Epistatic and Environmental Control of Genome-Wide Gene Expression

Total Page:16

File Type:pdf, Size:1020Kb

Epistatic and Environmental Control of Genome-Wide Gene Expression Epistatic and Environmental Control of Genome-Wide Gene Expression Timothy P. York,1,4 Michael F. Miles,2 Kenneth S. Kendler,3 Colleen Jackson-Cook,4 Melissa L. Bowman,2 and Lindon J. Eaves1,3,4 1 Massey Cancer Center,Virginia Commonwealth University, Richmond,Virginia, United States of America 2 Departments of Pharmacology/Toxicology, Neurology and the Center for Study of Biological Complexity,Virginia Commonwealth University, Richmond,Virginia, United States of America 3 Department of Psychiatry,Virginia Institute for Psychiatric and Behavioral Genetics,Virginia Commonwealth University, Richmond,Virginia, United States of America 4 Department of Human Genetics,Virginia Institute for Psychiatric and Behavioral Genetics,Virginia Commonwealth University, Richmond,Virginia, United States of America ll etiological studies of complex human traits to influences of genetic or environmental variation. Afocus on analyzing the causes of variation. Given The study of MZ and DZ twins is a well-tested this complexity, there is a premium on studying approach to partition the genetic, shared and non- those processes that mediate between gene prod- shared environmental factors in multifactorial traits ucts and cellular or organismal phenotypes. Studies (Jinks & Fulker, 1970). Modern refinements of statis- of levels of gene expression could offer insight into tical methods for the analysis of multivariate twin these processes and are likely to be especially data (Neale & Cardon, 1992) have made it possible useful to the extent that the major sources of their for the twin study to resolve genetic (or environmen- variation are known in normal tissues. The classical tal) effects that contribute to the clustering of multiple study of monozygotic (MZ) and dizygotic (DZ) twins phenotypes and to the sequence of developmental was employed to partition the genetic and environ- events that lead ultimately to clinically significant mental influences in gene expression for over 6500 complex outcomes. human genes measured using microarrays from Numerous studies of human disease have utilized lymphoblastoid cell lines. Our results indicate that microarray technology to simultaneously measure mean expression levels are correlated about .3 in thousands of gene expression profiles between groups monozygotic (MZ) and .0 in dizygotic (DZ) twins sug- of individuals or cell types with the goal of identifying gesting an overall epistatic regulation of gene expression. Furthermore, the functions of several of candidate disease genes or classifying tissue into the genes whose expression was most affected by disease subgroups. It is not clear whether or not the environmental effects, after correction for measure- interindividual variation associated with a particular ment error, were consistent with their known role in outcome is due to genetic or random environmental mediating sensitivity to environmental influences. causes (Oleksiak et al., 2002). Genetic sources of gene expression variation are likely due to DNA sequence polymorphisms, whereas all nongenetic components The measurement of gene expression levels for a very can be generally classified as random environmental large number of genes through microarray technology sources. Recently, investigators have studied the extent offers the hope of a better understanding of some of to which gene expression levels are under genetic the primary mechanisms through which both genes control for a limited number of genes (Cheung et al., and environment affect susceptibility to complex mul- 2003; Yan et al., 2002). In another report, a signifi- tifactorial disorders. If microarray technology is to cant heritable component for many genes was provide a means for the assessment of the endopheno- suggested by mapping both cis- and trans-acting loci type in studies of disease etiology, it will be necessary that effect gene expression (Morely et al., 2004). to characterize the differential roles of genetic and The examination of interindividual variation in environmental influences on levels of gene expression. the level of gene expression in normal tissue is a nec- The study of gene expression levels in samples of monozygotic (MZ) and dizygotic (DZ) twin pairs Received 23 November, 2004; accepted 2 December, 2004. may offer a valuable overview of the contribution of genetic variation and environmental exposures to Address for correspondence: Timothy P. York, Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University, gene expression, and identifies clusters of genes whose PO Box 980003, Richmond, VA 23298-0003, USA. E-mail: expression in specific tissues is