular, we present systems of differential equations with time-dependent parameters, which admit different physical interpretations as we shall point out. arXiv:2104.02636v1 [math-ph] 6 Apr 2021 Contents 1 Introduction 2 2 Fundamentals on time-dependent Hamiltonian systems 5 2.1 Time-dependentsystems. ....... 5 2.2 Canonicaltransformations . ......... 6 2.3 Generating functions of canonical transformations . ................ 8 1 3 Geometry of locally conformal symplectic manifolds 8 3.1 Basics on locally conformal symplectic manifolds . ............... 8 3.2 Locally conformal symplectic structures on cotangent bundles............ -
Symplectic Topology Math 705 Notes by Patrick Lei, Spring 2020
Symplectic Topology Math 705 Notes by Patrick Lei, Spring 2020 Lectures by R. Inanç˙ Baykur University of Massachusetts Amherst Disclaimer These notes were taken during lecture using the vimtex package of the editor neovim. Any errors are mine and not the instructor’s. In addition, my notes are picture-free (but will include commutative diagrams) and are a mix of my mathematical style (omit lengthy computations, use category theory) and that of the instructor. If you find any errors, please contact me at [email protected]. Contents Contents • 2 1 January 21 • 5 1.1 Course Description • 5 1.2 Organization • 5 1.2.1 Notational conventions•5 1.3 Basic Notions • 5 1.4 Symplectic Linear Algebra • 6 2 January 23 • 8 2.1 More Basic Linear Algebra • 8 2.2 Compatible Complex Structures and Inner Products • 9 3 January 28 • 10 3.1 A Big Theorem • 10 3.2 More Compatibility • 11 4 January 30 • 13 4.1 Homework Exercises • 13 4.2 Subspaces of Symplectic Vector Spaces • 14 5 February 4 • 16 5.1 Linear Algebra, Conclusion • 16 5.2 Symplectic Vector Bundles • 16 6 February 6 • 18 6.1 Proof of Theorem 5.11 • 18 6.2 Vector Bundles, Continued • 18 6.3 Compatible Triples on Manifolds • 19 7 February 11 • 21 7.1 Obtaining Compatible Triples • 21 7.2 Complex Structures • 21 8 February 13 • 23 2 3 8.1 Kähler Forms Continued • 23 8.2 Some Algebraic Geometry • 24 8.3 Stein Manifolds • 25 9 February 20 • 26 9.1 Stein Manifolds Continued • 26 9.2 Topological Properties of Kähler Manifolds • 26 9.3 Complex and Symplectic Structures on 4-Manifolds • 27 10 February 25 -
Double Groupoids and the Symplectic Category
JOURNAL OF GEOMETRIC MECHANICS doi:10.3934/jgm.2018009 c American Institute of Mathematical Sciences Volume 10, Number 2, June 2018 pp. 217{250 DOUBLE GROUPOIDS AND THE SYMPLECTIC CATEGORY Santiago Canez~ Department of Mathematics Northwestern University 2033 Sheridan Road Evanston, IL 60208-2730, USA (Communicated by Henrique Bursztyn) Abstract. We introduce the notion of a symplectic hopfoid, a \groupoid-like" object in the category of symplectic manifolds whose morphisms are given by canonical relations. Such groupoid-like objects arise when applying a version of the cotangent functor to the structure maps of a Lie groupoid. We show that such objects are in one-to-one correspondence with symplectic double groupoids, generalizing a result of Zakrzewski concerning symplectic double groups and Hopf algebra objects in the aforementioned category. The proof relies on a new realization of the core of a symplectic double groupoid as a symplectic quotient of the total space. The resulting constructions apply more generally to give a correspondence between double Lie groupoids and groupoid- like objects in the category of smooth manifolds and smooth relations, and we show that the cotangent functor relates the two constructions. 1. Introduction. The symplectic category is the category-like structure whose objects are symplectic manifolds and morphisms are canonical relations, i.e. La- grangian submanifolds of products of symplectic manifolds. Although compositions in this \category" are only defined between certain morphisms, this concept has nonetheless proved to be useful for describing many constructions in symplectic ge- ometry in a more categorical manner; in particular, symplectic groupoids can be characterized as certain monoid objects in this category, and Hamiltonian actions can be described as actions of such monoids. -
A C1 Arnol'd-Liouville Theorem
A C1 Arnol’d-Liouville theorem Marie-Claude Arnaud, Jinxin Xue To cite this version: Marie-Claude Arnaud, Jinxin Xue. A C1 Arnol’d-Liouville theorem. 2016. hal-01422530v2 HAL Id: hal-01422530 https://hal-univ-avignon.archives-ouvertes.fr/hal-01422530v2 Preprint submitted on 16 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A C1 ARNOL’D-LIOUVILLE THEOREM MARIE-CLAUDE ARNAUD†, JINXIN XUE Abstract. In this paper, we prove a version of Arnol’d-Liouville theorem for C1 commuting Hamiltonians. We show that the Lipschitz regularity of the foliation by invariant Lagrangian tori is crucial to determine the Dynamics on each Lagrangian torus and that the C1 regularity of the foliation by invariant Lagrangian tori is crucial to prove the continuity of Arnol’d- Liouville coordinates. We also explore various notions of C0 and Lipschitz integrability. Dedicated to Jean-Christophe Yoccoz 1. Introduction and Main Results. This article elaborates on the following question. Question. If a Hamiltonian system has enough commuting integrals1, can we precisely describe the Hamiltonian Dynamics, even in the case of non C2 integrals? When the integrals are C2, Arnol’d-Liouville Theorem (see [4]) gives such a dynamical description. -
“Generalized Complex and Holomorphic Poisson Geometry”
“Generalized complex and holomorphic Poisson geometry” Marco Gualtieri (University of Toronto), Ruxandra Moraru (University of Waterloo), Nigel Hitchin (Oxford University), Jacques Hurtubise (McGill University), Henrique Bursztyn (IMPA), Gil Cavalcanti (Utrecht University) Sunday, 11-04-2010 to Friday, 16-04-2010 1 Overview of the Field Generalized complex geometry is a relatively new subject in differential geometry, originating in 2001 with the work of Hitchin on geometries defined by differential forms of mixed degree. It has the particularly inter- esting feature that it interpolates between two very classical areas in geometry: complex algebraic geometry on the one hand, and symplectic geometry on the other hand. As such, it has bearing on some of the most intriguing geometrical problems of the last few decades, namely the suggestion by physicists that a duality of quantum field theories leads to a ”mirror symmetry” between complex and symplectic geometry. Examples of generalized complex manifolds include complex and symplectic manifolds; these are at op- posite extremes of the spectrum of possibilities. Because of this fact, there are many connections between the subject and existing work on complex and symplectic geometry. More intriguing is the fact that complex and symplectic methods often apply, with subtle modifications, to the study of the intermediate cases. Un- like symplectic or complex geometry, the local behaviour of a generalized complex manifold is not uniform. Indeed, its local structure is characterized by a Poisson bracket, whose rank at any given point characterizes the local geometry. For this reason, the study of Poisson structures is central to the understanding of gen- eralized complex manifolds which are neither complex nor symplectic. -
Homotopy Type of Symplectomorphism Groups of S2 × S2 S´Ilvia Anjos
ISSN 1364-0380 (on line) 1465-3060 (printed) 195 Geometry & Topology Volume 6 (2002) 195–218 Published: 27 April 2002 Homotopy type of symplectomorphism groups of S2 × S2 S´ılvia Anjos Departamento de Matem´atica Instituto Superior T´ecnico, Lisbon, Portugal Email: [email protected] Abstract In this paper we discuss the topology of the symplectomorphism group of a product of two 2–dimensional spheres when the ratio of their areas lies in the interval (1,2]. More precisely we compute the homotopy type of this sym- plectomorphism group and we also show that the group contains two finite dimensional Lie groups generating the homotopy. A key step in this work is to calculate the mod 2 homology of the group of symplectomorphisms. Although this homology has a finite number of generators with respect to the Pontryagin product, it is unexpected large containing in particular a free noncommutative ring with 3 generators. AMS Classification numbers Primary: 57S05, 57R17 Secondary: 57T20, 57T25 Keywords: Symplectomorphism group, Pontryagin ring, homotopy equiva- lence Proposed:YashaEliashberg Received:1October2001 Seconded: TomaszMrowka,JohnMorgan Revised: 11March2002 c Geometry & Topology Publications 196 S´ılvia Anjos 1 Introduction In general symplectomorphism groups are thought to be intermediate objects between Lie groups and full groups of diffeomorphisms. Although very little is known about the topology of groups of diffeomorphisms, there are some cases when the corresponding symplectomorphism groups are more understandable. For example, nothing is known about the group of compactly supported dif- feomorphisms of R4 , but in 1985, Gromov showed in [4] that the group of compactly supported symplectomorphisms of R4 with its standard symplectic structure is contractible. -