more or less sensitive [email protected] Twin Research and Human Genetics Volume 8 Number 1 pp. 5–15 5 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.76, on 28 Sep 2021 at 01:09:45, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1375/twin.8.1.5 Timothy P. York, Michael F. Miles, Kenneth S. Kendler, Colleen Jackson-Cook, Melissa L. Bowman, and Lindon J. Eaves essary prerequisite for interpreting alterations in gene the correlation in gene expression between transformed expression profiles that are causally associated with cells and peripheral blood leukocytes. disease tissue. Peripheral blood is a readily accessible Microarrays source of cells for the study of this relationship and TM has the potential for acting as a surrogate tissue for Total RNA was isolated according to the STAT-60 diagnostic purposes since it is exposed to many of the protocol. RNA concentration was determined by same environmental substances as target tissues absorbance at 260 nm, and RNA quality was ana- (Whitney et al., 2003). Recent studies have demon- lyzed by agarose gel electrophoresis and 260/280 strated that stable gene expression profiles can be absorbance ratios. Total RNA (7 µg) derived from monitored despite temporal changes in blood chem- each sample was reverse transcribed into double- istry (Radich et al., 2004) and signatures of gene stranded cDNA using the Invitrogen Superscript II expression due to environmental exposures can be System (Invitrogen, Carlsbad, CA). Biotin-labeled reliably identified (Lampe et al., 2004). cRNA was synthesized from this cDNA using Ultimately, the same methodology may be BioArray High Yield RNA Transcript Labeling Kit extended to quantify the genetic and environmental (ENZO Diagnostics, Farmingdale, NY) according to sources of variation at the intermediary stage of gene the manufacturer’s instructions, purified using the expression and present a clearer picture of the etiology RNAeasy Mini Kit (Qiagen, Mountain View, CA), and molecular pathology of multifactorial disease. and quantified by absorbance at 260 nm. Labeled To provide proof of principle for the use of twins cRNA samples were hybridized to oligonucleotide in the study of gene expression, we have examined the microarrays (Human GeneChip™ HG-133A, patterns of correlation in expression levels of over Affymetrix, Santa Clara, CA) containing probes for 22,000 genes in cultured lymphoblastoid cell lines over 22,000 genes and ESTs. Array hybridization, derived from peripheral blood lymphocytes from 10 scanning and quality control assessment were per- pairs of MZ and 5 pairs of DZ female twins that were formed according to the manufacturer’s protocol and obtained from Coriell Cell Repositories (Camden, as described previously (Hassan et al., 2003; Thibault NJ). The mean twin pair age was 31 (± 12) years old. et al., 2000). Background correction, normalization, Individuals had no reported history of major illness and expression summary were conducted with the (Appendix Table 1). Gene expression was measured robust multiarray average (RMA; Irizarry et al., on oligonucleotide microarrays (Human GeneChip™ 2003) implemented in the Bioconductor R packages HG133-A, Affymetrix) which contain over 22,000 (Gentleman et al., 2004). named genes and expressed sequence tags (ESTs). Labeled cRNA from each individual was hybridized Statistical Methodology to a single microarray. On average, 41% of genes We derived the variance components separately for present on the microarrays were expressed in the both zygosities to test the hypothesis that no differ- sample cell lines. Genes without a MAS 5 ‘present’ or ences exist within and between pairs across all genes ‘marginally present’ call in all samples were removed (probesets) measured. The model was yijk = m + Pi + from analysis (Affymetrix, 1999). A total of 6578 P:Ii(j) + Gk + (P*G)ik + (P:I*G)i(j)k. The response, yi(j)k, is genes met this very conservative filtering criteria and the level of intensity for the jth individual in the ith pair were included in this study. and kth gene. The variable m is the mean gene expres- sion level across all individuals. The variation Materials and Methods between pairs is listed as Pi and the within pair vari- Sample ance is represented by the nested term P:Ii(j).Gk is the Cultured lymphoblastoid cell lines were obtained from average gene expression intensity across pairs and 10 pairs of MZ and 5 pairs of DZ twins. These cells individuals within pairs. The interaction terms, were obtained from Coriell Cell Repositories (Camden, (P*G)ik and (P:I*G)i(j)k, account for the gene depen- NJ). Zygosity was confirmed by genotyping a panel of dent variation between and within pairs respectively. 20 microsatellite markers. There were no discordant These terms are used to gauge the overall importance markers within
Recommended publications
  • Genome‐Wide Association Studies of the Self‐Rating of Effects of Ethanol (SRE)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eScholarship - University of California UC San Diego UC San Diego Previously Published Works Title Genome-wide association studies of the self-rating of effects of ethanol (SRE). Permalink https://escholarship.org/uc/item/94p1n78c Journal Addiction biology, 25(2) ISSN 1355-6215 Authors Lai, Dongbing Wetherill, Leah Kapoor, Manav et al. Publication Date 2020-03-01 DOI 10.1111/adb.12800 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 18 December 2018 Revised: 6 May 2019 Accepted: 27 May 2019 DOI: 10.1111/adb.12800 ORIGINAL ARTICLE Genome‐wide association studies of the self‐rating of effects of ethanol (SRE) Dongbing Lai1 | Leah Wetherill1 | Manav Kapoor2 | Emma C. Johnson3 | Melanie Schwandt4 | Vijay A. Ramchandani5 | David Goldman4 | Geoff Joslyn6 | Xi Rao1 | Yunlong Liu1 | Sean Farris7 | R. Dayne Mayfield7 | Danielle Dick8 | Victor Hesselbrock9 | John Kramer10 | Vivia V. McCutcheon3 | John Nurnberger1,11 | Jay Tischfield12 | Alison Goate2 | Howard J. Edenberg1,13 | Bernice Porjesz14 | Arpana Agrawal3 | Tatiana Foroud1 | Marc Schuckit15 1 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 2 Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, New York 3 Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 4 Office of the Clinical Director, National Institute on Alcohol Abuse
    [Show full text]
  • CD29 Identifies IFN-Γ–Producing Human CD8+ T Cells With
    + CD29 identifies IFN-γ–producing human CD8 T cells with an increased cytotoxic potential Benoît P. Nicoleta,b, Aurélie Guislaina,b, Floris P. J. van Alphenc, Raquel Gomez-Eerlandd, Ton N. M. Schumacherd, Maartje van den Biggelaarc,e, and Monika C. Wolkersa,b,1 aDepartment of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; bLandsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cDepartment of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands; dDivision of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and eDepartment of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands Edited by Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved February 12, 2020 (received for review August 12, 2019) Cytotoxic CD8+ T cells can effectively kill target cells by producing therefore developed a protocol that allowed for efficient iso- cytokines, chemokines, and granzymes. Expression of these effector lation of RNA and protein from fluorescence-activated cell molecules is however highly divergent, and tools that identify and sorting (FACS)-sorted fixed T cells after intracellular cytokine + preselect CD8 T cells with a cytotoxic expression profile are lacking. staining. With this top-down approach, we performed an un- + Human CD8 T cells can be divided into IFN-γ– and IL-2–producing biased RNA-sequencing (RNA-seq) and mass spectrometry cells. Unbiased transcriptomics and proteomics analysis on cytokine- γ– – + + (MS) analyses on IFN- and IL-2 producing primary human producing fixed CD8 T cells revealed that IL-2 cells produce helper + + + CD8 Tcells.
    [Show full text]
  • PRMT3 (1-531, His-Tag) Human Protein – AR51778PU-N | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for AR51778PU-N PRMT3 (1-531, His-tag) Human Protein Product data: Product Type: Recombinant Proteins Description: PRMT3 (1-531, His-tag) human recombinant protein, 0.5 mg Species: Human Expression Host: E. coli Tag: His-tag Predicted MW: 62.3 kDa Concentration: lot specific Purity: >90% by SDS - PAGE Buffer: Presentation State: Purified State: Liquid purified protein Buffer System: Phosphate buffer saline (pH 7.4) containing 20% glycerol, 1mM DTT. Preparation: Liquid purified protein Protein Description: Recombinant human PRMT3, fused to His-tag at N-terminus, was expressed in E.coli and purified by using conventional chromatography techniques. Storage: Store undiluted at 2-8°C for one week or (in aliquots) at -20°C to -80°C for longer. Avoid repeated freezing and thawing. Stability: Shelf life: one year from despatch. RefSeq: NP_001138638 Locus ID: 10196 UniProt ID: Q8WUV3 Cytogenetics: 11p15.1 Synonyms: HRMT1L3 Summary: This gene belongs to the protein arginine methyltransferase (PRMT) family. The encoded enzyme catalyzes the methylation of guanidino nitrogens of arginyl residues of proteins. The enzyme acts on 40S ribosomal protein S2 (rpS2), which is its major in-vivo substrate, and is involved in the proper maturation of the 80S ribosome. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013] This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 PRMT3 (1-531, His-tag) Human Protein – AR51778PU-N Protein Families: Druggable Genome Product images: This product is to be used for laboratory only.