Hamiltonian and Symplectic Symmetries: an Introduction
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54, Number 3, July 2017, Pages 383–436 http://dx.doi.org/10.1090/bull/1572 Article electronically published on March 6, 2017 HAMILTONIAN AND SYMPLECTIC SYMMETRIES: AN INTRODUCTION ALVARO´ PELAYO In memory of Professor J.J. Duistermaat (1942–2010) Abstract. Classical mechanical systems are modeled by a symplectic mani- fold (M,ω), and their symmetries are encoded in the action of a Lie group G on M by diffeomorphisms which preserve ω. These actions, which are called sym- plectic, have been studied in the past forty years, following the works of Atiyah, Delzant, Duistermaat, Guillemin, Heckman, Kostant, Souriau, and Sternberg in the 1970s and 1980s on symplectic actions of compact Abelian Lie groups that are, in addition, of Hamiltonian type, i.e., they also satisfy Hamilton’s equations. Since then a number of connections with combinatorics, finite- dimensional integrable Hamiltonian systems, more general symplectic actions, and topology have flourished. In this paper we review classical and recent re- sults on Hamiltonian and non-Hamiltonian symplectic group actions roughly starting from the results of these authors. This paper also serves as a quick introduction to the basics of symplectic geometry. 1. Introduction Symplectic geometry is concerned with the study of a notion of signed area, rather than length, distance, or volume. It can be, as we will see, less intuitive than Euclidean or metric geometry and it is taking mathematicians many years to understand its intricacies (which is work in progress). The word “symplectic” goes back to the 1946 book [164] by Hermann Weyl (1885–1955) on classical groups. -
Conformal Hamiltonian Systems
Journal of Geometry and Physics 39 (2001) 276–300 Conformal Hamiltonian systems Robert McLachlan∗, Matthew Perlmutter IFS, Massey University, Palmerston North, New Zealand 5301 Received 4 August 2000; received in revised form 23 January 2001 Abstract Vector fields whose flow preserves a symplectic form up to a constant, such as simple mechanical systems with friction, are called “conformal”. We develop a reduction theory for symmetric con- formal Hamiltonian systems, analogous to symplectic reduction theory. This entire theory extends naturally to Poisson systems: given a symmetric conformal Poisson vector field, we show that it induces two reduced conformal Poisson vector fields, again analogous to the dual pair construction for symplectic manifolds. Conformal Poisson systems form an interesting infinite-dimensional Lie algebra of foliate vector fields. Manifolds supporting such conformal vector fields include cotan- gent bundles, Lie–Poisson manifolds, and their natural quotients. © 2001 Elsevier Science B.V. All rights reserved. MSC: 53C57; 58705 Sub. Class.: Dynamical systems Keywords: Hamiltonian systems; Conformal Poisson structure 1. Introduction The fields of symplectic geometry and geometric mechanics are closely linked, indeed almost synonymous [10,14]. One of their most important features is that the symplectic diffeomorphisms on a manifold form a group. This property can be taken as the definition of “geometry;” it is natural to try and generalize it. In 1913 Cartan [5,24] found that, subject to certain restrictions, there are just six classes of groups of diffeomorphisms on any manifold, namely (i) Diff itself; (ii) Diffω, the diffeomorphisms preserving a symplectic 2-form ω; (iii) Diffµ, the diffeomorphisms preserving a volume form µ; (iv) Diffα, the diffeomorphisms c preserving a contact form α up to a function; and the conformal groups, (v) Diffω and (vi) c Diffµ, the diffeomorphisms preserving the form ω or µ up to a constant.