    [Show full text]
  • Utilising Clinical Exome Sequencing in Patients with Rare Genetic Disease and Regions of Homozygosity Detected by SNP Microarray
    Utilising clinical exome sequencing in patients with rare genetic disease and regions of homozygosity detected by SNP microarray A thesis submitted to The University of Manchester for the degree of Doctor of Clinical Science In the faculty of Biology, Medicine and Health 2020 Lewis P Darnell School of Biological Sciences, Division of Cell Matrix Biology and Regenerative Medicine List of Contents Description Page Number Word count 7 List of figures 8 List of tables 9 List of abbreviations 10 Abstract 11 Declaration 12 Copyright statement 12 Acknowledgements 14 The author 15 1 Introduction 16 1.1 Introduction to Rare Genetic Disease 17 1.1.1 Rare Genetic Disorders 17 1.1.2 Diagnosing Rare Genetic Disorders 20 1.1.3 Consanguinity and Genetic Disease 22 1.2 Genetic Testing Methods 27 1.2.1 Microarray 27 1.2.2 DNA Sequencing 30 1.2.3 Whole Exome Sequencing 34 1.2.4 Clinical Exome Sequencing 38 1.2.5 Whole Genome Sequencing 41 1.2.6 Genetic Testing Summary 42 1.3 Variant Analysis 45 1.3.1 Variant Prioritisation 45 2 1.3.2 Variant Analysis 48 1.4 Genetic Testing for Rare Disease in the East Midlands 49 1.5 The Importance of this Research and Controversial Issues 53 1.6 Research Hypothesis 58 1.6.1 Research Question 58 1.6.2 Overarching Hypothesis 58 1.6.3 Specific Hypothesis 59 1.7 Detailed Project Aims 60 1.8 Evaluation of the Methodology Decision 62 1.9 Relevance to Research Area 64 1.10 Summary 65 2 Materials and Methods 67 2.1 Participants and Phenotypes 67 2.1.1 Participant Referral 67 2.1.2 Ethics and Consent 68 2.1.3 Participant Phenotypes,
    [Show full text]
  • A Tool for Clinical Management of Genetic Variants
    Wang et al. Genome Medicine (2015) 7:77 DOI 10.1186/s13073-015-0207-6 SOFTWARE Open Access ClinLabGeneticist: a tool for clinical management of genetic variants from whole exome sequencing in clinical genetic laboratories Jinlian Wang, Jun Liao, Jinglan Zhang, Wei-Yi Cheng, Jörg Hakenberg, Meng Ma, Bryn D. Webb, Rajasekar Ramasamudram-chakravarthi, Lisa Karger, Lakshmi Mehta, Ruth Kornreich, George A. Diaz, Shuyu Li, Lisa Edelmann* and Rong Chen* Abstract Routine clinical application of whole exome sequencing remains challenging due to difficulties in variant interpretation, large dataset management, and workflow integration. We describe a tool named ClinLabGeneticist to implement a workflow in clinical laboratories for management of variant assessment in genetic testing and disease diagnosis. We established an extensive variant annotation data source for the identification of pathogenic variants. A dashboard was deployed to aid a multi-step, hierarchical review process leading to final clinical decisions on genetic variant assessment. In addition, a central database was built to archive all of the genetic testing data, notes, and comments throughout the review process, variant validation data by Sanger sequencing as well as the final clinical reports for future reference. The entire workflow including data entry, distribution of work assignments, variant evaluation and review, selection of variants for validation, report generation, and communications between various personnel is integrated into a single data management platform. Three case studies are presented to illustrate the utility of ClinLabGeneticist. ClinLabGeneticist is freely available to academia at http://rongchenlab.org/software/clinlabgeneticist. Background effects, and testing of tumor biopsies to determine somatic Molecular genetic testing is playing an increasingly im- alterations for cancer classification, prognosis, and devel- portant role in medicine.
    [Show full text]
  • The Protein Arginine Methyltransferase PRMT5 Regulates Proliferation
    The Protein Arginine Methyltransferase PRMT5 Regulates Proliferation and the Expression of MITF and p27Kip1 in Human Melanoma DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Courtney Nicholas Graduate Program in Molecular, Cellular, and Developmental Biology The Ohio State University 2012 Dissertation Committee: Gregory B. Lesinski, PhD, Advisor Jiayuh Lin, PhD Amanda E. Toland, PhD Susheela Tridandapani, PhD Copyright by Courtney Nicholas 2012 Abstract The protein arginine methyltransferase-5 (PRMT5) enzyme is a Type II arginine methyltransferase that can regulate a variety of cellular functions. We hypothesized that PRMT5 plays a unique role in regulating the growth of human melanoma cells. Immunohistochemical analysis indicated significant upregulation of PRMT5 in human melanocytic nevi (88% of specimens positive for PRMT5), malignant melanomas (90% positive) and metastatic melanomas (88% positive) as compared to normal epidermis (5% of specimens positive for PRMT5; p<0.001, Fisher’s exact test). Furthermore, nuclear PRMT5 was significantly decreased in metastatic melanomas as compared to primary cutaneous melanomas (p<0.001, Wilcoxon rank sum test). Human metastatic melanoma cell lines in culture expressed PRMT5 predominantly in the cytoplasm. PRMT5 was found to be associated with its enzymatic cofactor Mep50, but not associated with STAT3 or cyclin D1. However, histologic examination of tumor xenografts from athymic mice revealed a heterogeneous pattern of nuclear and cytoplasmic PRMT5 expression. siRNA-mediated depletion of PRMT5 inhibited proliferation in a subset of melanoma cell lines, while it accelerated the growth of others. Loss of PRMT5 also led to reduced expression of MITF (microphthalmia-associated transcription factor), a melanocyte-lineage specific oncogene, and increased expression of the cell cycle regulator p27Kip1.
    [Show full text]
  • Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
    Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades.
    [Show full text]
  • Characterizing Epigenetic Regulation in the Developing Chicken Retina Bejan Abbas Rasoul James Madison University
    James Madison University JMU Scholarly Commons Masters Theses The Graduate School Spring 2018 Characterizing epigenetic regulation in the developing chicken retina Bejan Abbas Rasoul James Madison University Follow this and additional works at: https://commons.lib.jmu.edu/master201019 Part of the Computational Biology Commons, Developmental Biology Commons, Genomics Commons, and the Molecular Genetics Commons Recommended Citation Rasoul, Bejan Abbas, "Characterizing epigenetic regulation in the developing chicken retina" (2018). Masters Theses. 569. https://commons.lib.jmu.edu/master201019/569 This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact [email protected]. Characterizing Epigenetic Regulation in the Developing Chicken Retina Bejan Abbas Rasoul A thesis submitted to the Graduate Faculty of JAMES MADISON UNIVERSITY In Partial Fulfillment of the Requirements for the degree of Master of Science Department of Biology May 2018 FACULTY COMMITTEE: Committee Chair: Dr. Raymond A. Enke Committee Members/ Readers: Dr. Steven G. Cresawn Dr. Kimberly H. Slekar DEDICATION For my father, who has always put the education of everyone above all else. ii ACKNOWLEDGMENTS I thank my advisor, Dr. Ray Enke, first, for accepting me as his graduate student and second, for provided significant support, advice and time to aid in the competition of my project and thesis. I would also like to thank my committee members not just for their role in this process but for being members of the JMU Biology Department ready to give any help they can.
    [Show full text]
  • D Isease Models & Mechanisms DMM a Ccepted Manuscript
    © 2014. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Full title: 2 Histopathology Reveals Correlative and Unique Phenotypes in a High Throughput Mouse Phenotyping 3 Screen 4 Short title: 5 Histopathology Adds Value to a High Throughput Mouse Phenotyping Screen 6 Authors: 1,2,4* 3 3 3 3 7 Hibret A. Adissu , Jeanne Estabel , David Sunter , Elizabeth Tuck , Yvette Hooks , Damian M 3 3 3 3 1,2,4 8 Carragher , Kay Clarke , Natasha A. Karp , Sanger Mouse Genetics Project , Susan Newbigging , 1 1,2 3‡ 1,2,4‡ 9 Nora Jones , Lily Morikawa , Jacqui K. White , Colin McKerlie 10 Affiliations: Accepted manuscript Accepted 1 11 Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, 25 Orde Street, Toronto, 12 ON, Canada, M5T 3H7 DMM 2 13 Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, 555 University 14 Avenue, Toronto, ON, Canada, M5G 1X8 3 15 Mouse Genetics Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, 16 Cambridge, CB10 1SA, UK 4 17 Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 18 Toronto, ON, Canada, M5S 1A8 19 *Correspondence to Hibret A. Adissu, Centre for Modeling Human Disease, Toronto Centre for Disease Models & Mechanisms 20 21 Phenogenomics, 25 Orde Street, Toronto, ON, Canada, M5T 3H7; [email protected] ‡ 22 Authors contributed equally 23 24 Keywords: 25 Histopathology, High Throughput Phenotyping, Mouse, Pathology 26 1 DMM Advance Online Articles.
    [Show full text]
  • Developing and Using Methyl-Specific Antibodies to Study the Biological
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2016 Developing and using methyl-specific antibodies ot study the biological roles of arginine methylation Vidyasiri Vemulapalli Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cell Biology Commons, Medicine and Health Sciences Commons, and the Molecular Biology Commons Recommended Citation Vemulapalli, Vidyasiri, "Developing and using methyl-specific antibodies ot study the biological roles of arginine methylation" (2016). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 648. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/648 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. DEVELOPING AND USING METHYL-SPECIFIC ANTIBODIES TO STUDY THE BIOLOGICAL ROLES OF ARGININE
    [Show full text]
  • Methylation - from Dna, Rna and Histones to Diseases and Treatment
    METHYLATION - FROM DNA, RNA AND HISTONES TO DISEASES AND TREATMENT Edited by Anica Dricu Methylation - From DNA, RNA and Histones to Diseases and Treatment http://dx.doi.org/10.5772/2932 Edited by Anica Dricu Contributors Anica Dricu, Dmitri Nikitin, Attila Kertesz-Farkas2, Alexander Solonin, Marina Mokrishcheva, Hirokazu Suzuki, Robert Peter Mason, Mark Brown, Xian Wang, Hongchuan Jin, Elena Kubareva, Alexandra Ryazanova, Liudmila Abrosimova, Tatiana Oretskaya, Zvonko Magic, Gordana Supic, Nebojsa Jovic, Mirjana Brankovic-Magic, Jianrong Li, Rita Castro, Byron Baron Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book.
    [Show full text]
  • Genomics of Asthma, Allergy and Chronic Rhinosinusitis
    Laulajainen‑Hongisto et al. Clin Transl Allergy (2020) 10:45 https://doi.org/10.1186/s13601‑020‑00347‑6 Clinical and Translational Allergy REVIEW Open Access Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa Anu Laulajainen‑Hongisto1,2†, Annina Lyly1,3*† , Tanzeela Hanif4, Kishor Dhaygude4, Matti Kankainen5,6,7, Risto Renkonen4,5, Kati Donner6, Pirkko Mattila4,6, Tuomas Jartti8, Jean Bousquet9,10,11, Paula Kauppi3† and Sanna Toppila‑Salmi3,4† Abstract Genome wide association studies (GWASs) have revealed several airway disease‑associated risk loci. Their role in the onset of asthma, allergic rhinitis (AR) or chronic rhinosinusitis (CRS), however, is not yet fully understood. The aim of this review is to evaluate the airway relevance of loci and genes identifed in GWAS studies. GWASs were searched from databases, and a list of loci associating signifcantly (p < 10–8) with asthma, AR and CRS was created. This yielded a total of 267 signifcantly asthma/AR–associated loci from 31 GWASs. No signifcant CRS ‑associated loci were found in this search. A total of 170 protein coding genes were connected to these loci. Of these, 76/170 (44%) showed bronchial epithelial protein expression in stained microscopic fgures of Human Protein Atlas (HPA), and 61/170 (36%) had a literature report of having airway epithelial function. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses were performed, and 19 functional protein categories were found as signif‑ cantly (p < 0.05) enriched among these genes. These were related to cytokine production, cell activation and adaptive immune response, and all were strongly connected in network analysis.
    [Show full text]